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Hydrogen can in the future serve as an advantageous carrier of renewable energy
if its production via water electrolysis and utilization in fuel cells are realized with
high energy efficiency and non-precious electrocatalysts. In an unprecedented novel
combination of structured electrodes with hydrogen converting enzymes from the
uncultured and thus largely inaccessible microbial majority (>99%) we address this
challenge. The geometrically defined electrodes with large specific surface area allow
for low overpotentials and high energy efficiencies to be achieved. Enzymatic hydrogen
evolution electrocatalysts are used as alternatives to noble metals. The enzymes are
harnessed from the environmental microbial DNA (metagenomes) of hydrothermal vents
exhibiting dynamic hydrogen and oxygen concentrations and are recovered via a
recently developed novel activity-based screening tool. The screen enables us to target
currently unrecognized hydrogenase enzymes from metagenomes via direct expression
in a surrogate host microorganism. This circumvents the need for cultivation of the
source organisms, the primary bottleneck when harnessing enzymes from microbes.
One hydrogen converting metagenome-derived enzyme exhibited high activity and
unusually high stability when dispersed on a TiO2-coated polyacrylonitrile fiber electrode.
Our results highlight the tremendous potential of enzymes derived from uncultured
microorganisms for applications in energy conversion and storage technologies.

Keywords: metagenomics, electrochemical cells, hydrogen production, hydrogenase, polyacrilonitrile fiber
electrodes, energy storage

INTRODUCTION

Humanity’s ever-growing energy demand, the finite nature of fossil fuels, and the resulting CO2
emissions have encouraged researchers to find cost-efficient ways for generating energy in high
quantities from renewable sources. Common fossil fuel alternative sources with high energy
output include wind and solar power, but since they only deliver energy intermittently, a major
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problem is associated with energy storage (Armaroli and Balzani,
2011; Wang and Wang, 2015; Notton et al., 2018). An ideal
energy storage medium is hydrogen. It can be generated by water
electrolysis and can thus be easily applied for energy production
in fuel cells. Hydrogen’s reactivity and pollutant-free combustion
with oxygen makes it a renewable, clean energy storage medium
(Armaroli and Balzani, 2011; Rosen and Koohi-Fayegh, 2016;
Staffell et al., 2019). So far, large-scale hydrogen applications have
been hampered by its inefficient, energy-expensive production, its
delicate storage, and by the costly fuel cell technologies relying on
rare noble metals such as platinum (Pt) (Schlapbach and Zuttel,
2001; Armstrong et al., 2009; Chenevier et al., 2013; Staffell et al.,
2019). Moreso, the commonly used hydrogen production based
on steam reforming of fossil fuels leads to carbon monoxide and
sulfide impurities. Even traces of these impurities cause technical
issues as they poison Pt electrodes used in fuel cells (Garcia and
Koper, 2011; Liu et al., 2013; Staffell et al., 2019).

Given these drawbacks, hydrogen converting enzymes
(hydrogenases) have gained more and more attraction: either
as biological models for novel artificial catalysts or for direct
application in biofuel cells or hydrogen production (Armstrong
et al., 2009; Chenevier et al., 2013; Mazurenko et al., 2017;
Esmieu et al., 2018; Le Goff and Holzinger, 2018; Qiu et al.,
2019). Hydrogenases catalyze the interconversion of molecular
hydrogen to protons and electrons (H2 ↔ 2 H+ + 2 e−)
(Vignais and Billoud, 2007; Greening et al., 2016). These
fundamentally bidirectional enzymes usually favor one way
of the reaction but overall the direction is controlled by
the redox potentials of the reactants (Vignais and Colbeau,
2004; Schilter et al., 2016). Although hydrogenases have been
successfully applied to electrodes in electrochemical cells –
for hydrogen oxidation as well as hydrogen production -,
hydrogenase availability has had to rely on the cultivability of
hydrogen converting microorganisms (Karyakin et al., 2005;
Vincent et al., 2005; Hambourger et al., 2008; Wait et al.,
2010; Schlicht et al., 2016; Mazurenko et al., 2017; Szczesny
et al., 2018). The tremendous hydrogenase resource amongst
the uncultured majority of microbes (depending on the type
of habitat up to 99% of strains; Lloyd et al., 2018) has not
been accessible. However, this has changed with the advent
of metagenomic tools which provide access to the total DNA
of an environmental sample, including that of uncultured
microorganisms (Handelsman et al., 1998).

We recently developed an activity-based screen for seeking
hydrogen converting enzymes from the metagenome (Adam and
Perner, 2017), circumventing the need for culturing the hydrogen
converting organisms directly. Particularly, hydrothermal vents
are promising habitats to screen for hydrogenases (Adam
and Perner, 2018a), since hydrogen is released here from
inner earth, providing an energy source for chemosynthetic
microbes. Our recent screening activities of hydrothermal vent
metagenomes recovered four hydrogen converting active clones.
They mostly exhibited low or even no sequence similarity
to known hydrogenases or other enzymes and demonstrated
the large potential for hydrogen converting enzymes from
uncultured microorganisms derived from hydrothermal vent
environments (Adam and Perner, 2018b). Here, we report on the

immobilization of one of these enzymes on electrode surfaces of
large specific surface area for hydrogen production.

METHODS

Recovery of Hydrogen Uptake Active
Fosmid Clones
The detailed steps and procedures for recovering hydrogen
converting fosmid clones have previously been published (Adam
and Perner, 2017, 2018b). In short: A piece of a massive sulfide
chimney from the Sisters Peak hydrothermal vent system, high-
temperature fluids from the Nibelungen vent field and low-
temperature fluids from the Lilliput venting site were collected
from the southern Mid-Atlantic Ridge using the remotely
operated vehicle (ROV) KIEL6000 (GEOMAR) during the
MAR-SUED cruise in 2009. From each sample metagenomic
DNA was extracted and amplified via multiple displacement
amplification as described before (Han and Perner, 2014; Böhnke
and Perner, 2015). Metagenomic libraries were constructed using
the CopyControlTM Fosmid Library Production Kit and the
broad host range vector pRS44 (Aakvik et al., 2009; Adam
and Perner, 2017). The metagenomic fosmids were transferred
into a [NiFe]-hydrogenase deletion mutant of Shewanella
oneidensis MR-1 (S. oneidensis 1 hyaB) via triparental mating
and the resulting clones were screened for hydrogen uptake
activity. The screen is based on the reduction of Fe(III)citrate
(included in the medium for the chemolithotrophic growth of
S. oneidensis) coupled to the oxidation of molecular hydrogen.
This redox reaction results in a color change of the medium
and allows the identification of hydrogen uptake active clones.
The metagenomic inserts of hydrogen uptake active clones
were sequenced and deposited at the National Center for
Biotechnology Information (NCBI) under Genbank accession
numbers MG456603-MG456606 (Adam and Perner, 2018b).
One of the two hydrogen uptake active metagenomic clones
identified in the Sisters Peak library was SP11F2 (Adam and
Perner, 2018b), later chosen for the application on nanoporous
fiber electrodes.

Bacterial Strains, Growth Conditions,
and Hydrogen Evolution Assay
Shewanella oneidensis 1hyaB derived stains were routinely
grown at 28◦C in lysogeny broth (LB) medium. For hydrogenase
assays, these strains were grown anaerobically in fresh water
medium (FW medium, supplemented with 15 mM pyruvate and
15 mM fumarate) with H2/CO2 (80%/20%, 1 atm) (Westfalen
AG, Münster, Germany) in the headspace (Lovley et al., 1989;
Han and Perner, 2014; Adam and Perner, 2018b). If required,
antibiotics were used at the following concentrations: kanamycin
20 µg mL−1, gentamycin 10 µg mL−1, and chloramphenicol
12.5 µg mL−1. S. denitrificans was routinely grown at 22◦C in
DSMZ medium 113 under anaerobic conditions with H2/CO2
(80%/20%, 1 atm) in the headspace (Han and Perner, 2014).

For the hydrogen evolution assays subcellular fractionations
were performed in an anaerobic chamber (Coy Laboratory
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Products, Grass Lake, MI, United States) as previously described
(Maroti et al., 2009; Han and Perner, 2014; Adam and
Perner, 2018b). The hydrogen evolution assay was performed
as described before (Nishihara et al., 1997; Maroti et al., 2009)
by measuring the evolution of hydrogen from methyl viologen
(MV), reduced by sodium dithionite (Merck KGaA, Darmstadt,
Germany). Routinely, the reaction mixture containing 100 µL
of 400 mM oxidized MV, 25 µg protein of the membrane
fraction and 1.5 mL of 20 mM sodium phosphate buffer
(pH 7.0, with 1 mM DTT) was sealed in a 15 mL Hungate
tube and flushed with nitrogen gas (Westfalen AG, Münster,
Germany) for 2 min. The reaction was initiated by adding
100 µL of 5% (w/v) sodium dithionite solution. After 1 h
incubation at 28◦C, the reaction was terminated by adding
500 µL of 40% (w/v) sodium trichloroacetate solution. One
milliliter gas sample from the headspace was injected into
a gas chromatograph (GC; Thermo Fischer Scientific Inc.,
Waltham, MA, United States) to determine the amount of
evolved hydrogen as previously described (Han and Perner,
2014). For the determination of the pH optimum, the
experiments were performed using 20 mM sodium phosphate
buffer (containing 1 mM DTT) and the following pH values:
5.0, 6.0, 7.0, 8.0, and 9.0. Enzyme stability was tested by
performing the hydrogen evolution assay at pH 7.0 with
membrane fractions that were stored for 24 h: (i) anoxic (i.e.,
under an atmosphere of 97% N2 and 3% H2) at 4◦C, (ii)
oxic, (i.e., under ambient air) at 4◦C, (iii) anoxic at room
temperature (22◦C), and (iv) oxic at room temperature. The
specific hydrogen evolution activities were calculated from three
independent measurements.

Electrode Preparation
The procedures for electrode preparation have been
modified from a previous publication (Schlicht et al., 2016).
The polyacrylonitrile (PAN) fibers were synthesized by
electrospinning and coated with a thin TiO2 layer (15 nm)
by atomic layer deposition (ALD) in order to gain an electrically
conductive layer. The ALD process was performed at 120◦C
in a GEMSTAR 6 reactor (Arradiance LLC, Sudbury, MA,
United States) using titanium tetraisopropoxide (TTIP) and
H2O. For the Ti precursor the pulse duration, exposure and
pump time were set to 2, 30, and 60 s, respectively. The
corresponding durations for water were set to 0.2, 30, and
60 s. The thickness of the TiO2 layer was determined on a Si
wafer by spectroscopic ellipsometry using a SENpro (SENTECH
Instruments GmbH, Berlin, Germany). Finally, the TiO2 layer
was annealed at 400◦C in air for 1 h in a P 330 muffle furnace
(Nabertherm GmbH, Lilienthal, Germany).

Electrochemical Studies
For the electrochemical performance measurements the coated
fibers were cut into small pieces and glued with double-
sided Cu tape onto Al plates. To define an accurate specific
surface area a polyamide tape (Kapton©, DowDuPont, Midland,
MI, United States) mask with a laser-cut circular opening
of diameter d = 3 mm was used. Cyclic voltammetry (CV)
and steady-state electrolysis were performed in a standard

three-electrode setup with an Ag/AgCl reference electrode
and a Pt mesh as the counter-electrode using a Gamry
Interface 1000 potentiostat (Gamry Instruments, Warminster,
PA, United States). The 20 mM NaH2PO4/Na2HPO4 buffer
electrolyte solution was degassed with N2 bubbling for 30 min
before each experiment. Each membrane fraction was either
used in its pure form or at a 1:10 dilution. Before the
hydrogenase extract was applied, all electrodes were investigated
without any treatment by CV starting from –0.6 V between –
0.4 and –1.0 V, followed by steady-state electrolysis at –
1.0 V (η = –0.39 V) for 30 min. These data were used as
the reference for subsequent electrocatalysis. Afterward, the
electrodes were dried at 50◦C for 1 h. A 10 µL droplet
of the membrane fractions of either P5H2 or SP11F2 was
then added and after a waiting time of 10 min to allow
for the proteins to adhere to the fibers’ surface the same
measurement procedure (CV and electrolysis) was performed.
The measurements were repeated without any further sample
treatment on later days.

RESULTS AND DISCUSSION

To unlock the hydrogen converting potential amongst
uncultured microorganisms, we recently developed an activity-
based screen for the identification of hydrogen uptake active
clones from metagenomes and applied it to hydrothermal
vent samples (Adam and Perner, 2017, 2018b). Briefly, the
metagenomic DNA is captured in a broad-host range fosmid
vector and is then expressed in a foreign host, in our case
a Shewanella oneidensis MR-1 hydrogenase deletion mutant
(1hyaB). S. oneidensis 1hyaB lacks the ability to produce an
active hydrogenase, but the hydrogen uptake (i.e., hydrogen
oxidation) activity can be restored by complementing the
mutant with an intact hydrogenase gene. It was shown that
S. oneidensis’ hydrogenase maturation apparatus (encoded by
several accessory genes) can successfully assemble and fold
hydrogenases from phylogenetically diverse Proteobacteria
(Adam and Perner, 2018b). Thus, the screening procedure
is suitable for the identification of various hydrogen uptake
active enzymes from the environment. We screened 14,400
fosmid clones derived from metagenomic DNA of three
different hydrothermal vent systems and identified four clones
with hydrogen uptake and in vivo hydrogen consumption
activity (Adam and Perner, 2018b). Except for one clone
(Lilli33G1, harboring a Wolinella succinogenes hydrogenase
homolog), no homologs to known hydrogenase-coding genes
could be identified in the metagenomic DNA inserts. For
the present study, the most active hydrogen-evolving clone
(SP11F2) was chosen for further experiments, including
stability tests (at different temperatures and oxygen levels) and
testing the pH range of the recombinant, partially purified
enzyme. Subsequently, it was immobilized on TiO2-coated
polyacrylonitrile (PAN) fiber electrodes of large specific surface
area to produce hydrogen and thereby convert electrical
energy into chemical that is into storable fuel. For an overview
of the individual steps from the discovery to the point of
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FIGURE 1 | Overview of the workflow for identifying (blue background) and applying metagenomic hydrogen converting enzymes to electrodes with large specific
surface area (green background). The screen for hydrogen uptake activity is based on a color change of the medium as a result of the reduction of Fe(III)citrate,
which can only take place if hydrogen is oxidized by a hydrogen converting enzyme.
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FIGURE 2 | H2-evolution activities of recombinant hydrogen converting enzymes. Specific H2-evolution activities of the membrane fractions of four metagenomic
clones (measured at pH 7.0) are shown (A). The respective metagenomic DNA was derived from three different hydrothermal vent systems from the Mid-Atlantic
Ridge: (i) the Lilliput system (Lilli33G1, marked in purple), (ii) the Nibelungen system (Nib22E5, marked in red), and (iii) the Sisters Peak vent (SP11A2 and SP11F2,
marked in blue). The positive control (marked in green) is the membrane fraction of clone P5H2 (harboring the recombinant S. oneidensis wild type hydrogenase) and
the negative control is the membrane fraction of S. oneidensis 1hyaB harboring the empty pRS44 vector, which is used for the heterologous expression of (meta-)
genomic inserts. The pH optimum of SP11F2 is shown in (B) and the stability of SP11F2 at pH 7 under different storage conditions (for 24 h) has been tested (C).
Anoxic conditions refer to an atmosphere of 97% N2 and 3% H2, oxic conditions to ambient air (21% O2) and the relative activities refer to the original measurement
of 1073 nmol H2*min−1*mg−1, displayed in panel (A). n = 3 for all samples.

application of the metagenomic hydrogen converting enzyme
(see Figure 1).

Hydrogen Evolution Activities of
Hydrogenases From Uncultured Bacteria
in S. oneidensis 1hyaB
Prior to the immobilization of a metagenomic hydrogen
converting enzyme on the PAN fiber electrodes, the hydrogen
evolution (i.e., hydrogen production) activities of the four
discovered hydrogen uptake active clones (Nib22E5, SP11A2,
SP11F2, and Lilli33G1) were determined under neutral pH
conditions to identify the most promising candidate. Except
for clone Nib22E5, the hydrogen evolution activities of the
metagenomic clones were all higher than that of clone P5H2,
which is the mutant S. oneidensis 1hyaB complemented
with S. oneidensis’ own hydrogenase gene (S. oneidensis
1hyaB:hyaBS. oneidensis). SP11F2 had the highest hydrogen

evolution activity rates: the partially purified membrane fraction
of SP11F2 exhibited with 1073 ± 115 nmol H2

∗min−1∗mg−1

a more than 6-fold higher activity than that of P5H2 at 28◦C
(Figure 2A). The subsequent analysis of the pH optimum showed
a peak at pH 8.0 with an even 41% higher activity than at
pH 7.0 (Figure 2B). However, for the following application in
electrochemical cells, the H2-evolution activity at pH 7.0 was the
determining factor. The stability tests with SP11F2’s membrane
fraction (stored for 24 h under different conditions) showed,
that the activity of hydrogen evolving enzyme can (although not
fully) be restored after exposure to atmospheric oxygen levels
(Figure 2C). In these experiments, temperature appears to have
the highest influence on the hydrogen evolution activity: while
after storage at 4◦C still 67% (under anoxic conditions) and
44% (oxic conditions) of the original activity at pH 7.0 could
be observed, at room temperature, the activities dropped to
24% (anoxic conditions) and 20% (oxic conditions, Figure 2C).
Intriguingly, in a previous study, SP11F2’s membrane fraction
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only showed hydrogen uptake activity at 55◦C (175 ± 11
nmol H2

∗min−1∗mg−1 of partially purified protein) but no
activity could be measured at 25◦C. In summary, SP11F2
exhibits a very high hydrogen evolution activity at 28◦C,
while the only measured hydrogen uptake activity is relatively
low (cf. Figure 2A and Adam and Perner, 2018b). This
indicates that the respective hydrogenase performs better in
the conditions of hydrogen evolution at 28◦C. A classification
of this hydrogen converting enzyme is not possible to date,
given that no open reading frames (ORF) with homologies
to known hydrogenases could be identified in the respective
metagenomic DNA insert. The majority of the detected ORFs
(Genbank accession number MG456604) was related to different
hypothetical proteins of Aquificales with identities of up to 68%
(Adam and Perner, 2018b).

The so far unknown hydrogen converting enzyme of clone
SP11F2 also considerably exceeds the hydrogen evolution
activities of some cultured representatives such as the
Gammaproteobacterium Hydrogenovibrio marinus (402 nmol
H2
∗min−1∗mg−1 of partially purified protein; Nishihara et al.,

1997) and the Epsilonproteobacterium Sulfurimonas denitrificans
(248 ± 10 nmol H2

∗min−1∗mg−1 of partially purified protein,
this study). Thus, SP11F2 displays the ideal candidate for
putative applications in hydrogen production under pH neutral
conditions and emphasizes the huge functional potential of so
far unknown enzymes hidden among the uncultured majority of
vent-associated microorganisms.

Applying Hydrogen Converting Enzymes
From an Uncultured Vent Organism to
Nanoporous Surface-Enlarged
Electrodes
The membrane fractions of the metagenomic clone SP11F2 and
the complemented mutant P5H2 were applied to TiO2-coated
PAN fiber electrodes with tunable, large specific surface areas. An
electrospinning time of 6 h resulting in a large active surface area
was selected, which remained after treatment of the electrodes
with partially purified proteins. Energy-dispersive X-ray analysis
confirmed the presence of the elements C, Ti, O of the coated
fibers and Na and P from the electrolyte. The Fe signal after
the electrochemical investigation verified the adhesion of the
hydrogenase-containing membrane fraction on the fiber mat,
also visible on the scanning electron micrograph (Figure 3).

The electrochemical activity toward hydrogen evolution of
the membrane fractions was investigated by cyclic voltammetry
(CV) and steady-state electrolyses. Starting from –0.6 V, the cyclic
voltammograms presented the expected exponential shape of the
current density resulting from the hydrogen evolution reaction
(Figure 4). All samples exhibited higher current densities
after the addition of active protein extracts, whereby the pure
fraction showed higher activity toward hydrogen evolution.
This demonstrates that the increase of current density after
treatment with the hydrogenase fraction resulted solely from
the hydrogen converting enzymes itself and not from some
other component of the electrolytic solution. The relative current
enhancement after the addition of diluted SP11F2 membrane

FIGURE 3 | Scanning electron micrograph and energy-dispersive X-ray
analysis of PAN fiber electrodes. (A) Scanning electron micrograph of a
coated electrospun fiber after adding diluted hydrogenase fraction. The
individual fibers of the mat are still visible, which maintains the activity of the
whole surface area. (B) Energy dispersive X-ray analysis of a fiber mat without
treatment and (C) of a fiber mat treated with pure membrane fraction after
electrochemical investigation. The presence of the Fe signal proves the
adhesion of hydrogenase-containing membrane fractions on the coated fibers.

extracts was about 3-fold higher than with P5H2 (Figure 4),
thereby demonstrating a less pronounced difference of the two
membrane extracts compared to the respective specific hydrogen
evolution activities (>6-fold higher activity of SP11F2, Figure 2).
When undiluted membrane fractions were applied, no significant
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FIGURE 4 | Cyclic voltammograms of electrospun fibers coated with TiO2. Current densities are shown for electrodes without (black curves) and with diluted
H2-evolution active membrane fractions (green) of clone P5H2 [(A), harboring the S. oneidensis wild type hydrogenase] and SP11F2 [(B), harboring an unknown
hydrogen converting enzyme]. Note that always the 20th CV cycle (reaching a stable state) is shown. Additionally, the stability of the H2-evolving enzymes is
displayed as the relative activities of electrodes coated with the diluted membrane fractions of P5H2 (A) and SP11F2 (B). At each time point the same
electrochemical investigations (Cyclic voltammetry and electrolysis) were performed without any further treatment.

difference between the current densities of P5H2 and SP11F2 was
visible (data not shown). This effect may be caused by the organic
cell-derived compounds contained in the membrane fractions.
These can cause a clogging of the PAN fibers and thus hinder the
ion transport to and from the electrode surface.

In a previous study a [NiFe]-hydrogenase containing
membrane fraction of E. coli was applied to PAN fiber electrodes
in an analogous setup. Although the actual increase of the
current densities does not depend on the enzymes alone, the
metagenomic SP11F2 S. oneidensis 1hyaB clone clearly exceeded
the performance of the E. coli hydrogenase by more than 50% if
applied to electrodes of comparable geometries (cf. Schlicht et al.,
2016). To put the numbers in a broader perspective, the absolute
current density values recorded here are certainly not comparable
with those obtained in industrial electrolyzers of either the PEM
(acidic) or alkaline type. However, even noble metal catalysts
only reach current densities on the same order of magnitude
as reported here if used in our mild, pH-neutral conditions
(Hwang et al., 2015). The inherent safety of a pH 7 operation is
crucial to decentralized, small-scale applications for individual
consumer markets and thus represents another advantage of
the hydrogenase-based system compared to the hitherto applied
industrial electrolyzers that are typically operated at pH 0 or 14.

All electrochemical measurements were repeated on the
following days without any further treatment in order to
gain insight into the stability of the enzyme-coated PAN fiber
electrodes. As expected, the relative activity decreased over time.
However, the stability of the hydrogenase from the metagenomic
clone SP11F2 exceeded that of clone P5H2 considerably: while
the relative activity of the P5H2 electrode tended to zero after
12 days, the SP11F2 membrane extract coated on the electrode
still retained more than 50% of its original activity after 12 days
and storage at room temperature and an atmosphere containing
1% O2 (Figure 4). A comparison of these results with stability
tests based on the H2-evolution assays (of the pure membrane
extracts) suggests that the immobilization of the enzyme on

the electrodes has a stabilizing effect. If not immobilized on
PAN fiber electrodes, the enzyme-activity showed noticeable
decreases already after 24 h storage at ambient temperature
(under anoxic as well as fully oxic conditions). Under these
conditions, only 24 and 20% of the original activity could
be observed (Figure 2C). The storage at 4◦C lead to higher
activities after 24 h than the storage at room temperature (67
and 44%, respectively; Figure 2C). Still, it ranges far beyond the
stability of the immobilized membrane fractions (cf. Figures 2C,
4). Although it does not reach the stability of Thiocapsa
roseopersicina (half-life time of 60 days at 24◦C) (Zorin and
Gogotov, 1982) or Alteromonas macleodii (100% enzyme activity
after 45 days at 4◦C) (Vargas et al., 2011), SP11F2 exhibits a higher
oxygen-tolerance and stability than the [NiFe]-hydrogenase of
S. oneidensis (and the oxygen-sensitive majority of hydrogen
converting enzymes; Vignais and Billoud, 2007), if immobilized
on PAN fiber electrodes.

CONCLUSION

Overall, our findings show the remarkable potential of “currently
unknown” hydrogen converting enzymes for biotechnological
applications. We found an enzyme that is: (i) able to oxidize
or produce hydrogen (the latter at even higher rates than the
hydrogenase of the host in which it is expressed), (ii) functions
when immobilized on nanoporous electrodes, and (iii) exhibits
a remarkable stability at ambient temperature and under the
presence of low oxygen levels. Due to the inconceivably large pool
of environmental hydrogen converting enzymes that still need to
be explored, numerous hydrogenases exhibiting similar or even
more extraordinary qualities are likely awaiting their discovery.

For future large-scale applications, these enzymes should
ideally combine high hydrogen evolution activities, exceptional
O2 tolerance and stability at ambient (or elevated) temperatures
over long periods of time. A way to recover such an enzyme

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 June 2020 | Volume 8 | Article 567

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00567 June 2, 2020 Time: 20:48 # 8

Adam et al. Metagenomics Meets Electrochemistry

(in addition to searching for it with an activity-based screen)
could be the optimization of highly active (metagenomic)
hydrogenases such as that of clone SP11F2: for example, the
O2 tolerance of a [NiFe]-hydrogenase could successfully be
increased by targeted mutations of the hydrogen access channel
(Dementin et al., 2009). Still, this would be very time-consuming
for hydrogen converting enzymes with structural differences
compared to the classical hydrogenases such as the here
presented metagenomic hydrogen converting enzyme. Likely, in
the same (or shorter) time a naturally O2-tolerant metagenomic
hydrogenase could be found by means of our activity-
based screen. Given the elevated hydrogen concentrations and
steep thermal and chemical gradients dominating at deep-sea
hydrothermal vent systems (Kelley et al., 2002; Han and Perner,
2014), the ideal enzyme combining high hydrogen turnover rates
and stability is likely to be present in these habitats but has not
been found yet. Since we have so far only investigated a tiny
fraction (14,400 fosmid clones with metagenomic inserts) of the
tremendous potential of hydrogen converting enzymes, we might
one day be able to recover a hydrogenase suited for use on large
electrodes in industrial-scale electrolyzers.
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