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Abstract  

Plasma cells play an important role in the adaptive immune system through a 

continuous production of antibodies. We have demonstrated that PC differentiation 

can be modeled in vitro using complex multi-step culture systems reproducing 

sequential differentiation process occurring in vivo. Here we present a 

comprehensive, temporal program of gene expression data encompassing human 

PCD using RNA sequencing. Our results reveal 6,374 differentially expressed genes 

classified into four temporal gene expression patterns. A stringent pathway 

enrichment analysis of these gene clusters highlights known pathways but also 

pathways largely unknown in PCD, including the heme biosynthesis and the 

glutathione conjugation pathways. Additionally, our analysis revealed numerous 

novel transcriptional networks with significant stage-specific overexpression and 

potential importance in PCD, including BATF2, BHLHA15/MIST1, EZH2, 

WHSC1/MMSET and BLM. We have experimentally validated a potent role for BLM 

in regulating cell survival and proliferation during human PCD. Taken together, this 

RNA-seq analysis of PCD temporal stages helped identify co-expressed gene 

modules with associated up- /down- regulated transcription regulator genes that 

could represent major regulatory nodes for human plasma cell maturation. These 

data constitute a unique resource of human PCD gene expression programs in 

support of future studies for understanding the underlying mechanisms that control 

PCD.  
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Introduction 

Representing the end stage of B cell differentiation, plasma cells (PCs) play an 

important role in humoral immunity by synthesizing and secreting antibodies, thus 

protecting the host against infections1. We previously developed a multi-step culture 

system with various combinations of cytokines and activation molecules that 

reproduce the sequential PC differentiation occurring in the different organs/tissues in 

vivo2-5. PC differentiation (PCD) is initiated by activation of B cells, leading to their 

differentiation into transitional preplasmablasts (prePB), a highly proliferating cell 

population3. These prePBs further differentiate into plasmablasts (PBs), which can 

develop into quiescent long-lived PCs after migrating to survival niches which are 

traditionally in the bone marrow3, 6. Specific pro-survival niches could also comprise 

mucosa and sites of inflammation7. B cells and PCs are key players of humoral 

immunity. Understanding the biological processes that control the production and the 

survival of normal PCs is critical both to prevent tumorigenesis and identify targets for 

pathogenic PCs and ensure efficient immune response without autoimmunity or 

immune deficiency.  

On the transcriptional level, the differentiation of B cells into PCs is associated 

with substantial and coordinated changes in gene expression profiles6. These 

changes are tightly guided by two sets of stage-specific transcription factors (TFs) 

that repress each other including:  i) B cell TFs (PAX5, BCL6 and BACH2) 

maintaining the B cell fate and ii) PC TFs (IRF4, BLIMP1 and XBP1) that are required 

to extinguish B cell genes and activate the antibody-secreting cell (ASC) program6, 8.  

Over the past decades, much progress has been made in understanding the 

physiological and transcriptional processes occurring during PCD3, 4, 6, 9-12. 

Knowledge of global gene expression patterns during PCD has been largely based 
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on data obtained in mouse systems. Recent studies using RNA sequencing (RNA-

seq) provide a more comprehensive view of transcriptional changes during murine 

PCD13.  

Most human PCD transcriptome studies have been carried out using 

microarray techniques3, 4, 9, 10. Given the limitation of microarray technology, high-

throughput sequencing technology is needed to fully characterize the temporal gene 

expression program operating during human PCD. In vitro differentiation of human 

memory B cells into plasma cells has been demonstrated to be a powerful model of 

human PCD3, 4, 11.  

In this study, we used next-generation sequencing technology to generate a 

comprehensive transcriptome database encompassing human in vitro PCD. Analyses 

of differentially expressed genes during PCD revealed 6,374 genes that we 

organized into clusters of coexpressed genes based on temporal expression 

patterns. The major temporal programs we identified were associated with key 

pathways consistent with PC biology, as well as novel pathways with potential 

importance in PC differentiation. Additionally, our analysis revealed 449 

transcriptional regulators correlated with these temporal programs of gene 

expression. Novel transcription regulators with consistent and marked 

overexpression during PCD include BATF2, BHLHA15/MIST1, EZH2, 

WHSC1/MMSET and BLM. Furthermore, our analysis identified many epigenetic 

actors upregulated at preplasmablast stage, a critical step where cell proliferation is 

high and where immunoglobulin secretion starts. Finally, we have experimentally 

validated a role of BLM in regulating cell survival and proliferation in PC 

differentiation. Taken together, this analysis thus identifies a discrete set of genes 

that function together to regulate PC differentiation. These data and results provide a 
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unique resource to decipher major gene networks involved in human PC 

development and ultimately will help provide fundamental insight into the 

mechanisms that control PCD. 

 

Materials and Methods 
 
Cell populations and mRNA extraction 

Preplasmablasts (prePBs), plasmablasts (PBs), and plasma cells (PCs) were 

generated using a 3-step in vitro model starting from peripheral blood memory B cells 

(MBCs) as reported3, 4. Peripheral blood cells from healthy volunteers were 

purchased from the French Blood Center (Toulouse, France) and CD19+ CD27+
 

MBCs purified (> 95% purity) as described3. Standard culture conditions comprised 

21% O2, 5% CO2 and 37°C. PCs were generated as reported2, 3. Cultures were 

performed in Iscove’s modified Dulbecco medium (IMDM, Invitrogen) and 10% FCS. 

Purified peripheral blood MBCs (1.5 x 105/ml) were activated for 4 days by CpG 

oligodeoxynucleotide and CD40 ligand (sCD40L) - 10 µg/ml of phosphorothioate 

CpG oligodeoxynucleotide 2006 (Sigma), 50 ng/ml histidine tagged sCD40L, and 

anti-poly-histidine mAb (5 µg/ml), (R&D Systems) - with IL-2 (20 U/ml), IL-10 (50 

ng/ml) and IL-15 (10 ng/ml) in 6-well culture plates. PBs were generated by removing 

CpG oligonucleotides and sCD40L and changing the cytokine cocktail (IL-2, 20 U/ml, 

IL-6, 50 ng/ml, IL-10, 50 ng/ml and IL-15, 10 ng/ml). PBs were differentiated into PCs 

adding IL-6 (50 ng/ml), IL-15 (10 ng/ml) and IFN-α (500 U/ml) for 3 days. PrePBs 

were purified at day 4, PBs at day 7 and PCs at day 10 using Facs Aria cell sorter 

(Becton Dickinson) (Supplementary Figure S1). We performed 3 independent 

experiments starting from purified memory B cells of 3 different healthy donors. RNA 
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was isolated from cells with Qiagen RNeasy Micro or Mini Kits (Qiagen, Hilden, 

Germany) according to the manufacturer's instructions.  

RNA sequencing and data analysis. 

The RNA sequencing (RNA-seq) library preparation was done with 150ng of input 

RNA using the Illumina TruSeq Stranded mRNA Library Prep Kit. Paired-end RNA-

seq were performed with illumina NextSeq sequencing instrument (Helixio, Clermont-

Ferrand, France). RNA-seq read pairs were mapped to the reference human 

GRCh37 genome using the STAR aligner14. All statistical analyses were performed 

with the statistics software R (version 3.2.3; available from https://www.r-project.org) 

and R packages developed by BioConductor project (available from 

https://www.bioconductor.org)15. The expression level of each gene was summarized 

and normalized using the DESeq2 R/Bioconductor package16. A summary of read 

mapping and quantification results can be found in Supplementary Figure S2. The 

RNA-seq data are available in Gene Expression Omnibus under the accession 

number GSE148924. The raw gene-wise read counts are provided in Supplementary 

File 1. Differential expression analyses were performed using DESeq2 pipeline. P 

values were adjusted to control the global FDR across all comparisons with the 

default option of the DESeq2 package. Genes were filtered from downstream 

analysis if they did not have a log2 mean normalized count value of at least 6 in at 

least one group. Genes were considered differentially expressed if they had an 

adjusted p-value less than 0.05 and a fold change greater than 2. Heatmaps of gene 

expression were generated using the ComplexHeatmap R/Bioconductor package. 

Pathway enrichment analyses were performed using the R package ReactomePA17. 

Human Myeloma Cell Lines (HMCLs) 
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XG human myeloma cell lines were obtained as previously described18. JJN3 was 

kindly provided by Dr. Van Riet (Brussels, Belgium), JIM3 by Dr. MacLennan 

(Birmingham, UK), and MM1S by Dr. S. Rosen (Chicago, USA). AMO-1, LP1, L363, 

U266, OPM2, and SKMM2 were purchased from DSMZ (Braunsweig, Germany) and 

RPMI8226 from ATTC (Rockville, MD, USA). All HMCLs derived in our laboratory 

were cultured in the presence of recombinant IL-6. HMCLs were authenticated 

according to their short tandem repeat profiling and their gene expression profiling 

using Affymetrix U133 plus 2.0 microarrays deposited in the ArrayExpress public 

database under accession numbers E-TABM-937 and E-TABM-108818. 

Clinical samples and gene expression data 

Affymetrix  data  of purified MMC from a cohort of 282 patients with MM included in 

the DutchBelgian/German HOVON-65/GMMG-HAD trial were used (GSE19784) 

(HOVON65/GMMGHD4 cohort)19. The clinical characteristics of the this cohort have 

been previously described19. 

Myeloma Cell growth assay   

Human Myeloma Cell Lines (HMCLs) were cultured for 4 days, in 96-well flat-bottom 

microtiter plates, in RPMI 1640 medium, 10% FCS, and 2 ng/ml IL-6 (control 

medium) in the presence of ML216 (Sigma-Aldrich, St Louis, MO). The number of 

metabolic-active cells was also determined using intracellular ATP quantitation. Cell 

growth was evaluated by quantifying intracellular ATP amount with a Cell Titer Glo 

Luminescent Assay (Promega, Madison, WI, USA) using a Centro LB 960 

luminometer (Berthold Technologies, Bad Wildbad, Germany). 

Validating the implication of BLM in PCD 

ML216 (Sigma-Aldrich, St Louis, MO), the inhibitor of BLM helicase activity (1µM), 

was added at the beginning of each PCD transition step and its effect on cell count, 
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viability and cycle, was analyzed at the end of the step (Figure 4B). DMSO treated 

cells were used as control. Cell count and viability were assessed with the trypan 

blue dye exclusion test. Cell cycle were assessed using DAPI staining (Sigma-

Aldrich) and cells in the S phase using incubation with bromodeoxyuridine (BrdU) for 

1 h and labeling with an anti-BrdU antibody (APC BrdU flow kit, BD Biosciences, San 

Jose, CA, USA) according to the manufacturer’s instructions20. Apoptosis was 

assayed with PE-conjugated Annexin V labeling (Becton Dickinson, San Jose, CA, 

USA) and fluorescence was analyzed on a LSR Fortessa X20 flow cytometer (Becton 

Dickinson).  

 

 

 

 

 

 

 

 

 

 

Results 

RNA-Seq profiling of in vitro human PC differentiation 

To obtain a global transcriptomic map of human PCD, we performed RNA-seq 

analysis of four in-vitro human PCD subpopulations: memory B cells (MBCs), 

preplasmablasts (prePBs), plasmablasts (PBs) and plasma cells (PCs)3, 4. ~50 million 
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read pairs were generated for each RNA sample. The number of mapped reads per 

sample is provided in Supplementary Figure S2.  

First, we determined the proportion of mapped reads per transcript 

classification in each cell subpopulation (Figure 1A), based on Ensembl gene biotype 

annotation model. As expected, PCD is accompanied by a gradual increase of 

immunoglobulin gene expression. This increase starts from prePB stage and 

becomes more pronounced at PB and PC stages.  

We wondered if the strong expression of immunoglobulin genes by PBs and 

PCs could restrict the expression profile of other genes. To evaluate this hypothesis, 

we estimated the total number of genes actively expressed in each cell 

subpopulation. We identified a normalized read count cutoff of 64 to define 

transcripts with active expression (Figure 1B). Any gene with a mean DESeq2-

normalized expression above 64, in at least one cell subpopulation, is defined as 

transcriptionally active. Using this criterion, 13,429 genes were classified as actively 

expressed in at least one B to PC differentiation stage. Among them, 84%-86% are 

expressed in each cell subpopulation, including PCs. This observation is consistent 

with previous reports by Shi et al. in mouse model13, indicating that, despite their 

strong functional specialization, antibody-secreting cells maintain a highly diverse 

gene expression repertoire similar to B cells. Among the 13,429 genes, 9,627 genes 

(~71.7%) produced mRNAs detected in all cell subpopulations (Figure 1C), whereas 

3,802 genes (28.3%) are expressed only during specific stages of PCD. Of these 

3,802 genes, 1,071 genes are specifically detected in MBC, 316 genes in prePB, 35 

in PB, 220 in PC and 2,160 in more than 2 specific stages (Figure 1C). In an 

unsupervised principal-component analysis (PCA) of the 13,429 gene expression 

levels, B cell to plasma stages were segregated according to their developmental 
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stage (Figure 2A). Additionally, investigation of the expression profile for known 

genes involved in B cell to PC differentiation, including PAX5, BCL6, SPIB, BACH2, 

PRDM1, IRF4, CD38 and SDC1 confirmed the accuracy of our RNA sequencing data 

(Figure 2B). 

 We next focused our analysis on the dynamic expression changes during PCD 

by performing pairwise comparisons between two consecutive cell populations using 

the DESeq2 R package (adjusted p value ≤ 0.05, fold change ≥ 2)(Figure 2C and 

supplementary Table S1). Each gene was also required to have an average 

expression of ≥ 64 normalized count, in at least one of the two considered cell 

populations. Large numbers of genes are differentially expressed at different stages 

of human PCD. A list of 7,832 genes was differentially expressed during MBC to 

prePB transition (up: 4072 genes, down: 3760 genes); 2938 genes during prePB to 

PB transition (up: 1385 genes, down: 1553 genes); 458 genes during PB to PC 

transition (up: 112 genes, down: 346 genes) (Supplementary Table S1). The 

differentiation stage showing the most pronounced transcriptome changes in 

comparison to the preceding one are preplasmablasts (Figure 2C). A total of 8,890 

unique genes are differentially expressed in one or more steps (supplementary 

Figure S3) during PCD, suggesting a complex dynamic transcriptome changes during 

the generation of PCs. 

To better understand the gene expression changes occurring at each 

transition stage, we used the ReactomePA R/Bioconductor package to determine 

enriched molecular pathways (Supplementary Table S2). The top 20 significantly 

enriched pathways are shown for each PCD transition (supplementary Figure S4). 

Consistent with known biology, the transition from MBC to prePB is mainly 

characterized by the activation of cell cycle pathways. The transition from prePB to 
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PB is marked by a strong downregulation of cell cycle genes (Supplementary Figure 

S4B). Overexpressed genes during prePBs to PBs transition are enriched in genes 

involved in protein production with increased metabolic activity (translation, 

modification, transport, unfolded protein response and chaperones) (supplementary 

Figure S4A), underlying the increasing immunoglobulin-secreting capacity. The 

strongest change during PB to PC transition is mainly the downregulation of cell cycle 

genes (Supplementary Figure S4B). 

 

Identification of temporal gene expression patterns during human PC 

differentiation 

Differentiation processes require expression changes and can therefore be 

accompanied by at least four general temporal gene expression patterns21 that we 

refer to as one-step-up or one-step-down (mRNA level transitions from low to high or 

high to low, respectively, in two consecutive differentiation stages) and two-step-up-

down or two-step-down-up (i.e. impulse-down) (mRNA level transitions from low to 

high and back down or from high to low and back up, respectively, in a series of 

differentiation stages) (Figure 3A). 

We built a R package named stepprofiler 

(https://github.com/kassambara/stepprofiler) to extract the temporal gene expression 

patterns of human PCD. This analysis identified 8,419 genes (Supplementary Table 

S3) with one or two transition points in expression during PCD (Figure 3 and 

Supplementary Figure S5). About 58% of the identified genes [including 68% of 

transcription factor (TF) genes] showed a single transition point; of these, 30% 

exhibited the one-step-up pattern, and 28% showed the one-step-down pattern. By 
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contrast, 42% of genes exhibited two transition points (two-step-up-down and two-

step-down-up genes) (Figure 3B).  

We further classified the genes based on the differentiation stage associated 

with the major expression transition (Figure 4A/B and Supplementary Figure S5). For 

example, “up-at-prePB” genes showed lower expression at MBC step and higher 

expression during prePB - PC, and “up-at-PB” genes showed lower expression at 

MBC - prePB and higher expression during PB – PC (Supplementary Figure S5). 

With genes showing a single transition point (i.e., one-step-up and one-step-down 

genes), the transition in expression level occurred more frequently at prePB step 

indicating that a major transcriptional reprogramming occurs during the prePB stage 

(Supplementary Figure S5C). 

A stringent Reactome pathway enrichment analysis of these unique 

expression patterns identified key pathways showing significant enrichment at two 

differentiation stages (Figure 4C). Among the pathways significantly upregulated at 

prePB, protein modifications and metabolisms, unfolded protein response, citric acid 

(TCA) cycle and respiratory electron transport, mitochondrial translation, heme 

biosynthesis and metabolism of porphyrins and glutathione conjugation were 

identified (Figure 4C and Supplementary Table S4). Pathways upregulated at PB 

include interferon alpha/beta signaling, IRE1alpha activates chaperones, XBP1(S) 

activates chaperone genes, synthesis of substrates in N-glycan biosynthesis, 

glycosaminoglycan metabolism and ER phagosome pathway. These data indicate 

that gene expression programs in PCD are dramatically reorganized at prePBs in 

preparation for the onset storage protein and protein production (Figure 4C). Various 

important biological process – most notably cell cycle, RHO GTPases activate 



 13

formins and DNA repair – operate by expression in short impulse manner at prePB 

stage (Supplementary Figure S6). 

Identification of transcription factor / epigenetic enzyme repertoires of human 

PC differentiation 

To better understand the nature of the regulatory processes involved in human PCD, 

we focused on transcription factor (TF) and epigenetic enzyme (EE) genes. We 

crossed our data with the 1391 census human sequence-specific DNA binding 

transcription factors22 (Supplementary Table S5). Given the importance of EE genes 

in gene expression regulation, we also used a comprehensive list previously reported 

23 (Supplementary Table S6). Collectively, we identified 445 TF/EE temporally 

regulated genes during PCD (Figure 3B and Supplementary Table S7).  123 TF/EE 

genes fall into the one-step-up groups (Figure 3B and Figure 5A). Among them, most 

are up-at-prePB (81%) groups (Figure 3B and Supplementary Table S7). 237 TF/EE 

genes are included in one-step-down groups, 49 in the two-step-up-down groups and 

36 in the two-step-down-up groups (Figure 3B and Supplementary Table S7). These 

results suggest that the specific patterns of gene expression detected during PCD 

are associated with specific TF/EE gene transcriptional changes.  

We next focused on TFs / EEs exhibiting a one-step-up or two-step-up-down 

pattern (Figure 5). We selected these groups because they are highly expressed in 

one or more PCD stages. Furthermore, genes associated with specific differentiation 

stages would be expected to be activated at specific time points during the 

differentiation progression. Among the one-step-up TFs/EEs are those encoding well-

known PC transcription factors such as IRF4, BLIMP1/PRDM1 and XBP1 (Figure 

5A). Interestingly we found many other new transcription factors with less 

characterized function in PCD and a potential importance. New TFs with the most 
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consistent and marked overexpression during B to PC differentiation are BATF2, 

BHLHA15, IRF2, ZSCAN20, MIXL1, MAF, ZKSCAN3 and STAT1 (Figure 5A). 

Furthermore, our analysis identified EE genes consistently upregulated during PCD 

(Figure 5A and Supplementary Table S7) including histone methyltransferases 

(PRDM1, PRDM15, PRMT7, SETDB2, SMYD2 and SMYD4), de-novo DNA 

methylation enzyme (DNMT3B), DNA methylation readers (MBD1 and ZBTB38), 

DNA methylation editors/erasers (IDH1, IDH2, TET1, ALKBH1, ALKBH3 and MGMT) 

and histone phosphorylation editor (EYA2 and EYA3). Additionally, our results reveal 

several interesting TFs/EEs genes among the genes included in the two-step-up-

down group, including AICDA, MYB, BATF3, FOXM1, ARNTL2, SUV39H2, WHSC1, 

MYBL2, TP53, EZH2 and SUV39H1 that are specifically upregulated in the PrePB 

stage (Figure 5B). This analysis thus identifies a discrete set of genes that may 

function together to program B cell terminal differentiation. Many of these genes have 

not yet been described in PC biology. Together, the temporal RNA-Seq analysis of 

PCD helped identify new TF/EE genes coexpressed with functional pathways that 

could represent major regulatory nodes involved in the control of PC differentiation.  

Evaluating the role of BLM in PC differentiation 

Preplasmablasts are highly proliferative, express cytoplasmic immunoglobulins (Igs) 

but not B cells or PC markers and secrete Igs at a lower level than plasmablasts or 

plasma cells. Accordingly, in this preplasmablastic stage, DNA replication and 

transcription need to be tightly coordinated to preserve the integrity of the genome of 

PrePBs. The RecQ family of DNA helicases is a family of conserved enzymes that 

display specialized and vital roles in the maintenance of genome stability24, 25. BLM, 

WRN and RECQL4, are associated with genetic disorders characterized by 

chromosomal instability, premature aging and increased susceptibility to cancer24. 
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Patients with Bloom syndrome (BS) also suffer from recurrent infection that has 

suggested deficient immune function, even though these defects are less severe 

than in primary immunodeficiencies26. As previously reported for RECQ1 helicase25, 

we also identified that high expression of BLM is associated with a poor outcome in 

newly diagnosed MM patients treated by high dose therapy (HDT) and autologous 

stem cell transplantation (ASCT) (P=0.003) (Supplementary Figure S7A). 

Furthermore, high BLM expression is significantly associated with resistance to 

lenalidomide and SAHA HDACi in a large panel of human MM cell lines (P < 0.01 

and P < 0.02 respectively) (Supplementary Figure S7B, C). BLM inhibition using 

ML216 induced a significant toxicity in a panel of 6 different human myeloma cell 

lines with 5 sensitive cell lines and one more resistant (Supplementary Figure S7D, 

E). Interestingly, BLM was identified as belonging to the two-step-up-down genes in 

association with cell cycle deregulation in prePBs (Figure 6A). To investigate the role 

of BLM in PCD, we used a selective inhibitor (ML216)27 of BLM’s helicase activity. 

We analyzed the effect of BLM inhibition on each differentiation step by adding 1 μM 

of ML216 at day 0, day 4 and day 7 (Figure 6B). Inhibition of BLM activity resulted in 

a significant decrease of global cell count at day 4, day 7 and day 10 (Figure 7A).  

Consistent with this result, we observed a significant decrease of cell viability at day 4 

and day 10 (Figure 7B). The analysis of Annexin V-positive cells reveals a significant 

increase in apoptosis at Day 7 (Figure 7C). A close analysis showed that the BLM 

inhibition affects mainly the preplasmablastic stage characterized by BLM 

overexpression (Figure 7D). Furthermore, ML216 treatment induced a cell cycle 

arrest of prePBs at Day 4 and 7, with a significant inhibition of BrdU incorporation and 

an accumulation in the G0/G1 phase (P < 0.05) (Figure 7E). Taken together, these 
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data show that the inhibition of BLM affects the generation of preplasmablasts 

leading to a significant defect in PCD. 

 

Discussion 

Human normal PCs and their precursors are very difficult to obtain, as they are 

rare cells located in specific niches within the bone marrow and mucosa, hindering 

the understanding of their physiology and pathophysiology28. Consequently, insights 

into the molecular determinants of human PCD is generally inferred from non-human 

model system. We have developed and phenotypically characterized an in vitro 

model of PCD recapitulating the molecular characteristics of human PCD2-4, 29.  

Here, we investigated the dynamic transcriptional processes underlying 

human PCD using RNA sequencing. We identified 6,374 significantly differentially 

expressed genes classified into four temporal patterns (Figures 3, 4 and 

Supplementary Figure S5). The temporal patterns fall into four major groups that we 

refer to one-step-up or one-step-down (mRNA level transitions from low to high or 

high to low, respectively, in two consecutive differentiation stages) and two-step-up-

down (i.e. two-step-up-down) or two-step-down-up (i.e. impulse-down) (mRNA level 

transitions from low to high and back down or from high to low and back up, 

respectively, in a series of differentiation stages). The majority of the differentially 

expressed genes (72%) shows a one-step-up or one-step-down pattern (Figure 2B). 

Furthermore, most of the one-step-up and one-step-down genes exhibit an 

expression transition at the prePB stage (Figure 2D and Supplementary Figure S5B), 

suggesting that a dramatic reprogramming of the PCD transcriptome occurs at 

prePBs stage.  
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We found that genes upregulated during PCD were mainly involved in protein 

post-translational modification, folding, trafficking and metabolism (Figure 2E). This is 

consistent with the known biology underlying the huge production of antibodies by 

PCs. Additionally, a stringent pathway enrichment analysis of these expression 

pattern highlights pathways largely unknown in PCD, including the heme biosynthesis 

and the glutathione conjugation pathways (Figure 2E). The heme has been shown to 

directly bind and inhibit BACH2 function, resulting in the enhancement of the 

transcription of BLIMP1, the master regulator of PCs30, 31. Another interesting finding 

was the strong association between human PCD and the high expression of genes 

coding for proteins involved in mitochondrial functions and glutathione conjugation. 

During their differentiation to antibody-secreting PCs, B lymphocytes undergo 

dramatic changes in metabolism, structure, and function32. This transition entails 

extensive intra- and extracellular redox changes, such as increased production of 

reactive oxygen species (ROS), followed by a strong antioxidant response32. Further 

studies elucidating the entire picture of heme pathway functions in PCD will provide 

valuable information for our understanding of the normal PC biology. 

Furthermore, our data largely confirmed the specific expression patterns of 

known drivers of PC cell fate (IRF4, BLIMP1/PRDM1 and XBP1), but they also 

identified a number of other novel transcriptional regulators with potential importance 

in PCD including BATF2 and MIST1/BHLHA15.  

BATF2 belongs to the AP-1/ATF superfamily of transcription factors. Recent 

studies have uncovered positive transcriptional activities of BATF family members in 

B cells, T cells and dendritic cell33. BATF family members have been also described 

to interact with IRF4, a key PC transcription factor34-36, suggesting that BATF2 might 

be a key component of human PCD. 
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The transcription factor MIST1/BHLHA15 has been recently described as a 

marker of murine and human PCs37. However, its role in PCD remains to be 

investigated. MIST1 has been recently identified as a “scaling factor” necessary to 

induce and maintain secretory cell architecture38. In gastric zymogenic cells, MIST1 

expression is activated by XBP1, which also induces the expansion of the rough 

endoplasmic reticulum (ER) necessary to generate the massive loads of protein 

cargo to be packaged into the large, MIST1-mediated granules39 40. The transcription 

factor XBP-1 plays a central role in regulating the UPR gene-expression program41, 

and as a consequence, is essential for the secretion of immunoglobulins by PCs41, 42. 

Recent studies revealed that MIST1 functions as a feedback regulator of the XBP1 

gene43. These results suggest that MIST1/BHLHA15 might be critical in PCs and 

might co-operate with XBP1 to regulate a complex network of genes involved in 

antibody secretory function, as well as, in ER stress control.  

Importantly, our results revealed several potential interesting transcription 

factors and epigenetic modifiers with a short impulse expression profile only at 

preplasmablastic stage (Figure 3B). The prePBs are characterized by active 

proliferation and the beginning of Ig secretion. At this stage, proliferation, DNA 

replication and transcription need to be tightly regulated. Consistently, among the 

genes upregulated at the prePB stage, we have identified many epigenetic actors, 

including histone methyltransferases (WHSC1/MMSET, EZH2), protein arginine 

methyl transferases (PRMT1 and PRMT3), DNA methylation enzyme (DNMT1) and 

DNA methylation reader (MBD2) (Figure 3B). Among them, EZH2 was reported 

recently to play a key role during B to PC differentiation supporting the maintenance 

of transitory immature proliferative state to support prePB amplification before 

differentiation2. Accordingly, EZH2 inhibition results in B to PC transcriptional 
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changes together with induction of PC maturation and higher Ig secretion2. Many 

additional important genes were also upregulated, including genes involved in cell 

cycle, DNA replication, DNA repair, as well as, in DNA unwinding, such as members 

of RECQ family helicases (BLM and RECQ1) (Supplementary Figure S6). 

Interestingly, we have recently shown that RECQ1 promotes resistance to replication 

stress and genotoxic agents in malignant PCs25. 

Here, we show that the inhibition of BLM affects the generation of prePBs leading to 

a decrease in PCD. BLM overexpression at the preplasmablastic stage may be 

important to support the replicative stress characterizing this differentiation step. 

However, the mechanism by which BLM executes this function in prePBs is currently 

unclear. A large body of evidence indicates that BLM plays a central role in the repair 

of stalled replication forks44, 45. BLM has also been implicated in the resolution of G-

quadruplexes and of cotranscriptional R-loops, which form at highly expressed genes 

and represent a major source of replication impediments46-48. Moreover, recent 

evidence indicates that BLM connects DNA damage to the innate immune response 

and plays an important function in restraining unscheduled ISG induction under 

replication stress conditions49. It is therefore tempting to speculate that BLM could be 

important to restrain the deleterious consequences of replication-transcription 

conflicts in highly proliferative prePB cells upon activation of novel transcription 

programs. In the absence of BLM, these cells could accumulate stalled forks and 

chromosome breaks due to their inability to remove R-loops and G4 structures and to 

repair arrested forks. They would also trigger a type I interferon response, which 

would interfere with their normal differentiation process and together with the 

persistence of chromosome breaks, could contribute to cancer development.       
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It was demonstrated that, upon proteasome inhibitor treatment, clonal malignant 

prePBs can be detected in patients with Multiple Myeloma50. The prePBs lack full 

secretory status and produce less Igs, and thus are less sensitive to the ER stress 

induced by proteasome inhibitors50, 51. In this context, BLM inhibition could represent 

a therapeutic interest to target malignant preplasmablasts involved in resistance to 

proteasome inhibitors in MM50. Furthermore, we identified that high BLM expression 

is associated with a poor outcome in newly diagnosed multiple myeloma patients 

treated by HDT and ASCT and with resistance to lenalidomide and HDACi. BLM 

inhibition could also represent a therapeutic strategy to target high-risk MM patients 

characterized by high BLM expression. 

Altogether, the RNA-Seq analysis of temporal stages of PCD helped to identify 

coexpressed gene sets with associated up- /down- regulated TF/EE genes that could 

represent important regulatory nodes of PCD. The nature of the relationships 

between the various genes and their regulatory factors remains to be determined. 

These data thus provide critical insights into new transcriptional events that sustain 

PC cell fate and differentiation. 
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Figure legends 

Figure 1. Transcriptome sequencing of human plasma cell differentiation.  

A) The plot shows, for each cell subpopulation, the percentage of mapped reads per 

Ensembl transcript biotypes (protein-coding genes, pseudogene, long non-coding 

RNA and short non-coding RNA). B) Frequency distribution of the genes based on 

the average mRNA levels. Distribution of the average normalized gene read counts 

for each cell subpopulation is shown. The distribution is bimodal for all cell 

subpopulations, defining actively expressed genes with average normalized read 

counts ≥ 64. C) Venn diagram of the numbers of expressed genes in MBC (memory 

B cell), prePB (preplasmablast), PB (plasmablast) and PC (plasma cell).  
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Figure 2. Differentially expressed gene signatures during human plasma cell 

differentiation. 

A) Principal component analysis of genes expressed during PCD. B) Expression 

profile of transcription factors and cell surface markers known in PCD. C) MA plots of 

differentially expressed genes. Differentially expressed genes were identified using 

the DESeq2 R package (adjusted p-value ≤ 0.05 and fold change ≥ 1.5). P-values 

were adjusted using the BH algorithm multiple-testing correction. (A) MA (Log ratio 

(M) versus mean average (A) expression) plot showing differentially expressed genes 

between two consecutive cell subpopulations. Significantly differentially upregulated 

genes are represented by red dots, while significantly differentially downregulated 

genes are represented by blue dots.  

 

Figure 3. Stepprofiler package to extract temporal gene regulation during 

human plasma cell differentiation.  

A) Basic temporal gene expression patterns. B) Numbers of mRNAs and the 

coexpressed transcription factors (TFs) showing transitions from low to high (one-

step-up) or high to low (one-stepdown) in two consecutive differentiation stages and 

two-step-up-down (up-down) or two-step-down-up (down-up) in our series of 

differentiation stages.  

 

Figure 4. Temporal gene expression profiling during human plasma cell 

differentiation. 

A) Identification of the one-step-up transition in mRNA levels for all genes and the 

coexpressed TFs. Three expression patterns were identified to represent genes up- 

at prePB, PB, PC. Gene expression profiles of individual genes are depicted. The 



 27

total number of all genes (Left) and the coexpressed transcription-factor genes 

(Right) are indicated in parentheses for each expression pattern. B) Heatmap 

showing the expression profile of one-step-up genes. C) Pathways enriched in one-

step-up genes. 

 

Figure 5. Transcription factors and/or epigenetic enzymes expressed during 

plasma cell differentiation.   

The heat maps show the relative expression profile (z-scores) of A) one-step-up and 

B) two-step-up-down TFs/EEs. Genes are sorted according to the maximum of fold 

change expression at each transition. 

 

Figure 6. BLM is upregulated in preplasmablasts during plasma cell 

differentiation.  

A) BLM gene expression profile in PCD cell subpopulations using RNA-seq. B) 

Inhibition of BLM using the ML216 inhibitor (1μM). The effect of BLM inhibition on 

each differentiation step was analyzed by adding the drug at the beginning of the 

differentiation step and analyzing its effect at the end.  

 

Figure 7. BLM inhibition affects human plasma cell differentiation.  

A-B) Global cell counts and cell viability after treatment using trypan blue assay. 

Results are the mean absolute counts or viability ± SD of 3 independent experiments. 

C) Analysis of apoptosis induction using AnnexinV-PE staining by flow cytometry. 

The shown data are the mean values of 3 independent experiments. D) Proportion of 

each cell subpopulation at the different time points of the plasma cell differentiation 

was determined by flow cytometry. E) Analysis of cell cycle with flow cytometry using 
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DAPI, BrdU incorporation and labelling with an anti-BrdU antibody. The data are the 

mean values ± SD of 3 separate experiments.  
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