Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO\textsubscript{2}

To cite this version:

E. Koemets, I. Leonov, M. Bykov, E. Bykova, S. Chariton, et al.. Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO\textsubscript{2}. Physical Review Letters, 2021, 126 (10), pp.106001. 10.1103/PhysRevLett.126.106001. hal-03268215

HAL Id: hal-03268215

https://hal.umontpellier.fr/hal-03268215

Submitted on 20 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO$_2$

E. Koemets1,2,*, I. Leonov3,4,5, M. Bykov1, E. Bykova1,6, S. Chariton4, G. Aprilis7, T. Fedotenko7, S. Clément8, J. Rouquette2, J. Haines2, V. Cerantola8, K. Glazyrin10, C. McCammon1, V. B. Prakapenka11, M. Hanfland8, H.-P. Liermann10, V. Svitlyk8, R. Torchio8, A. D. Rosa8, T. Irifune12, A. V. Ponomareva4, I. A. Abrikosov13, N. Dubrovinskaia7,13, and L. Dubrovinsky5

1Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
2Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université de Montpellier, F-34095 Montpellier Cedex 5, France
3Institute of Metal Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
4Materials Modeling and Development Laboratory, NUST "MISIS", 119049 Moscow, Russia
5UDM, 620002 Yekaterinburg, Russia
6Carnegie Institution of Washington, Earth and Planets Laboratory, 5241 Broad Branch Road NW, Washington, DC 20015, USA
7Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, Université Bayreuth, D-95440 Bayreuth, Germany
8The European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
9Laboratoire Charles Coulomb (L2C)—UMR CNRS 5221, Université de Montpellier, CC069, 34095 Montpellier, France
10Photon Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
11Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
12Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
13Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

(Received 20 October 2020; revised 7 December 2020; accepted 7 January 2021; published 12 March 2021)

Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeO$_m$Fe$_2$O$_3$ and the appearance of FeO$_2$. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory + dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO$_2$ and isostuctural Fe$_2$O$_3$$_{1.5}$ is ferric (Fe$^{3+}$), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.

DOI: 10.1103/PhysRevLett.126.106001

At ambient (or low) pressures, three different iron oxides are known: Fe$_2$O$_3$ with a mineral name hematite; Fe$_3$O$_4$ magnetite—the oldest known magnetic material—and FeO wüstite, which is nonstoichiometric and typically iron deficient. At extreme pressures and temperatures, the synthesis yields numerous iron oxides with unexpected compositions (such as Fe$_4$O$_5$, Fe$_5$O$_6$, Fe$_7$O$_9$, Fe$_5$O$_7$, Fe$_{25}$O$_{32}$, etc.), unusual crystal structures, and intriguing physical properties, demonstrating the complexity of the binary Fe—O system [1–5]. It was suggested that iron oxides at high-pressure and high-temperature conditions (HP-HT) could be systematized by homologous structural series nFeO$_m$Fe$_2$O$_3$ formed by oxygen (O$^{2-}$) and iron in ferrous and/or ferric states (Fe$^{2+}$ and Fe$^{3+}$, correspondingly). Besides the end members, iron could exist in the mixed-valence state in this series (formally intermediate between 2+ and 3+ valence), defined by the stoichiometry of HP iron oxides. However, the recent finding of cubic FeO$_2$ (space group $Pn\overline{3}$), and closely related FeO$_2$H$_x$ (x up to 1) phases [6–8], suggests that not only iron but also oxygen could have a variable oxidation state in iron oxides (or oxyhydroxides).

Powder x-ray diffraction (PXRD) [6], x-ray absorption spectroscopy (XAS) [9,10], and nuclear forward scattering (NFS) studies [10] of cubic high-pressure FeO$_2$H$_x$ ($x = 0$–1) compounds, as well as results of some theoretical works [11,12] were used to argue that iron is ferrous in these phases even at strongly oxidized conditions and thus oxygen forms peroxide (O$_2$)$^{2-}$ ions. However, the question concerning the oxidation state of both iron and oxygen in FeO$_2$ and FeO$_2$H$_x$ remains controversial, primarily because of harsh experimental conditions and ambiguous results. For example, while XAS data were interpreted to indicate that iron is ferrous [9,10], NFS data of cubic FeO$_2$ [10] show center shifts (\sim0.15 mm/s at 80 GPa) that are unrealistic for any ferrous compound.

Available experimental information on the crystal structure of FeO$_2$ and FeO$_2$H$_x$ phases is based on PXRD [6,8], which makes the analysis of the Fe—O and O—O distances unreliable compared to more complex yet more informative
structural refinements from single-crystal x-ray diffraction data (SC-XRD) [13]. Additionally, some theoretical works [14–17] suggest that iron is ferric in FeO$_2$, illustrating the necessity of performing high-accuracy experiments to establish the physical and chemical properties of this phase.

The goals of this Letter are to clarify the high-pressure crystal chemistry of cubic FeO$_2$ and FeO$_2$H$_x$ phases and determine the oxidation state of iron and oxygen. These are not only of importance as a fundamental problem for HP-HT chemistry, but also highly relevant for geosciences [6]. In order to achieve the goals of our studies, we perform multimethod synchrotron-based experiments, including advanced in situ SC-XRD, x-ray absorption, and Mössbauer spectroscopy using laser-heated diamond anvil cells (see Supplemental Material [18], Table S1). We support our experimental results by the density-functional theory + dynamical mean-field theory (DFT + DMFT) calculations [35,36] of the electronic structure and magnetic and valence states of iron. An application of DFT + DMFT provides a nonperturbative treatment of (local) spin fluctuations allowing one to determine the electronic structure and magnetic and structural properties of paramagnetic correlated materials, e.g., near the Mott transition [35]. We perform a full structural optimization and compute the crystal structure parameters of paramagnetic FeO$_2$ under pressure within DFT + DMFT [37–43]. Our experimental and theoretical results suggest that iron in HP-PdF$_2$-type FeO$_2$ and FeO$_2$H$_x$ is ferric (3+). We show the absence of a molecular (O$_2$)$_3$ bonding state in HP-PdF$_2$-type FeO$_2$, implying that the oxidation state of oxygen is equal to 1.5—due to oxygen-metal negative charge transfer. Such a charge transfer is expected to shorten the Fe—O distance and consequently reduce the volume of FeO$_2$ octahedra, which should cause both iron polyhedra and the entire structure to become highly incompressible.

Compression of iron in oxygen at ambient temperature to 25(1) GPa did not produce any chemical reaction, but laser heating of the sample at this pressure to ~1500(100) K led to the formation of Fe$_2$O$_3$ [space group R$ar{3}$c, unit cell parameters $a = 4.91496(3)$ Å, $c = 13.2579(1)$ Å] (see Fig. S2 [18]), in agreement with literature data [44]. After further compression to 46(2) GPa, the laser heating of a sample was performed at ~1200(100) K. The XRD pattern of the temperature-quenched product drastically changed (see Fig. S2 [18]). The XRD analysis shows cubic FeO$_2$ with the space group Pa$ar{3}$ and unit cell parameter $a = 4.4313(14)$ Å, which is close to the values reported for “pyrite-type” FeO$_2$ [6,16]. Iterative heating of the samples at different pressures resulted in the growth of microcrystals of cubic FeO$_2$ that enabled performing an in situ SC-XRD data collection with further structure solution and refinements. The SC-XRD data analysis revealed that FeO$_2$ has the HP-PdF$_2$-type structure (see Table S1 [18]) in a range of pressures from 36(1) to 73(2) GPa. The compressional behavior of this phase was studied in several experimental runs on compression and decompression, as described in Table S1 and results are presented in Fig. 1. In our experiments, we did not observe the cubic FeO$_2$ phase at pressures below ~30 GPa. The results on the crystal structure refinements from in situ SC-XRD datasets of the FeO$_2$, which have never been reported before, are summarized in Table S2 (see Fig. S1). Structural analysis suggests that the O—O dimer bond length varies from 2.213(7) to 2.104(15) Å within the pressure range from ~36 to 73 GPa (see Table S2). For peroxides (in molecular or crystalline forms), the distances between the closest oxygen atoms at ambient pressure are very characteristic—from about 1.2 to 1.5 Å [45] (e.g., in MgO$_2$ it is about 1.492 Å), and under compression these distances should not increase. In the case of FeO$_2$, such a large observed O—O distance suggests, from a crystal-chemical point of view, the absence of chemical bonding between oxygen atoms. Even in the case of the structural model of FeO$_2$ refined against powder XRD data (pyrite-type FeO$_2$ [61]), the shortest O—O bond is ~1.896 Å at 76 GPa, which is too large for peroxides.

A number of transition metals, for example, osmium and ruthenium, the neighbors of iron in the VIIIb group of the periodic table, form dioxides, OsO$_2$ and RuO$_2$ with the HP-PdF$_2$-type structure [46,47] (space group Pa$ar{3}$). The shortest O—O distance in these dioxides is equal to ~2.5 Å at ambient conditions. These phases are characterized by low compressibility (for details see Refs. [46,47]), and cubic FeO$_2$ is very incompressible as well, according to our experimental data [see Fig. 1(b)]. Accounting for the relatively long O—O distances in FeO$_2$ at HP, one could expect that it adopts rather the HP-PdF$_2$-type structure than forms a peroxide. Additionally, according to the “rule of thumb” [48], the behavior of compounds (particularly oxides) of an element at high pressure is similar to that of compounds of the elements with higher atomic number in the same group of the periodic table at low pressures.

The results of structural studies and crystal-chemical considerations are consistent and point toward highly unusual crystal chemistry of Fe—O bonds in
HP-PdF$_2$-type FeO$_2$. In fact, Streltsov et al. [14] suggested on the basis of ab initio calculations for FeO$_2$ that the valence of iron is 3+ and classified the material as lying “in between” oxides and peroxides with the anion described as (O$_2$)$_3^{3-}$. However, the structural model obtained from PXRD [6] was used in the calculations, and the input crystal structure of cubic FeO$_2$ was not optimized self-consistently [14]. While other electronic structure studies used the DFT + U method to compute the crystal structure parameters of FeO$_2$ [11,12,17], these computations assume the existence of a long-range magnetic order in HP-PdF$_2$ phase of FeO$_2$, in contradiction with experiment. As a result, such computations cannot give a reliable results for the shortest O─O bond length in FeO$_2$, predicting either an unusual increase of the O─O distance under pressure [11] or a large O─O distance of 2.232 Å at 76 GPa [17].

We resolve this point by computing the crystal structure phase stability and electronic structure of FeO$_2$ using a fully charge self-consistent DFT + DMFT method (see Supplemental Material [18]). Within DFT + DMFT, we perform a full structural optimization of the lattice parameters of the paramagnetic HP-PdF$_2$ phase of FeO$_2$ and compare our results with experimental data obtained through more precise in situ SC-XRD. In Fig. 1 we display our results for the crystal structure parameters obtained by DFT + DMFT. In contrast to the previous DFT + U results [11], we observe that upon compression the O─O distance decreases from 2.286 Å at 17 GPa to 2.085 Å at 70 GPa, which is in close agreement with our SC-XRD data. Indeed, our SC-XRD measurements give ∼2.213(7) Å at 36(1) GPa and 2.117(8) Å at 73(2) GPa. Our DFT + DMFT calculations show that at a pressure of ∼70 GPa FeO$_2$ is a poor metal (see Fig. 2) with about 5.21 electrons in the Wannier sphere with radius ∼0.78 Å, in accord with a bond valence analysis). Oxygen states are partially occupied with ∼0.61 hole states in the Wannier O 2p orbitals. The local magnetic moment is ∼1.59 μ_B (fluctuating moment of 0.83 μ_B). Our results for the decomposition of electronic state into atomic configurations (valence states) show that the valence value for Fe is nearly 3+ at ∼70 GPa: Fe$^{3+}$ 3d^6 configuration has a weight of about 50%, with a ∼30% admixture of the Fe$^{2+}$ 3d^7 state ($\sqrt{0.5}|d^6\rangle + \sqrt{0.3}|d^7\rangle$, see Fig. S8 [18]).

In Fig. 2 we see that, due to distorted FeO$_6$ octahedron symmetry, the Fe t_{2g} states split into a a_{1g} singlet and e_g^σ doublet. Fe e_g^σ orbitals are empty and are located well above the Fermi level at 1–4 eV. Fe t_{2g} states form weakly renormalized ($m/m^* \sim 1.6$) quasiparticle bands near E_F. No evidence for a metal-to-insulator phase transition in FeO$_2$ (below ∼189 GPa) was observed within our fully relaxed DFT + DMFT calculations [11,12], in agreement with experiment. In fact, under experimental setup presented here, samples were black with a metallic shine, implying a metallic state of FeO$_2$. Moreover, within DFT + DMFT the low-to-high spin-state transition is found to occur below ∼14 GPa, i.e., below the stability field of the HP-PdF$_2$-type FeO$_2$. Most notably, our DFT + DMFT results confirm that even at ∼189 GPa the O─O bond length remains sufficiently large (1.86 Å), implying the absence of covalent “molecular” O─O bonding in FeO$_2$. Our DFT + DMFT results agree well with our Mössbauer spectroscopy data that show a low-spin state of nearly 3+ iron ions in the studied pressure range (see below). Most importantly, our fully relaxed and charge self-consistent DFT + DMFT calculations lead to a different bonding picture of FeO$_2$ in comparison to the analysis by Streltsov et al. [14]. Our results reveal the absence of a molecular (O$_2$)$_{3}$ bonding state; i.e., in FeO$_2$ iron has effective charge 3+ and oxygen 1.5-. We see that at ∼70 GPa, bonding O─O σ states appear at about −2 eV, while antibonding σ* states split into the $t_{2g} \pm \sigma^*$ combinations (seen as two peaks at −0.5 and +0.5 eV) due to the mixing with the Fe t_{2g} states at the Fermi level. Importantly, the empty $t_{2g} - \sigma^*$ O─O band is located ∼0.5 eV above the Fermi level. We conclude that FeO$_2$ belongs to the class of negative charge-transfer materials (in which excitation energy for the transfer of electrons from the O 2p to Fe 3d states is negative) [49,50]. In such materials, instead of having an electronic configuration corresponding to the formal valence state, e.g., Fe$^{4+}$ and O$^{2-}$ configuration in FeO$_2$, the system adopts a configuration with higher occupation of the 3d shell, creating holes on oxygen. At the same time, the bonding-antibonding splitting of the O 2p orbitals is small, just ∼2–3 eV, indicating negligible bonding between the two oxygen atoms. This agrees well with our analysis of the charge density distribution in FeO$_2$ in comparison to magnesium peroxide MgO$_2$ (space group $P\bar{4}a3$) [51,52]. Our results are summarized in Fig. 3, highlighting the absence of a molecular (O$_2$)$_{3}$ or (O$_2$)$_{2}^{-}$ bonding state in FeO$_2$ in the studied interval of pressures.

![FIG. 2. Fe 3d (a_{1g}, e_g^σ, and e_g^π) and O 2p (blue shaded area) spectral functions of HP-PdF$_2$ FeO$_2$ as obtained by DFT + DMFT for different pressures.](image-url)
FeO and O was found to correspond to the HP-PdF₂-type structure, confirming that FeO₂ and FeO₂H₃ are isostructural phases. The lattice parameter suggests the chemical composition FeO₂H₃ [55]. The relatively high value of the shortest O–O distance [≈2.262(5) Å] rules out the peroxide-type chemical bonding between oxygen atoms, and the presence of hydrogen does not shorten this bond length.

To confirm the oxidation state of iron in cubic FeO₂H₃, we performed in situ x-ray absorption near-edge structure (XANES) measurements on the sample synthesized by laser heating of goethite at 86(2) GPa and 1700(200) K in a DAC equipped with polycrystalline diamond anvils [56]. Powder XRD data confirmed the synthesis of material with the lattice parameter \(a = 4.449(5) \) Å (Fig. S5 [18]), which corresponds to the composition FeO₂H₃₀.5, while no signs of any unwanted reactions were detected. In the XANES spectra collected in the center of a sample at the Fe K\(_\alpha\) edge, the preedge peak narrows after synthesis of FeO₂H₃₀.5, and negligible changes in the edge feature are observed; however, the position of the absorption jump remains the same for the starting FeOOH and cubic FeO₂H₃₀.5 (Fig. 4), inferring that iron does not alter its oxidation state during this transformation and remains 3+. The results of XANES mapping and comparative contrast maps [57] confirm the high homogeneity of a sample (with traces of FeOOH on the sample’s edge, see Fig. S6) and points toward presence of Fe³⁺ atoms in the sample.

Generalizing our observations on cubic HP-PdF₂-structured FeO₂ and FeO₂H₃ phases and taking into account that compounds with \(x \) up to 1 have been described in the literature, we conclude that, at pressures above \(\sim 50 \) GPa, the oxidation state of oxygen can significantly deviate from 2−. Experimental and theoretical results on cubic FeO₂ and FeO₂H₃ phases may be concise in terms of the concept of valence. For our purposes, we accept a definition of the oxidation state of oxygen in HP-PdF₂-type complex FeO₂H₃₀.5 as 2−, although in this compound, the presence of hydrogen may lead to some deviation from the ideal 2− oxidation state. This definition is consistent with the observed shortening of the Fe-O bond in FeO₂H₃₀.5, which is significantly shorter than in the starting FeOOH phase (707.5(2) Å).

FIG. 3. (a) Crystal structure and valence electron density plot for HP-PdF₂ FeO₂ obtained by DFT + DMFT at \(\sim 70 \) GPa. (b) DFT hybrid potential Heyd–Scuseria–Ernzerhof HSE03 results for pyrite-type MgO₂ peroxide at ambient conditions. Max stands for 15% of maximum of charge density \(\rho(\mathbf{r}) \).

FIG. 4. Normalized x-ray absorption spectra of Fe K\(_\alpha\) edge for FeO₂H₃₀.5 synthesized at 86(2) GPa and 1700(200) K and starting FeOOH (DAC5, see Table S1). Centroid positions are 7114.54(9) and 7114.76(73) eV, correspondingly. Bottom right insets: (a) Microphotograph of FeO₂H₃₀.5 sample; (b),(c) XAS absorption contrast and absorption jump maps of a sample chamber (palette reflects the relative values of the absorption jump).
“valence” of an element as a measure of its combining power with other atoms when it forms chemical compounds or, as in the bond valence model [58], as the number of electrons the atom uses for bonding. Thus, in the HP-PdF$_2$-type structured FeO$_2$ and FeO$_2$H$_{0.5}$ iron has the valence 3+ and oxygen has—1.5 and 1.75, correspondingly. Reducing the oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites, which leads to a reduction of the Fe—O distance and, as a consequence, of the volume of FeO$_6$ octahedra.

In conclusion, using in situ SC-XRD, Mössbauer spectroscopy, and XANES in combination with DFT + DMFT, we determine the electronic structure, magnetic and valence states, and phase stability of FeO$_2$ and FeO$_2$H$_x$ under pressure. Our results on compression behavior of FeO$_2$ obtained by DFT + DMFT are in excellent agreement with SC-XRD data. The structure analysis of FeO$_2$ reveals the HP-PdF$_2$-type structure and suggests no chemical bonding between oxygen atoms. We show that in FeO$_2$, which could be formed above \sim45 GPa, i.e., at the conditions corresponding to those in Earth’s lower mantle at the depth of \sim1150 km, iron is ferric (3+) and oxygen has a formal valence reduced to 1.5—. However, the presence of FeO$_2$ and FeO$_2$H phases in the lower mantle and at the core-mantle boundary is unlikely, as in these regions the oxygen fugacity necessary for formation of Fe$^{3+}$ [59] is not achieved. Nevertheless, the appearance of oxygen with the low valence can affect the state and properties of various (Fe—O)-bearing mantle minerals that makes accounting of it of great importance for modeling the chemistry of deep Earth’s interior.

We acknowledge the Deutsches Elektronen-Synchrotron (DESY, PETRA III), the European Synchrotron Radiation Facility (ESRF), and the Advance Photon Source (APS) for provision of beamtime. N.D. and L.D. thank the Federal Ministry of Education and Research, Germany (BMBF, Grant No. 05K19WC1) and the Deutsche Forschungsgemeinschaft (DFG Projects No. DU 954—11/1, No. DU 393—9/2, and No. DU 393—13/1) for financial support. N.D. and I. A. A. thank the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LIU No. 2009 00971). Electronic structure calculations were supported by the Russian Science Foundation (Project No. 18-12-00492). Theoretical analysis of chemical bonding was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISIS” (No. K2-2019-001) implemented by a governmental decree, No. 211. Support from the Knut and Alice Wallenberg Foundation (Wallenberg Scholar Grant No. KAW-2018.0194), the Swedish Government Strategic Research Areas and SeRC, and the Swedish Research Council (VR) Grant No. 2019-05600 is gratefully acknowledged.

*Corresponding author. koemets.e@gmail.com
†Corresponding author. ivan.v.leonov@yandex.ru

of iron in FeO$_2$, a geologically important material lying in between oxides and peroxides, Sci. Rep. 7, 13005 (2017).

