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Abstract: Often, solid matter is separated from particle-laden flow streams using electrospun filters
due to their high specific surface area, good ability to capture aerial particulate matter, and low
material costs. Moreover, electrospinning allows incorporating nanoparticles to improve the filter’s
air filtration efficiency and bacterial removal. Therefore, a new, improved polyacrylonitrile (PAN)
nanofibers membrane that could be used to remove air pollutants and also with antibacterial activity
was developed. We engineered three different filters that are characterized by the different particles
embedded in the PAN nanofibers: titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag). Then,
their filtration performance was assessed by quantifying the filtration of sodium chloride (NaCl)
aerosol particles of 9 to 300 nm in diameter using a scanning mobility particle sizer. The TiO2_F filter
displayed the smallest fiber diameter and the highest filtration efficiency (≈100%). Conversely, the
Ag_F filter showed the highest quality factor (≈0.06 Pa−1) because of the lower air pressure drop.
The resulting Ag_F nanofibers displayed a very good antibacterial activity using an Escherichia coli
suspension (108 CFU/mL). Moreover, the quality factor of these membranes was higher than that of
the commercially available nanofiber membrane for air filtration.

Keywords: air filtration; nanoparticles; electrospinning

1. Introduction

Fossil fuels and industries release many pollutants in the atmosphere [1]. Particles smaller than
2.5 µm (PM2.5) are particularly dangerous for humans because their small size facilitates their diffusion
in bronchi and lungs [2]. The particulate matter’s size is determined by how such particles are
produced. For example, the size of combustion particles is normally about 10–50 nm; however, they
can combine with other particles and generate larger particulates. All these agglomerated particles can
be released in the air when broken down. Complex mixtures of particles, most of them usually with a
diameter smaller than 1000 µm, are the contaminants that are eliminated by air filtration. The diameter
of particles in chemical and biological aerosols varies between 1 and 10 µm (particles smaller than
2.5 µm are particularly dangerous for human health).

Therefore, industries that need to produce material with the lowest possible amount of impurities
are very interested in filters that can trap particulate and biological contaminants. Indeed, the size of
the industrial air-filtration market should exceed USD 6.5 billion by 2024 [3]. However, the existing
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high-efficiency air filters cannot block particles smaller than 3 µm in diameter or small pathogenic
agents, such as viruses that are smaller than 1 µm [4]. Particles of diameter smaller than a unit density
sphere take more time to settle in air compared with bigger particles [5]. Therefore, advanced filtration
technologies are needed to capture such nanometric particles. Moreover, heating, ventilating, and air
conditioning air filters that are designed to purify air in wet, dark, and ambient temperature conditions
are more likely to be colonized by bacteria, molds, and fungi. This leads to bad odor and poor air
quality [6]. Therefore, new filters need to be developed or existing filters need to be improved due to
the increased resistance of microorganisms and also the limits of their antimicrobial activity [4].

Currently, membrane filtration is thought to be the most effective physical approach against air
pollutants [7]. Nanofiber membranes can trap most contaminants and can qualify as high-efficiency
particulate air (HEPA) filters. Moreover, they are characterized by low air pressure drop and basis
weight as well as compact structure. The filter efficiency in separating particles from the air stream is
influenced by the particle composition, shape, filtration velocity, and type of impaction surface [8].
Membrane filters rely on physical interactions to efficiently separate and collect particles. Data from
many different studies led to the general conclusion that filtration efficiency increases with high basis
weight and decreases with higher superficial flow velocity [9–11].

Therefore, novel fibrous filters with lower energy consumption for air purification require
the development of resistant fibers with high filtration efficiency and low pressure drop [12].
Electrospinning is a highly popular method to produce many different fiber morphologies including
very fine diameters, various porosities and pore sizes (from nanometers to micrometers), and great
mechanical strength, thanks to inter-fiber connections [13–17]. A surface modification can enhance
electrospun nanofibers when nanoparticles are incorporated in membranes.

Some studies have already investigated the addition of active nanoscale materials, such as SiO2,
Al2O3, and CuO, in electrospun fibers to improve their air pollutant filtration capacity and also
increase their mechanical, thermal, and chemical resistance [18–20]. Several groups have focused on
titanium dioxide (TiO2) and zinc oxide (ZnO) due to their potential as antibacterial agents, mainly
linked to their small particle size, high surface area, photocatalytic bactericidal activity, self-cleaning
properties, and low cost [21,22]. After their adsorption to the bacterial cell surface, Zn and Ti ions
cross the cell membrane and cause cell disruption, DNA damage, protein activity inhibition, and
ultimately cell death [23–25]. Silver (Ag) nanoparticles and salts also display particularly attractive
antimicrobial effects. Indeed, they are non-toxic to human cells but are highly effective against bacteria,
fungi, and viruses [26]. In addition, Ag nanoparticles’ bactericidal properties against a wide range
of microorganisms are mediated through the production of reactive oxygen species [27]. However,
the aggregation and dissolution of Ag, TiO2, and ZnO nanoparticles are still a challenge for practical
application [28].

Polyacrylonitrile (PAN) has been widely used for the production of membranes because it displays a
very good mechanical strength and chemical stability [29]. Several studies have investigated nanofibers
made of polymers and bactericidal particles to be used as air filters [30–32]. Moreover, Ag, TiO2, and
ZnO antimicrobial activity has been widely studied [33–36]. However, to our knowledge, no study has
concomitantly analyzed their bactericidal effect and ability to trap NaCl particles smaller than 300 nm.
Sim et al. [37] showed a high antimicrobial activity (>99%), filtration efficiency (~92.5% against a 300 nm
KCl aerosol), and small pressure drop (~0.8 mmAq at 13 cm/s) of an antimicrobial-nanoparticle-coated
electrostatic air filter in an indoor environment. Lv et al. [38] analyzed the performance of nanofiber
membranes composed of poly(vinyl alcohol) (PVA) and konjac glucomannan (KGM), and loaded with
ZnO nanoparticles for air filtration and water treatment. These nanofiber membrane filters showed an
efficient air-filtration performance (>99.9% for ultrafine particles, 300 nm), excellent photocatalytic
activity, and antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria
(Bacillus subtilis). Recently, we described novel electrospun Ag/PAN fibers that could be used as air
filters for nanoparticle removal, and that showed antibacterial activity [39].
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Here, we used electrospinning to fabricate novel PAN membranes loaded with active ZnO, TiO2,
or Ag nanoparticles to increase their air-filtration efficiency, lower the pressure drop, and improve
their quality factor, and exhibit bactericidal activity. Moreover, we analyzed the fiber distribution to
understand its influence on the filtration of sub-300-nm particles.

2. Materials and Methods

2.1. Materials

PAN (Mw~150,000 g/gmol; CAS Number 25014-41-9), N,N-dimethylformamide (DMF; 99.8%;
CAS number 68-12-2), TiO2 (Mw~79,87 g/gmol; CAS number 13463-67-7), ZnO (Mw~81,39 g/gmol;
CAS number 1314-13-2), and silver nitrate (AgNO3; Mw~169.87 g/gmol; CAS number 7761-88-8) were
bought from Sigma Aldrich (St. Louis, MO, USA). The substrate made of polyethylene terephthalate
(PET) fibers and used to collect nanofibers was from Freudenberg (Weinheim, Baden-Württemberg,
GE). NaCl (99%; CAS number 7647-14-5) was from Sigma Aldrich (St. Louis, MO, USA) and was used
to produce nanoparticles to determine the membrane’s filter-removal efficiency.

2.2. Methods

2.2.1. Preparation of TiO2/PAN/DMF, ZnO/PAN/DMF, and Ag/PAN/DMF Solutions

Nanofibers were produced by dissolving 0.95 g of PAN polymer (9.1 wt%) in 10 mL of DMF.
After 2 h of agitation, 0.95 g of TiO2, ZnO, or AgNO3 (the same amount as for PAN) were added in
the PAN solution. The average size of the obtained TiO2, ZnO, and Ag nanoparticles was 21, 50, and
5 nm, respectively, according to the supplier. Solutions were continuously stirred in the dark and
at room temperature for 48 h to form a homogenous solution. This period of time was necessary to
allow AgNO3 reduction to Ag nanoparticles using DMF as solvent at room temperature and without
any reducing agent [40–42]. Ag nanoparticles changed color due to the surface plasmon resonance
(SPR) phenomenon that occurs when light is reflected off a thin metal film or nanoparticles [36].
Conversely, the ZnO/PAN/DMF and TiO2/PAN/DMF solutions did not change color after stirring for
48 h. Viscosity was measured with a Brookfield viscometer spindle 29 (TC-650, AMETEK Brookfield,
Middleborough, MA, USA) and conductivity with an electrical conductivity meter (TEC-4MP, Tecnal,
Piracicaba, San Paulo, Brazil).

2.2.2. Fabrication of TiO2/ZnO/Ag-PAN Nanofibers by Electrospinning

The different nanoparticle/PAN/DMF solutions were loaded in 12 mL syringes with 0.7 mm
diameter needles and were fed (flow rate = 0.2 mL/h) into the home-made electrospinning system
using a syringe pump (KDS 100, KD Scientific, Holliston, MA, USA) [43–45] powered (25 kV) by a High
Voltage Power Supply (T1CP 300 304n-iSeg, Radeberg, Germany). Nanofibers were deposited on PET
films (i.e., the substrate) wrapped around the rotating machine. The syringe tip-collector distance was
set at 15 cm. The prepared filter media were named Ag_F, TiO2_F, ZnO_F, and PAN_F when AgNO3,
TiO2, ZnO, and no nanoparticles were added to the PAN solution, respectively. During electrospinning,
the high applied voltage was obtained by connecting the positive and ground terminals to the nozzle
and collector, respectively. When the jet exceeded a critical voltage, a stable jet of liquid was ejected from
the syringe tip. After solvent evaporation, nanofibers were produced and deposited on the collector
surface where the non-woven substrate was placed. This process was carried out at approximately
20 ◦C under atmospheric air and the substrate was on a grounded metal roller (10 cm in diameter) that
rotated at 300 rpm for 1 h for each experiment.

2.2.3. Structural and Morphological Analysis of Nanofiber Filters

Energy-dispersive X-ray (EDX) spectroscopy and elemental mapping were performed using a
Zeiss EVO HD15 microscope (Oberkochen, Germany) coupled to an Oxford X-MaxN EDX detector
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(Oxford Instruments, Abingdon, UK) to measure the atomic percentage (Figure S1). The nanofiber
diameter distribution was analyzed by scanning electron microscopy (SEM) with a Hitachi S4800
microscope (Tokyo, Japan), and thickness was measured with a caliper (Starrett, Athol, MA, USA). The
fiber diameter was measured from SEM images using Image J1.29X as described by Bortolassi et al. [46].
The fiber size distribution was determined by measuring 100 fibers of each filter medium.

An attractive air filter should display low pressure drop and high permeability. Permeability was
assessed by varying the air velocity from 0.3 to 3 cm/s, and pressure drop (∆P) was quantified with a
digital manometer (VelociCalc Model 3A-181WP09, TSI, Shoreview, MN, USA) linked to the filtration
apparatus, as previously described [46].

As the filtration velocity used in this study was low, the permeability constant (k1) was calculated
using Darcy’s law that analyzes the fluid flow of the filter media relative to the pressure drop (∆P),
thickness (L), air viscosity (µ), and superficial velocity (vs):

∆P
L

=
µ

k1
vs (1)

The pore-size distributions of the webs was assessed with a capillary flow porometer (3 gzh
Quantachrome, Anton Paar, Graz, Austria), as previously described [47]. The pore distribution, mean
pore size, and bubble point were measured at pressure values ranging from 0.3 to 0.8 bar and using
isopropanol as wetting liquid. The pore size–pressure relationship is described by Equation (2):

P =
4γl/gCosθ

d
(2)

where, P is the applied pressure, γl/g is the wetting liquid surface tension, θ is the wetting angle, and d
is the pore diameter.

2.2.4. Testing the Nanofiber Filter’s Filtration Performance

Nanoparticles of different sizes (from 9 to 300 nm) were generated using 0.1 g/L of NaCl solution
and an atomizer aerosol generator to obtain the same, standard particle size distribution curve for all
tested filters.

The experimental unit included an air compressor (Shultz, Acworth, GA, USA), air purification
filters (Model A917A-8104N-000 and 0A0-000), an atomizer aerosol generator (Model 3079, TSI,
Shoreview, MN, USA), a diffusion dryer (Norgren IMI, Birmingham, UK), a Kriptônio and Americium
neutralizing source (Model 3054, TSI, Shoreview, MN, USA), a filter apparatus, a flowmeter tube size 3
(Gilmont, Vernon Hills, IL, USA), and a scanning mobility particle sizer that comprises an electrostatic
classifier (Model 3080, TSI, Shoreview, MN, USA), a differential mobility analyzer, and an ultrafine
particle counter (Model 3776, TSI, Shoreview, MN, USA), as described by Bortolassi et al. [46].

The nanoparticle concentration upstream (Cup) and downstream (Cd) of the filter medium was
calculated using the differential mobility analyzer and particle counter and the following equation:

nt =
Cup −Cd

Cup
(3)

Filtration efficiency was tested at constant superficial velocity (0.05 m/s), flow rate (1.50 L/min),
and filtration area (5.3 cm2). Experiments were repeated three times and data were presented as the
mean ± standard deviation. The experimental and theoretical collection efficiency of the filter media
were compared with Equation (4) [48]:

nt = nd + ni + nid + ng + ne (4)
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where nt is the total collection efficiency, nd is the diffusion, ni the inertial, nid the interception, ng the
gravitational, and ne the electrophoretic mechanism. For our test, diffusion, inertial, and interception
are the most important mechanisms and are influenced by different parameters, particularly air velocity,
fiber and particle diameter, and porosity.

Quality factor (QF) also is used to describe the effectiveness of filter media. It was assessed by
relating the pressure drop to the removal efficiency of 100-nm particles, as described by Equation (5) [48]:

QF =
− ln(1− n)

∆P
(5)

where ∆P is the pressure drop across the filter and n is the removal efficiency.
The minimum efficiency at the most penetrating particle size typically ranges from 0.1 µm and

0.5 mm, and is influenced to various degrees by different mechanical mechanisms (e.g., interception,
diffusion, and inertial impaction) involved in particle filtration [49]. Moreover, it is generally
acknowledged that particles from an aerosol will be removed more efficiently by a thick filter, but with
higher pressure drops. Conversely, removal by a thin, open-porous filter is usually less efficient, but
this filter type is more permeable. Therefore, further increasing the filter efficiency could compensate
for the higher pressure drop. Hence, high QF values are the result of a balance between efficiency and
pressure drop.

2.2.5. Bactericidal Activity

Antibacterial tests were performed using non-pathogenic Gram-negative E. coli bacteria (K12
DSM 423, from DSMZ, Braunschweig, Germany). Lysogeny broth (LB) Miller was used for E. coli
culture, counting, and direct-contact agar tests. For each experiment, a new bacterial suspension was
prepared from frozen E. coli aliquots kept at −20 ◦C. After rehydration in LB medium at 30 ◦C on a
rotating shaker (160 rpm) for 3 h, aliquots were inoculated in fresh LB medium (5% v/v) and incubated
at 30 ◦C under constant stirring (160 rpm) overnight to reach the stationary growth phase. Then,
bacteria were centrifuged (4000 rpm and 12 ◦C for 10 min) and supernatants were discarded to remove
nutrients. Bacterial pellets were suspended in spring water (Cristaline Sainte Cécile, Sainte-Cécile,
France: [Ca2+] = 39 mg/L, [Mg2+] = 25 mg/L, [Na+] = 19 mg/L, [K+] = 1.5 mg/L, [F−] < 0.3 mg/L,
[HCO3

−] = 290 mg/L, [SO4
2−] = 5 mg/L, [Cl−] = 4 mg/L, [NO3

−] < 2 mg/L) to block bacterial growth. The
bacterial concentration in the suspension was measured by absorbance measurements at 600 nm and
adjusted according to a calibration curve previously prepared in the laboratory. The suspension was
diluted with spring water to 108 and 103 CFU/mL. To test the antibacterial activity of ZnO/TiO2/Ag-PAN
materials, direct-contact agar tests were done using nutritive LB agar plates. Briefly, 40 µL of bacterial
suspension was deposited on sterile 2.25 cm2 (Ag_F, TiO2_F, ZnO_F, and PAN_F) samples that were
previously sterilized by UV exposure for 30 min. The inoculated side of the samples was placed on
nutritive LB agar at room temperature for 6 h and then removed. Then, plates were incubated at
30 ◦C overnight to allow the growth of bacterial colonies (each bacterium should produce one colony).
The bacterial log removal could also be calculated for the lowest bacterial concentration tested (i.e.,
103 CFU/mL). In the positive controls, the bacterial suspension was placed directly on LB agar plates
without pre-incubation with any sample. Each test was performed in triplicate.

3. Results and Discussion

Electrospinning was used to fabricate PAN nanofiber filters (PAN_F) that included different
bactericidal nanoparticles (Ag, TiO2, or ZnO). After nanoparticle addition (0.95 g of AgNO3, TiO2,

or ZnO) in the PAN solution (9.1 wt%), viscosity and conductivity were analyzed. The obtained
filter media were named Ag_F, TiO2_F, and ZnO_F, respectively. Then, the different features of PAN
nanofibers and Ag/TiO2/ZnO-PAN nanofibers were analyzed (fiber distribution, thickness, porosity,
permeability, and pressure drop) as well as their filtration performance, QF, and bactericidal activity.
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3.1. Solution Characterization

Quantification of conductivity and viscosity (Table 1) showed that after adding AgNO3 to the PAN
solution, Ag nanoparticles were formed (confirmed by Bortolassi et al. [39]), and conductivity changed.
Moreover, viscosity increase was much higher in the Ag_F solution than in the TiO2_F and ZnO_F
solutions. A very high viscosity could affect nanofiber deposition, as a result of the hard ejection of
jets from the solution, as proposed by Li & Wang [50]. Therefore, the higher Ag_F conductivity and
viscosity led to the deposition of thinner and lighter fiber layers compared with the other solutions.
Moreover, high viscosity could hinder the formation of electrospun nanofibers.

Table 1. Conductivity and viscosity measured at 25 ◦C.

Solutions Conductivity (mS/cm) Viscosity (cP)

PAN/DMF 0.09 ± 0.01 471 ± 0
Ag/PAN/DMF 2.11 ± 0.05 933 ± 1

TiO2/PAN/DMF 0.09 ± 0.01 452 ± 1
ZnO/PAN/DMF 0.08 ± 0.01 567 ± 1

3.2. Structural and Morphological Properties

SEM imaging and size distribution analysis of Ag/TiO2/ZnO-PAN nanofibers after electrospinning
(Figure 1) showed that PAN_F, Ag_F, and ZnO_F filters were composed of nanofibers with a mean
diameter of 290 nm. TiO2_F filters had the smallest fiber diameter (242 nm). The substrate used to
support the nanofiber deposition was composed of PET microfibers with a mean fiber diameter of
approximately 27 µm.

All filters fabricated in this study were composed of heterogeneous nanofibers, but only TiO2

filters included large nanoparticle agglomerations in the fibers. This could be explained by the large
specific surface area and the interaction between TiO2 nanoparticles and PAN fibers. Indeed, TiO2

nanoparticle aggregation in the middle of fibers could have been favored by electrostatic repulsion
of positively charged TiO2 by the positive charges on the fiber surface [51]. Wang et al. [52] also
described the agglomeration of TiO2 nanoparticles upon production of PLA (7 wt%) fibers with lower
concentration of TiO2 nanoparticles (0.5, 1, 1.5, 1.75, and 2 wt%) due to the lower nanopore volume.
Lv et al. [33] dissolved 1 g of KGM and ZnO nanoparticles (0, 0.5, 1.0, 1.5, and 2.0 wt%) in PVA solution
(10%) using ultrasonic stirring, and did not observe any agglomeration. Moreover, it has been reported
that in PAN/TiO2 fibers, TiO2 nanospheres tend to agglomerate more readily due to their smaller sizes
compared with ZnO nanoparticles [51]. Conversely, no cluster was observed upon Ag_F production,
probably because Ag nanoparticles can easily spread along nanofibers due to their small size (5 nm).

As the morphology of electrospun nanofibers can be influenced by many factors, particularly
the solution concentration, applied voltage, solution velocity, distance between syringe tip and
collector distance, and solution properties (polarity, surface tension, electric conductivity), the same
electrospinning conditions were used for all samples in our study. Agglomeration is also influenced by
the electrospinning parameters, but this issue was not investigated in this study.
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Figure 1. SEM images and fiber diameter distribution for the polyethylene terephthalate (PET) 
substrate and electrospun polyacrylonitrile nanofiber filter (PAN_F), Ag_F, TiO2_F, and ZnO_F 
samples. The red lines show the approximate distribution based on a Gaussian distribution. 

Figure 1. SEM images and fiber diameter distribution for the polyethylene terephthalate (PET) substrate
and electrospun polyacrylonitrile nanofiber filter (PAN_F), Ag_F, TiO2_F, and ZnO_F samples. The red
lines show the approximate distribution based on a Gaussian distribution.
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Measurement of the filter’s thickness (Table 2) did not highlight any significant difference after
the deposition of the electrospun nanofibers on the substrate (S), because the nanofiber layer was very
thin. Sample weighing after electrospinning indicated that the basis weight increase was higher in
the TiO2_F and ZnO_F than Ag_F samples, probably due to nanoparticle agglomeration. Moreover,
the fiber diameter decreased when nanoparticles were added to the PAN solution, as observed by
Abdo et al. [53]. The reduced diameter decrease [54] and lower basis weight [50] of the electrospun
Ag_F samples can be explained by the higher viscosity and conductivity of the Ag/PAN/DMF solution.

Table 2. Characterization of the electrospun fibrous filters and unwoven substrate.

Samples PAN (g) Nanoparticles
(g)

Mean Fiber
Diameter (nm)

Thickness
(mm)

Basis Weight
(g/m2)

PAN_F 0.95 – 301 ± 7 0.20 ± 0.01 75 ± 3
Ag_F 0.95 0.95 292 ± 6 0.17 ± 0.01 62 ± 4

TiO2_F 0.95 0.95 242 ± 5 0.19 ± 0.01 79 ± 3
ZnO_F 0.95 0.95 289 ± 5 0.18 ± 0.01 80 ± 3

S 0 0 27 ± 0 0.16 ± 0.01 61 ± 1

The EDX analysis allowed calculating the atomic percentages of Ag/Ti/Zn in the fabricated fibers
(Table S1). The obtained values are in agreement with the nanoparticle addition to the PAN solution.
Moreover, the atomic percentages of Ag, TiO2, and ZnO in the obtained filters were much lower
than the percentages introduced in the solutions Ag/PAN/DMF, TiO2/PAN/DMF, and ZnO/PAN/DMF,
respectively. This finding could be explained by the much higher contribution of the substrate (made
of PET fibers) to the elemental composition measured by EDX than the thin film of PAN/nanoparticle
nanofibers deposited by electrospinning.

Elemental mapping images of Ag_F, TiO2_F, and ZnO_F filters (Figure S1) showed that
nanoparticles were distributed on the whole area of the analyzed samples, indicating their good
dispersion in PAN nanofibers. Altogether, these data demonstrate that electrospinning allowed the
successful fabrication of Ag/TiO2/ZnO nanofibers and their deposition on the PET substrate to produce
air filters.

Pore size and thickness measurements (Figure 2) showed differences in pore size distribution
among samples. The narrowest pore size distribution was observed in Ag_F (1.11–1.16 µm; mean
value: 1.12 µm) (Table 3) and the largest in ZnO_F (1.99–2.17 µm; mean value: 2.03 µm). Large pore
size is correlated with lower pressure drop because the air can easily go through a filter with wide
pores. However, in our experimental set up, pressure drop was more influenced by the filter thickness.
The lowest pressure drop was observed with ZnO_F and Ag_F filters (Figure 3) that displayed the
lowest thickness. As mentioned before, the Ag solution’s viscosity favored the lower fiber deposition
compared with the other filters, as previously reported by Li and Wang [50]. TiO2_F displayed the
highest thickness and also the largest pressure drop. This big pressure drop might be explained by the
higher amount of nanofibers deposited on the substrate (facilitated by the low TiO2 solution viscosity)
and nanoparticle agglomeration during electrospinning that hindered the air flow through the filter.
Finally, the used substrate (S) did not significantly affect the air flow through the filter because the
pressure drop was almost zero and the mean pore size of the substrate was 72.74 µm. Therefore, the
substrate did not interfere with the filter performance. On the other hand, the pressure drop increased
when PAN_F were deposited on the substrate by electrospinning, probably because increasing the
nanofiber layers decreases the void space, hindering air flow through the filter. Conversely, addition of
ZnO and Ag nanoparticles to the solution resulted in filters with lower pressure drop due to the higher
solution viscosity and the consequent lower nanofiber thickness.
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Figure 2. Pore size distribution: (a) scale 0–100 µm and (b) scale 0–5 µm.

Table 3. Pressure drop and pore size of the electrospun filters.

Samples ∆P at 0.03 m/s (Pa) Pore Size (µm)

Minimum Mean Maximum

PAN_F 174.50 ± 0.25 1.97 ± 0.10 2.35 ± 0.10 2.93 ± 0.10
Ag_F 68.13 ± 0.18 1.11 ± 0.10 1.12 ± 0.10 1.16 ± 0.10

TiO2_F 183.47 ± 0.03 1.42 ± 0.10 1.45 ± 0.10 1.51 ± 0.10
ZnO_F 81.17 ± 0.07 1.99 ± 0.10 2.03 ± 0.10 2.17 ± 0.10

Substrate 0.60 ± 0.00 69.59 ± 0.10 72.74 ± 0.10 80.04 ± 0.10
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Figure 3. Pressure drop as a function of superficial velocity of electrospun filters.

Finally, Ag_F displayed the highest permeability constant (1.83 E−12
·m2) compared with the other

filters (Table 4). As permeability is directly proportional to the flow rate, air passed through the Ag_F
filter more easily and pressure drop across the filter was reduced (68.13 Pa). This result suggests that
adding nanoparticles in the PAN solution beyond a critical value of viscosity hinders the flow of the
solution through the needle tip, decreasing the nanofiber deposition and the pressure drop [55–57].

Table 4. Permeability constant of the electrospun filters.

Samples K1 (m2)

PAN_F 6.11 × 10−13

Ag_F 1.83 × 10−12

TiO2_F 6.11 × 10−13

ZnO_F 9.17 × 10−13

Substrate 1.46 × 10−10
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3.3. Comparison of the Filtration Performance

NaCl nanoparticle with the same size distribution curves (range: 9 to 300 nm) were prepared, to
test the different filters, using 0.1 g/L NaCl solution and an atomizer aerosol generator (Figure 4).
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Figure 4. Nanoparticle size distribution using 0.1 g/L NaCl solution.

Then, PAN_F, Ag_F, TiO2_F, and ZnO_F efficiency in removing these nanoparticles (9–300 nm)
from the air stream was measured using a differential mobility analyzer and particle counter and
compared to the theoretical efficiency (Figure 5). As expected, the substrate efficiency was very
low because it was just a support for the nanofibers and did not influence the filtration efficiency
(Figure 5a). Therefore, filtration efficiency was analyzed after exclusion of the substrate, which means
a smaller scale (Figure 5b). The highest filtration efficiency (≈100%) was observed with TiO2_F that
also displayed the highest air pressure drop (≈183.47 Pa), due to its higher thickness and formation
of particle agglomerates on the nanofibers due to TiO2 nanoparticle size (21 nm in diameter). This
performance can be explained by the large specific surface area and low-ordered crystalline structure
of TiO2 nanoparticles [58,59]. Zhang et al. [60] demonstrated that TiO2 loading on PAN nanofibers
enhances particle removal efficiency due to the high surface-charge that improves the particle’s
electrostatic attraction. Ag_F also showed high filtration efficiency (>98%), but lower pressure drop
(68.13 Pa) compared with TiO2_F, due to the lower Ag_F thickness, resulting from the lower-fiber
deposition on the substrate, and probably the lowest average pore size. Moreover, Ag nanoparticles
did not agglomerate on the nanofiber, due to their lower size (<5 nm in diameter). ZnO_F was the least
efficient (95% filtration) among the tested filters, but displayed the lowest pressure drop (81.17 Pa).
This could be attributed to the larger pore size and lower thickness compared with TiO2_F. The higher
filtration performance of Ag_F despite being less thick than ZnO_F could be explained by the smaller
pore size of Ag_F, resulting in better removal of airborne particles compared with ZnO_F. In conclusion,
the filter media assessed in this work showed high filtration efficiency, even after nanoparticle loading
in the PAN solution.

To understand the different filtration efficiency curve behaviors observed with our filters, the
three main capture mechanisms relative to particle size were analyzed: interception, inertial impaction,
and diffusion. The filtration curve of our filters is similar to the overall filtration curve for the various
filtration mechanisms studied by Hinds (1982) [48], but for ZnO_F and Ag_F. A small deviation is
explained by the fiber and particle diameter, thickness, and porosity, which are normally used to
calculate the theoretical efficiency. Generally, particles of 0.1–0.4 µm in diameter are considered the
most penetrating and can be retained through diffusion and interception filtration. Particles smaller
than 0.1 µm in diameter are captured through diffusion. Fibrous filters are generally less effective in
removing 0.1 to 0.4 µm particles. Therefore, particles of 9 to 300 nm in diameter are too large to be
captured by diffusion and too small to be retained by inertial impaction and interception, and so the
filter efficiency decreases within this range [61].
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Figure 5. Experimental and theoretical efficiency of the tested filter media: (a) scale 0–100% and
(b) scale 88–102%.

The performance of filter media can be analyzed using the QF that was calculated for particles of
100 nm in diameter (Table 5). High QF values indicate good filtration efficiency and low pressure drop.
In agreement, Ag_F displayed the highest QF (pressure drop = 68.13 Pa; filtration efficiency: >98%).
TiO2_F and ZnO_F had similar QF values due to the very high pressure drop of TiO2_F (183.47 Pa),
and the low filtration efficiency (>95%) of ZnO_F. The QF value of PAN_F (0.05 Pa−1) was good, but
this filter does not contain bactericidal nanoparticles. The QF values of all our filter media, even after
addition of TiO2, ZnO, and Ag nanoparticles, were comparable to those of previous studies on pristine
PAN filters [62–64]. However, superficial velocity, particle size, and material composition might
vary among studies and thus data should be compared with caution. Wang et al. [52] demonstrated
high filtration efficiency (99.97%), low pressure drop (57 Pa) and satisfactory QF (0.14 Pa−1) using
300–500 nm particles. However, the removal of microparticles from air is usually easier compared with
nanoparticles. The nanoparticles of 9 to 300 nm in diameter used in our work are the most difficult
to remove and also have been implicated in many diseases [2]. Yet, good QF values were obtained
(~0.05 Pa−1). A relatively small difference was observed because of the slight variation between
pressure drop and filtration efficiency for all filters.

Table 5. Quality factor of the different filters.

Samples Quality Factor (Pa−1)

PAN_F 0.05
Ag_F 0.06

TiO2_F 0.04
ZnO_F 0.04

On the basis of the European Union Standard for HEPA and ULPA filters—EN 1822 [65],
PAN_F filter media could be classified as H13 (HEPA >99.95% collection efficiency), TiO2_F as E12
(Efficiency Particulate Air Filters–EPA >99.5% collection efficiency), and Ag_F and ZnO_F as E11
(EPA >95% collection efficiency). Following the ISO Cleanroom Standards, PAN_F and TiO2_F can
be classified as ISO Class 3, and Ag_F and ZnO_F could be in ISO Class 4 because the limits of the
maximum concentration (1000 particles/m3 of air) for particles of 0.1 µm in diameter are exceeded.

3.4. Bactericidal Activity

In the direct-contact agar tests using a 108 CFU/mL E. coli suspension, Ag_F clearly showed the
highest bactericidal activity because very few bacterial colonies were visible after plate incubation
compared with PAN, ZnO_F, and TiO2_F (Figure 6). Then, the bacterial suspension was decreased
to 103 CFU/mL to try to detect the bactericidal activity of the ZnO_F and TiO2_F materials (Figure 6)
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and to quantify bacteria removal (Figure 7). For this test, an Ag_F material with lower Ag content
(1% instead of 50% w/w) was used to allow bacteria counting. This experiment confirmed the high
bactericidal activity of Ag_F (i.e., removal of all bacteria) (Figure 7) whereas ZnO_F and TiO2_F did
not show any significant antibacterial action. Indeed, the log-removal values were comparable for
ZnO_F and TiO2_F and PAN-F, which unexpectedly displayed a −0.5 log removal. A Student statistical
test proved that there is no significant difference among ZnO, TiO2, and PAN fibers (p > 0.05). Some
authors [20,66] showed that PAN nanofibers without antibacterial agents do not have bactericidal
activity. Conversely, Bortolassi et al. [39] detected a colony decrease with PAN_F (25 ± 12 CFU, n = 3)
compared with control (87 ± 10 CFU, n = 3), and suggested that bacteria were adsorbed onto PAN
material. It can be also hypothesized that when PAN_F (or any other membrane material) is present on
the plate surface, a limited O2-mass transfer could slightly reduce the growth of the aerobic bacterium
tested. Thus, the PAN_F log-removal value was considered as the baseline value for the tests in
our study.Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 17 
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Figure 7. Direct-contact agar tests: log-removal values using a 103 CFU/mL E. coli suspension that was
in contact with the indicated filters for 6 h. The log-removal was calculated as the logarithm (base 10)
ratio of the bacterial quantity Q (CFU) measured after contact with the filter relative to the bacteria
quantity Qc in the positive control.

The results obtained with Ag_F are consistent with the literature data. It was previously
demonstrated that Ag nanoparticles have high antibacterial effectiveness due to their isotropic
geometries, such as spherical particles [67,68] that exhibit large surface-to-volume ratio. Indeed,
smaller particles can penetrate more easily in bacteria, especially Gram-negative microorganisms [69].
Some studies reported the antibacterial effect of ZnO and TiO2 nanoparticles [35,70] without UV
illumination [58]. The absence of bactericidal effect of ZnO_F and TiO2_F in our work, even when
using a 103 CFU/mL E. coli suspension, could be explained by ZnO agglomeration and the considerable
amount of TiO2 nanoparticles in the nanofibers (Figure 1). Lv et al. [38] observed that by increasing
the concentration of ZnO nanoparticles in PVA and PVA/KGM solutions to more than 1.0 wt%,
the solution spinnability was drastically reduced. Moreover, ZnO particles clustered together and
adhered to the fibrous membranes in a random manner. They then showed that the antibacterial
activity of a membrane with random ZnO clusters was lower than that of a membrane with uniformly
dispersed ZnO.
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Our results indicate that loading silver nanoparticles in PAN nanofibers using electrospinning is
an efficient method to develop air filters for airborne nanoparticle removal with bactericidal activity.
They indeed highlight the efficient antibacterial activity, lowest pressure drop (68.13 Pa), high filtration
efficiency (>98%), highest QF (0.06 Pa−1), and highest permeability of Ag_F nanofibers, which also
displayed the lowest nanofiber deposition during electrospinning.

4. Conclusions

In this study, TiO2/PAN, ZnO/PAN, and Ag/PAN nanofibers electrospun using the same weight
ratio and the same experimental conditions were evaluated. The PAN solution viscosity and
conductivity was modified upon addition of the nanoparticles and this affected the nanofiber formation,
although they were produced using the same electrospinning parameters. Specifically, viscosity and
conductivity were comparable in TiO2/PAN/DMF and ZnO/PAN/DMF solutions, whereas they were
much higher for the Ag/PAN/DMF solution (933 cP and 2.11 mS/cm, respectively). SEM images
confirmed the formation of nanofibers and the homogeneous Ag dispersion on the fibers. On the
other hand, TiO2 and ZnO nanoparticles formed agglomerates on the fibers. Characterization of the
filter thickness, pore size, pressure drop, and permeability indicated an overall low pressure drop
(from 68.13 to 183.47 Pa). The highest filtration efficiency (≈100%) was obtained with the TiO2_F
filter, but it also displayed the biggest pressure drop (≈183.47 Pa), probably because of the great
number of nanofibers deposited on the substrate. Ag_F showed high filtration efficiency (>98%), low
pressure drop (68.13 Pa), high QF (0.06 Pa−1), and very good antibacterial activity against a 108 CFU/mL
E. coli suspension. ZnO_F displayed the lowest filtration efficiency, which was nevertheless >97%.
Therefore, our work shows that filter media maintain high filtration efficiency even after the addition
of nanoparticles in the PAN solution. It also suggests that Ag/PAN nanofiber media could be used for
many air filtration applications (e.g., masks, cleanrooms, and indoor air purification), thanks also to
their bactericidal activity.
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