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Nanocomposite materials are widely studied because of their unique design opportunities and proper-
ties. They can be classified into three main groups in function of the matrix used: polymer-based,
ceramic-based, and metal-based nanocomposites. The nanofiller choice is one of the most important
steps because it will improve the nanocomposite properties. This review focuses on boron nitride as
nanofiller because of its extraordinary properties: high thermal and chemical stability, good mechanical

strength, superior resistance to oxidation, good thermal conductivity, and electrical insulation. The goal

of this review is to provide an overview on the synthesis methods to produce boron nitride—based
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BN nanocomposites, particularly polymer- and ceramic-based nanocomposites, and on their potential ap-
Nanocomposites plications in promising fields, such as energy, environment, and health.

Energy © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
Health license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nanostructured materials refer to materials with nanometer-
scale size in one, two, or three dimensions and one dimension in
the 1-100 nm range. Over the last years, these materials have
attracted the scientists' interest because of their remarkable
physicochemical, electrical, and biological properties that allow a
wide range of applications in different fields (e.g. energy, envi-
ronment, and health) [1]. Their addition in a matrix can enhance
the bulk material's properties.

Among nanostructured materials, the interest for boron nitride
(BN)—based materials has progressively increased because of their
high chemical stability, mechanical strength, resistance to oxida-
tion, thermal conductivity, and electrical insulation [2]. BN contains
an equal number of boron (B) and nitrogen (N) atoms. BN is iso-
structural to graphite; however, the N atomic nucleus and B atoms
combine an sp? orbital to form a strong ¢ bond. Furthermore, it
presents a partially ionic character because of the electron pairs in
sp? hybridized B—N and weak van der Waals forces between B and
N atoms of adjacent layers, thus providing anisotropic properties.
BN exists in four crystalline forms: hexagonal BN (h-BN), cubic BN
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(c-BN), rhombohedral BN (r-BN), and wurtzite BN (w-BN). The main
difference among these phases is the hybridization: h-BN and r-BN
are dense phases with sp? hybridization, whereas c-BN and w-BN
are low-density phases with sp> hybridized B—N bonds [3]. Among
them, h-BN is particularly interesting because of its structural
analogy with graphite [4]. BN nanomaterials can be zero-
dimensional (OD; e.g. nanospheres), one-dimensional (1D; e.g.
nanotubes, nanofibers, and nanoribbons), two-dimensional (2D;
e.g. thin films and nanosheets [5]), and three-dimensional (3D; e.g.
nanostructured porous materials) (Fig. 1). Low-dimensional mate-
rials show quantum confinement and interfacial effects compared
with micro- and macro-scale materials. Unique physical and
chemical properties, such as wide band gap (~5.5 eV), high chem-
ical and thermal stability, and excellent electric insulation, can be
obtained by combining the low-dimensional quantum confinement
and surface effects of BN. Therefore, h-BN is a promising scaffold for
functional materials and for many potential applications, such as
electronics [6,7], sensors [8,9], hydrogen storage [10,11], health
[12,13], and also water and gas separation [14—19].

During the last 10 years, several reviews have been published on
the synthesis, functionalization methods, and potential applica-
tions of low-dimensional BN-based materials. Golberg et al. [20]
published a concise review on the history of low-dimensional BN
nanomaterials, particularly on the synthesis methods (e.g. chemical
vapor deposition, ball milling, chemical exfoliation) of 1D and 2D

2590-0498/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Structural models of low-dimensional BN nanostructures: (a) single-layered nanosheet (2D), (b) single-walled nanotube (1D), and (c) single-shelled fullerene (OD). Reprinted

with permission from Ref. [20]. Copyright © 2012, Elsevier Ltd.

BN-based materials, their morphology, and applications. Miele et al.
[21,22] reviewed the advances in the synthesis of nanostructured
BN from polymeric precursors containing boron, nitrogen, and
hydrogen. They also discussed their potential applications and
future perspective for their synthesis and applications. Weng et al.
[23] described the structural features as well as physical and
chemical properties of functionalized h-BN nanomaterials. They
also discussed the different strategies to functionalize BN, including
physical and chemical routes, their emerging properties, and ap-
plications. Wang et al. [3] described the synthesis, structure,
properties, and applications of graphene and h-BN materials. They
focused on the mechanical, optical, thermal, electric, and magnetic
features of these 2D materials. Wang et al. [24] published a general
overview on environmental restoration using BN-based materials
for pollutant elimination. They presented recent advances on the
removal of organic/inorganic pollutants using BN-based materials,
and described the underlying interaction mechanisms. Indeed, BN-

Current challenges

based materials show high sorption capacity and good removal
performances of heavy metal ions and organic pollutants from
aqueous solutions because of their high surface areas and chemical
inertness.

The aim of this review is to summarize the most recent advances
in BN-based nanocomposites. First, the methods used for their
synthesis in function of the chosen matrix (polymer or ceramic)
will be discussed. Then, their applications in the fields of energy,
environment, and health will be presented (Fig. 2).

2. Nanocomposite synthesis methods

Nanocomposites are new composite materials in which at least
one of the constituents has nanometric dimensions. The matrix is
generally massive and the strengthening nanometric. Nanofillers
are added to improve the mechanical, thermal, and physicochem-
ical properties of the resulting materials [25]. The ideal situation for

in nanocomposites
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Fig. 2. Schematic summary on current challenges of BN nanocomposites. Type of BN nanostructures and their properties, synthesizing strategies for polymer- and ceramic-based

nanocomposites and their applications/opportunities.
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nanocomposite synthesis involves uniform dispersion of the
nanofillers in a polymer or ceramic matrix even if metallic matrices
may also be used. The uniform dispersion can lead to large interface
areas between the nanocomposite components. Nanocomposites
are classified according to the types of nanofillers and matrix ma-
terials used. Here, two main classes of BN nanocomposites will be
discussed in function of the chosen matrix material: polymer- and
ceramic-based nanocomposites.

2.1. Polymer-based nanocomposites

Polymer-based nanocomposites are materials with a polymer
matrix that serves as host for material and nanofillers (i.e. BN
nanomaterials) that are used as reinforcement. Polymers display
interesting properties, such as light weight, easy processing,
resistance to corrosion, ductility, and low cost as well as gas barrier
properties, heat resistance, and fire resistance [26,27]. Their main
drawback is their low thermal and electrical conductivities [28].
Adding nanofillers as reinforcing agents into a polymer matrix
enhances significantly the properties of the fabricated nano-
composite. As mentioned earlier, nanofillers can be classified into
three classes depending on their dimensionality: OD (i.e. spherical
particles), 1D (i.e. nanotubes and fibers), and 2D (i.e. nanosheets).
The development of novel polymer nanocomposites with enhanced
properties depends on many parameters, such as the nanofiller
shape, the dispersion, the morphology, and the external stimulus
(Fig. 3) [29]. The choice of reinforcement material is based on the
targeted application. Several factors play a major role in the poly-
mer matrix reinforcement: (i) the matrix nature; (ii) the nanofiller
nature and concentration; and (iii) the average particle size,
orientation, and distribution [30].

In the early 1990s, Kamigaito et al. [31,32] synthesized polymer
nanocomposites by producing a nylon 6-clay hybrid through one-
pot synthesis by intercalation of silica with e-caprolactam and
further polymerization of e-caprolactam. Nowadays, polymer

(a) Shape

Polymer

Nanocomposites
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nanocomposites are synthesized using various methods that can be
categorized into four major routes: melt intercalation/blending, in-
situ polymerization intercalation, template synthesis, and solvent
mixing. More recently, sonication and high-shear mixing have been
proposed as alternative techniques to prepare (bio)-nanocomposite
materials. This review will focus on the methods to obtain polymer-
based nanocomposites using h-BN as nanofillers to enhance their
properties.

2.1.1. Melt intercalation/blending

Melt intercalation is the most used approach for the synthesis of
thermoplastic polymer-based nanocomposites. This approach
generally involves three steps: polymer matrix annealing at high
temperatures, nanofiller addition, and composite blending to
obtain a homogeneous distribution [33]. For instance, h-BN can be
incorporated into a polymer matrix by preparing thermoplastic
polyurethane (TPU) nanocomposites that contain nano-h-BN by
melt blending using co-rotating twin screw extruder and hot
pressing techniques to obtain thin TPU/h-BN films. Kahraman et al.
[34] demonstrated that h-BN addition increases the nanocomposite
mechanical strength and thermal conductivity. Oner et al. [35]
studied the effect of h-BN nanoparticle incorporation into poly (3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a derivate of
biodegradable and bio-sourced thermoplastic polyester. PHBV is
very brittle and display low thermal stability. The authors
demonstrated that h-BN incorporation into the matrix by melt
mixing increases the nanocomposite oxygen barrier and thermal
properties. Wang et al. [36] improved nylon-6 (PA6) thermal con-
ductivity and mechanical properties through a two-step reaction in
which surface functionalization of BN nanosheets (BNNS) with
amino groups was followed by melt blending with PA6. As amino-
functionalized BNNSs are better dispersed in the matrix than non-
functionalized BNNSs (Fig. 4), the thermal conductivity and thermal
stability of PA6/A-BNNS nanocomposites were improved by nearly
10 times.

Dispersion (b)
e

=

~ </\}’¢

External stimulus  (d)

Fig. 3. Research on polymer nanocomposites has focused on (a) shape, (b) dispersion, (¢) morphology, and (d) external stimulus. Reproduced with permission from Ref. [29].
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Fig. 4. Nanocomposites made of nylon-6 (PA6) and h-BNNS or amino functionalized h-BNNS (A-BNNS). Reprinted with permission from Ref. [36]. Copyright © 2018, American

Chemical Society.

2.1.2. In-situ polymerization

In-situ polymerization allows the effective dispersion of nano-
fillers in the polymer matrix. Generally, nanomaterials are mixed
into a neat monomer (or monomer solution) that is then poly-
merized using heat, radiation, or an organic initiator. Therefore, this
method presents some advantages for preparing BN/polymer-
based nanocomposites, particularly the strong interaction be-
tween BN nanoparticles and polymer matrix due to covalent bonds,
and the suppression of particle aggregation due to the controllable
growth of polymer chains. However, more research is needed on
solvent removal. Huang et al. [37] designed a reversible addition
fragmentation chain transfer polymerization method to prepare
thermally conductive polystyrene (PS)/BN nanosphere nano-
composites by initiating styrene macromolecular chains on the
surface of amino-functionalized BN nanospheres. Compared with
non-functionalized BN composites, the prepared BN nano-
spheres@PS nanocomposites display higher thermal conductivity
and dielectric properties. The in-situ polymerization approach was
also used to prepare self-healing materials with improved self-
healing efficiency. Briefly, micron-sized BN (mBN) filler was intro-
duced in the system during the polymerization of thiol-epoxy
elastomers. The obtained mBN/thiol epoxy elastomer nano-
composites with different mBN loads showed higher self-healing
performance and better mechanical and thermal properties [38].
Wang et al. [39] used a double strategy to produce a 3D BN network
in a PS matrix. First, they prepared styrene oil droplets in water
stabilized by BN to form Pickering emulsions, and then they used
in-situ polymerization to synthesize PS microspheres with an ul-
trathin BN layer at the surface. Finally, they produced nano-
composites based on BN networks by hot-pressing PS@BN
microspheres (Fig. 5).

2.1.3. Template synthesis
Templating is one of the most important techniques to produce
nanostructured materials; it uses a pattern as a guide to form the

nanocomposite structure. Generally, the nanomaterials synthe-
sized with this method display well-defined size, shape, and
configuration. Templating to fabricate nanostructured materials
involves three main steps: (i) building block creation, (ii) building
block directed assembly, and (iii) template removal (if necessary)
[40]. There are mainly three template types to produce nano-
structured materials: colloidal templates, soft templates, and other
non-colloidal templates. Zeng et al. described a method to develop
3D-BNNS networks using an ice-templated approach. First, they
performed anisotropic freezing using liquid nitrogen as cryogen by
pouring the non-functionalized BNNS (NF-BNNS) aqueous slurry
into a Teflon mold. During freezing, the suspended NF-BNNS and
polyvinyl alcohol (PVA) were expelled from the growing ice crystals
and this allowed controlling the ice growth direction (Fig. 6). Then,
the frozen samples were freeze-dried to obtain the BNNS aerogel
scaffolds. This was followed by 3D-BNNS aerogel sintering and
immersion in an epoxy solution matrix where the resin infiltrated
the aerogel scaffold to obtain 3D-BNNS aerogel nanocomposites
[41]. This strategy opens new routes for green template synthesis
because of the limited use of organic solvents. Gonzalez Ortiz et al.
used the Pickering emulsion method as soft templating strategy to
produce porous structured PVA/h-BN nanosheet (h-BNNS) nano-
composites. Importantly, the addition of h-BNNS to a polymeric
matrix using Pickering emulsion method avoids nanosheet aggre-
gation. h-BNNS are irreversibly adsorbed at the water—oil interface,
and the nanostructured PVA/h-BNNS films are obtained after the
removal of the oil phase [19]. Producing nanocomposites with the
emulsion templating approach is interesting because it avoids
several sintering steps and it does not require harmful solvents
[42].

2.14. Solvent mixing

The solvent mixing method allows the dispersion of nanofillers,
mainly layered materials, into the polymer matrix nanocomposites.
In this approach, nanofillers are exfoliated by intercalation of an
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Fig. 5. Schematic representation of BN@PS nanocomposite preparation by in-situ polymerization of Pickering emulsions. Reprinted with permission from Ref. [39]. Copyright ©

2019, American Chemical Society.

Fig. 6. Hierarchical structures of the free-standing 3D-BNNS aerogel: (I) transmission electron microscopy image of the BNNS; (II) scanning electron microscopy image of the 3D-
BNNS aerogel in the direction perpendicular to the ice growth; (III) photograph of a 3D-BNNS aerogel. Reprinted with permission from Ref. [41]. Copyright © 2016, WILEY-VHC

Verlag GmbH & Co. KGaA, Weinheim.

organic compound into the nanofiller interlayer space, resulting in
well-dispersed plate-like particles. Then, the exfoliated material is
dispersed in a solvent and mixed with the polymer solution. The
polymer chains intercalate and displace the solvent within the
layered material, and after solvent removal, a multilayered struc-
ture that contains the polymer chains trapped in the structure is
obtained. The as-resulting nanocomposites are reinforced because
of the large contact surface area between matrix and exfoliated
material. The polymer intercalation approach is also used to pre-
pare BN-based polymer nanocomposites with improved thermal
conductivity and mechanical strength [43].

As BNNSs display a 2D structure, they can be easily oriented
along the plane in polymer matrices. This property has been
exploited to fabricate nanocomposites with higher thermal con-
ductivity using the polymer intercalation method. Song et al. [44]
described the production of BNNSs by dispersion in polymers to
obtain composite films with very good thermal transport perfor-
mances, similar to those of polymer/graphene nanocomposites.
Morishita et al. [45] prepared NF-BNNS/thermoplastic polymer
composite films using a simple wet-process method. First, they
prepared exfoliated NF-BNNS from h-BN by physical adsorption of
chlorosulfonic acid on the h-BN surfaces via sonication. Then, the
NF-BNNSs were dispersed in acetone and mixed with a poly

(methyl methacrylate)/acetone solution. The nanocomposite was
obtained after spreading the solution onto a glass support.

Following the same strategy of nanofiller alignment, poly(-
vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) nano-
composites with parallel BNNSs embedded in a polymer matrix
were prepared by casting. First, h-BN was exfoliated using fluoro-
hyperbranched polyethylene-graft-poly(trifluoroethyl methacry-
late) as the polymer stabilizing agent to avoid nanosheet aggrega-
tion. Then, the resulting BNNSs were dispersed in
dimethylformamide and the dispersion was added to a P(VDF-
CTFE) matrix to prepare BNNS/P(VDF-CTFE) nanocomposite films.
Finally, to tune the nanosheet orientation along the direction of
deformation, the films were uniaxially stretched at a constant
temperature (Fig. 7) [46]. Similarly, gelatin-graphene-like BN
nanobiocomposites were fabricated in which h-BN addition
improved their mechanical properties. The as-prepared h-BN/
gelatin materials displayed gas barrier properties, and good barrier
performance for O, [27].

This section gave an overview of the different methods to
prepare polymer-based nanocomposite materials. Each tech-
nique has its own advantages and drawbacks, and the perfect
method does not exist. The method must be chosen and
adjusted in function of the target application, composition,



D. Gonzalez-Ortiz, C. Salameh, M. Bechelany et al.
(]
\ !

@

h-BN

\ Sonication

' Exfoliation
(-]
(]

HBPE-g-PTFEMA

- — —/\

am =)
Uniaxial stretching

Stretched film

Materials Today Advances 8 (2020) 100107

(J
° ®0
..
o P(VDF-CTFE)
@

BNNSs

Mixture solution

&

Solution casting

Nanocomposite film

Fig. 7. Schematic illustration of liquid-phase BNNS exfoliation in dimethylformamide using fluoro-hyperbranched polyethylene-graft-poly(trifluoroethyl methacrylate) (HBPE-g-
PTFEMA) and of the preparation of the stretched BNNS/P(VDF-CTFE) nanocomposite film. Reprinted with permission from Ref. [46]. IOP Publishing, Ltd.

dispersion performance, and so on. The uniform dispersion of
nanofillers in polymer matrices is a general prerequisite for
achieving the desired mechanical and physical characteristics.
The nanocomposite mechanical properties can be influenced by
different parameters, such as the matrix properties, the filler
properties and distribution, as well as the processing methods.
In terms of process improvements, ultrasonic-assisted disper-
sion has given encouraging results concerning the dispersion of
nanofillers into the polymer matrix. The high-shear mixing and
ball milling methods might help to improve the nanofiller
dispersion. Moreover, ball milling does not require high tem-
peratures or solvents, thus making composite preparation
greener and also more convenient and effective [47]. Other
techniques can be used to prepare nanostructured composites,
such as 3D printing that allows the direct shaping of the
polymer/nanofiller mixture to obtain nanocomposites with the
desired architecture. Using Pickering emulsions as soft template
approach allows regulating the internal porosity by controlling
the nanofiller size and concentration and the continuous and
dispersing phase volumes.

The nanocomposite properties are also influenced by the poly-
mer matrix chemistry and the nanofiller nature. The interfaces may
affect the effectiveness of load transfer from the polymer matrix to
the nanofillers. Thus, surface functionalization might improve the
nanofiller dispersion and enhance the interfacial adhesion between
matrix and fillers.

2.2. Ceramic-based nanocomposites

Ceramics have been investigated as candidate structural mate-
rials to be used in conditions (e.g. temperature, loading rates, wear,
and chemical aggression) that are too severe for polymers and
metals. However, the major drawback of ceramics is their intrinsic
brittleness that prevents their use in many real-life applications.
Therefore, much research has focused on designing a new

generation of ceramics through incorporation of secondary phases
(e.g. particles, fibers, or whiskers) that help to tolerate flaws by
deflecting or attenuating the ceramic cracks and stress. One of the
most important developments has been the production of nano-
composite ceramics in which multiple phases are distributed in the
ceramic composite at the nanoscopic scale.

In their pioneering work, Niihara et al. [48] reported fracture
strengths of 1.5 GPa and toughness of 7.5 MPa m? in systems in
which nanometer-sized silicon carbide (SiC) was embedded in
A1,03, MgO, Si3N4, and mullite matrices. Oxide nanocomposite
ceramics, such as silica (SiO;) and alumina (Al,03), have been much
investigated because of their hardness, good compressive strength,
good oxidation resistance, and relatively low density [49—51]. More
recently, Sharma et al. [52] obtained SiO,- and Al,03-based nano-
composites with multiwalled carbon nanotubes and exfoliated
graphite nanoplatelets as nanofillers by using spark plasma sin-
tering. These nanofillers provided a better lubrication to the
nanocomposites compared with monolithic SiO, and Al,03
ceramics.

Since the work by Niihara et al. [48,53] who demonstrated large
improvements in the fracture toughness and strength, SiC/silicon
nitride (SiC/Si3N4) composites have been increasingly studied and
have been shown to perform very well under high temperature
oxidation. Studies on such nanocomposites have focused on
advanced microstructures, such as polycrystalline SiC and Si3Ng
nanocomposites [54] and TiN—SisN4 [55] and SiC—Al;03 [56]
nanocomposites.

To continue exploring nanocomposite ceramics, it is now crucial
to consider unconventional techniques that can improve their
properties and reduce the production costs. A special class of
nanocomposites has emerged in the last decade: polymer-derived
ceramic (PDC) nanocomposites, particularly BN-based nano-
composites. These are very promising materials for different
structural and functional applications, especially at high tempera-
ture, because of their thermal and chemical properties.
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2.2.1. PDC nanocomposites

The PDC route is the technique of choice for manufacturing
ceramic nanostructures and nanocomposites, particularly non ox-
ides [57]. This chemical approach allows processing at tempera-
tures lower than the conventional ones, and the structure,
composition, shape, and properties can be tuned on demand [58].
Although this method was traditionally used to prepare SiC fibers
[59,60], dense films [61], porous materials (e.g. powders, foams,
aerogels [62—64]), and microporous membranes [65], it is now
extended to many material types, including nanocomposites
[66—68].

Ceramic nanocomposites can be produced from preceramic
polymers by following mainly two approaches: (i) a two-source
strategy in which nanofillers are added to the synthesized pre-
ceramic polymer, and (ii) a single-source approach in which all the
elements of the final nanocomposite are incorporated at the mo-
lecular level. The key points of both approaches are related to the
control of the nanoarchitecture and the stability of the nano-
structures at the conditions of use. In the first approach developed
by Greil et al. [69], nanofillers (active or passive) are synthesized
and integrated in the subsequently developed matrix. Passive
nanofillers are neutral with regards to the matrix, unlike active
nanofillers that will react with the matrix or the products released
during the thermal treatments. These nanofillers add new func-
tionalities (mechanical, electrical, and magnetic) to the ceramic
derived from the polymer, while limiting the polymer volume
shrinkage during pyrolysis. In the second approach, co-blended
polymers are synthesized by reaction of two precursors with
different molecular weights, During pyrolysis, these two precursors
will form nanoscale inclusions distributed homogeneously in the
matrix by phase separation and precipitation on heat treatment
[70]. Seyfert and Ishikawa [71,72] evaluated this route for produc-
ing metallic preceramic polymers by reaction of polysilazanes and
polycarbosilanes with metallic precursors, thus developing metal
carbides and nitrides. Transition-metal nitrides are generally
characterized by high melting point, hardness, and wear resistance.
When produced at the nanoscale, an extension of these properties
is expected, and was confirmed by the synthesis of TiN/Si3Ng
nanocomposite films [73] and TiN/Si3N4 monoliths [74]. Riedel and
Ionescu and their colleagues [57,75,76] highlighted the great po-
tential of Si-based structural nanocomposites for high-temperature
applications, thanks to their thermal stability concerning crystal-
lization and decomposition. The next section will describe BN
nanocomposites, particularly when BN is used as matrix within the
composite.

2.2.2. Boron nitride nanocomposites

BN-based nanocomposites can be obtained following the pro-
cedures described earlier. BN has been mainly used to prepare BN/
SiC [77,78], BN/SisNs [79,80], and BN/AL,O3 [81,82] nano-
composites. However, in these systems, BN is not the matrix, but
acts as reinforcement material to improve the ceramic thermo-
mechanical properties and machinability. Studies in which BN is
the matrix in the nanocomposite have also been published.
Generally, the nanocomposite consists of two phases: (i) nano-
crystalline metal nitride phase, in which the metal, titanium (Ti),
zirconium (Zr), or hafnium (Hf), is homogeneously distributed in
the (ii) BN matrix phase [83,84]. Metal BN (MBN) nanocomposites
have been used in the field of ultra-hard coatings. Such nano-
composites are mostly fabricated using physical routes, such as
physical vapor deposition [85]. However, for applications that need
robust and durable materials, more complex shapes (e.g. mono-
lithic structures) are required to obtain decorative, lightweight, and
lubricant solid materials. The PDC route allows the efficient prep-
aration of BN, particularly for the synthesis of polymers based on
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borazinic rings, that is, polymetalloborazines, with tailor-made
properties for nanocomposite preparation. Polyborazylene is
extensively used as BN preceramic polymer derived from borazine.
Borazine was discovered by Stock et al. by thermal decomposition
of diammoniate in 1926, and its laboratory synthesis was first
described by Wideman and Sneddon [86,87] using metal
borohydride-ammonium salt or ammonia borane as starting com-
pounds. Miele et al. [88] worked on the development of uncon-
ventional shapes of BN-based nanocomposites. They developed a
straightforward synthesis approach for MBN nanocomposites from
preceramic polymers. The starting compounds were prepared by
thermolysis of different BN sources and metal precursors (tetra-
kisdialkylaminometal). Analysis of the reaction mechanisms be-
tween BN precursors and the metal precursors to prepare
polymetalloborazines showed that metal atoms are mainly
considered as bridges linking borazine rings. The polymer-to-
ceramic conversion occurred after direct pyrolysis of the poly-
metalloborazine at high temperatures during which several struc-
tural and chemical changes based on molecular rearrangements
were observed. Gaseous by-products, inherently related to the
molecular structure of the preceramic polymer, were released
during the pyrolytic decomposition. The use of preceramic poly-
mers as BN precursors facilitates processing before nanocomposite
generation. Dip and spin coating, casting, as well as warm and cold
pressing are conventional shaping techniques that can be easily
applied using this route [89]. Monolith-type MBN nanocomposites
were prepared by warm pressing the preceramic polymer followed
by pyrolysis of the green compact. The molecular weight and
structure of the preceramic polymers are key features that deter-
mine their shaping ability. For example, a high ceramic yield is a
prerequisite for preparing MBN monoliths without cracking during
thermal treatment [89].

Miele et al. [90] also produced carbon fiber-reinforced BN
nanocomposites (C/BN) by vacuum assisted polyborazylene trans-
fer molding followed by pyrolysis. As the obtained C/BN nano-
composites displayed high stability under air and vacuum, they are
interesting candidates for vacuum technology and space
applications.

2.2.3. Boron nitride nanostructures

Besides the previously mentioned BN-based nanocomposites,
polymer-derived BN nanostructures have attracted the attention of
many researchers [91—93]. The many BN nanoarchitectures,
ranging from OD to 3D structures, are displayed in Fig. 8. Such
materials show chemical and physical properties that are different
from those of bulk- and micro-sized materials.

Porous h-BN nanomaterials can be useful for catalyst support,
hydrogen (H;) storage, pollutant treatment, and also drug delivery.
Porosity can be controlled through templating and non-templating
strategies. Concerning template-directed synthesis, different tem-
plates (e.g. silica, zeolites, carbonaceous materials, surfactants, and
block copolymers) have been frequently used [94,95]. The specific
surface areas of these porous BNs can be very high (1,000 m? g~ 1).
Salameh et al. [96] described the fabrication of BN mesoporous 3D
monoliths with very high specific surface area and controlled
crystallinity by replica of a highly porous activated carbon. These
monoliths were used as nano-scaffolds for solid-state H; storage to
form a nanocomposite that can liberate pure H, at low tempera-
tures. Higher specific surface area values have been reached using
non-templating approaches [97]. Moreover, spark plasma sintering
allowed producing mechanically stable BN monoliths with a hier-
archical porosity from ordered mesoporous powders without the
need of sintering aids [98].

Ceramic aerogels, such as SiC, SiO, and Al;0Os, are promising
candidates for thermal insulation applications. However, they
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Fig. 8. Examples of different BN nanostructures. Reprinted with permission from Ref. [21].Copyright © 2014 Elsevier Ltd.

generally show poor mechanical strength and degradation under
thermal shock [99,100]. Robust BN aerogels have been fabricated by
Xu et al. [101] (Fig. 9) by impregnating graphene aerogels with
borazine. Owing to their low thermal conductivity and very good

thermal and mechanical stabilities, they overcame the drawbacks

of conventional ceramic aerogels and carbonaceous materials.
Finally, the PDC approach, by molecularly engineering a family

of preceramic polymers that are specifically organized for
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technological applications, paved the way to the application of BN-
based nanocomposites in the green energy, electrochemistry, and
environment fields (discussed in the next section). However,
studies on BN nanocomposites are still limited; mainly due to the
high chemical stability of BN materials that prevent immediate
reactions/modifications.

3. Applications

As BN nanocomposites are used to enhance the matrix strength
and toughness, the obtained materials combine the beneficial
properties of the different components. In the next sections, the
most important applications of nanostructured BN and BN-based
nanocomposites are reviewed, particularly in the energy, environ-
ment, and health fields.

3.1. Energy applications

3.1.1. Thermal conductivity

As BN possesses extraordinary thermal properties, much
research has focused on the development of novel nanocomposites
using BN as reinforcing nanofiller [102—105]. Indeed, single-layer
h-BN has a theoretical thermal conductivity of ~
1,700—2,000 W m~! K, therefore BN addition as nanofillers in
different matrices can improve the nanocomposite thermal con-
ductivity [23,106]. In nanocomposites, thermal conductivity can be
enhanced by reducing the interfacial thermal resistance between
nanofillers and polymer or ceramic matrices [103,107]. It is well
known that thermal conductivity depends on the polymer matrix
and the filler loads.

a)

through-plane
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A study in which polymer/BN nanocomposites were prepared
using epoxy resins and PVA as matrices reported different results in
function of the used matrix. Epoxy/BN nanocomposites showed
higher thermal diffusion than PVA/BN films. Indeed, epoxy resin is
structurally more compatible with BNNSs, leading to reduced
thermal transport. However, PVA/BN films offer better thermal
conductivities at lower BN loads than epoxy/BN composites [44].
This study stimulated more research on PVA as polymer matrix. For
example, Zhang et al. [108] prepared h-BN/PVA composites by
vacuum filtration followed by PVA wetting. During the wetting
step, some h-BN fillers diffuse through the polymer and form heat
conductions paths. Diffusion reduces the polymer infiltration times
and increases the nanocomposite thermal conductivity because of
the creation of heat conduction paths (Fig. 10). The obtained h-BN/
PVA nanocomposites reached a maximum thermal conductivity
value of 8.44 W m~! K~! when h-BN was dispersed in the in-plane
direction.

3.1.2. Photovoltaic/solar cells

Nanocomposites contribute to the multifunctionality and effi-
ciency of solar cells, either as protective and photoactive layers, or
as solar panel surfaces [25]. Graphene-on-silicon (Gr/Si) Schottky
junction solar cells are cheap and ease to fabricate compared with
the traditional Si solar cells, but their efficiency is still low. Intro-
ducing few-layered h-BN between graphene and n-Si can enhance
the performance of Gr/Si Schottky junction solar cells. h-BN acts as
an effective electron-blocking/hole-transporting layer by sup-
pressing interface recombination [109].

Recently, perovskites have emerged as promising materials for
solar cells because of their high absorption coefficients and
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Fig. 11. (a) Schema showing the device used in the study by Cho et al. ITO, indium-tin oxide. (b) Optical microscopy image of the real device with each element. (c) Atomic force
microscopy (AFM) image of the MoS,/WSe,/h-BN heterostructures (top) and the height profile of h-BN extracted from the AFM image (bottom). (d) False-color high-resolution
transmission electron microscopy image showing the heterostructure cross-section. Reprinted with permission from Ref. [113]. Copyright © 2019, American Chemical Society

processability at low temperature [110]. The main drawback is their
poor environmental stability [111] that can be improved by
encapsulating the perovskites using h-BN materials. Seitz et al.
[112] evaluated double-sided encapsulation with h-BN (h-BN/
perovskite/h-BN) to provide long-term stability to phenethy-
lammonium lead iodide 2D perovskites.

The structure of h-BN consists of stacked atomic layers held
together by weak van der Waals interactions that allow forming
van der Waals heterostructures with other 2D materials. Following
this principle and by taking advantage of h-BN insulating behavior
and inertness, heterojunction solar cells have been developed. Cho
et al. [113] prepared MoS,/WSe; heterojunction solar cells with h-
BN passivation layer using a polydimethylsiloxane (PDMS)-medi-
ated deterministic transfer process. The power conversion effi-
ciency of their h-BN/MoS,/WSe; heterojunction solar cells (Fig. 11)
was improved by ~74% compared with unmodified h-BN material.
This improvement is due to the reduced recombination rate at the
junction and surface of the semiconductor regions.

3.1.3. Hydrogen storage and production

H; is an attractive renewable energy resource, but its generation
and storage for practical applications are still challenging [114].

It has been demonstrated that low-dimension BN nanophase
materials exhibit high H uptake capacity because of stronger in-
teractions with the heteropolar B—N bonds and partial H, chemi-
sorption [115,116]. Highly porous BN micro-belts have been
synthesized using a one-step, template-free reaction between boric
acid-melamine precursors and ammonia at moderate conditions.
This material has high specific surface area (1,488 m? g~!). More-
over, H, sorption analysis demonstrated that BN microbelts display
reversible H, uptake from 1.6 to 2.3 wt% at 77 K (Fig. 12) and at
relatively low pressure (1 MPa) [10]. Salameh et al. [96] developed a

10

mesoporous monolithic (3D) BN structure using a template-
assisted PDC route. The BN monoliths have a mesoporous
network with a specific surface area ranging from 584 to
728 m? g~!, and show gravimetric H, storage capacity up to 8.1%.

BN nanocomposites could be used also for H, production.
Different methods have been developed to increase H, production
using different sources, such as photocatalysis [117] or electro-
catalysis [118,119]. Titanium dioxide (TiO,) is the most widely used
material for photocatalysis. Doping TiO, with other species en-
hances the separation of the electron/hole pair. Nada et al. [117]
produced new nanofiber composites by incorporating BNNSs in the
structure of gadolinium-doped TiO; (Gdx/Ti(1-x)O4-x)/2)- They found
that BN presence created new impurity levels and improved the
exciton life times. The BN/GdyTi(1-x)O4-x)2 nanocomposites dis-
played outstanding H, production performances by water splitting
under visible light (up to 192.6 + 1.5 mmol/g). Zhao et al. [120]
developed a novel non-metal catalyst to produce Hp by water
splitting via h-BNNS band gap modification by chemical vapor
deposition-mediated doping with sulfur atoms. The photocatalytic
H, production efficiency was ~1,348.5 pmol h~! g1, a value higher
than what obtained with common visible light photocatalysts (S
and g-C3Ng).

Core-shell nanocomposites in which the inner metal core is
encapsulated by porous materials have been developed as hetero-
geneous catalysts for H, production [121]. Liu et al. [ 122] fabricated
cobalt-BN (Co@BN) core shell nanostructures through a one-step
thermal treatment. The Hy production efficiency of the as-
prepared Co@BN nanocomposites was ~13.8 mmol h~! g,

Other H; production methods are based on thermolysis. Ther-
molysis of the chemical hydride does not require a noble metal
catalyst and is relatively free of ammonia poisoning [123]. For
example, Jin et al. [124] designed a hydrogen evolution reactor and
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Fig. 12. (a) Tilted view of isolated porous structures, revealing a clear belt-shaped morphology; scale bar: 1 pm. (b) Raman spectra of BN porous microbelts prepared at different
temperatures (900, 1,000, and 1,100°C). (c) Nitrogen adsorption—desorption isotherms of BN porous microbelts prepared at different temperatures (900, 1,000, and 1,100 °C). The
inset in (c) shows the summary of the BET surface areas (as) and total pore volumes (Vt) for the obtained samples. (d) H, adsorption—desorption isotherms at 77 K and 1 MPa of BN
porous microbelts. Reprinted with permission from Ref. [10]. Copyright © 2013, American Chemical Society.

hydrogen fuel composite to thermally decompose ammonia borane
(AB) in the presence of silicon dioxide (SiO2) nanoparticles to
produce Hy. AB dehydrogenation reaction by the SiO, nanocatalyst
composite produces Hy with yields >12% and in less than 1 min.

3.14. Electrochemical applications

Rechargeable metal-ion batteries are a solution to the energy
crisis related to the fossil fuel negative impact on the environment
and civilization. However, the production of electrodes for such
batteries is quite challenging. PDCs are an interesting choice for use
in electrochemical devices [58]. Idrees et al. and Wan et al.
[125,126] worked on PDC-based nanocomposites as stable elec-
trodes for Li-ion batteries (LIB) for electrochemical applications.
The combination of PDCs with other nanomaterials, such as carbon
nanotubes [127,128], graphite [129], and BN [130], leads to struc-
tural modifications of their properties that are very useful for po-
tential applications in LIB and supercapacitors. David et al. [130]
showed that the integration of exfoliated BNNSs in SiCN signifi-
cantly increases the charge capacity of free-standing SiCN-based
LIB electrodes. Singh et al. [131] investigated how Li* insertion
capacity could be increased by modifying SiOC ceramics with
various BN nanotube (BNNT) loads. BNNTs presence in the com-
posite affected the free carbon phase within the SiOC matrix. The
higher ordering of the graphitic planes resulted in increased surface
area of the SiOC-BNNT paper composite, thus influencing the
electrochemical performance. Moreover, high BNNT load reduced
the electroactive property of the resulting electrode. Conversely,
SiOC loaded with 0.5 wt% BNNT showed higher capacitance when
tested as electrode material for symmetric supercapacitors.
Therefore, the composite may be used as a flexible electrode
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material for electrochemical energy storage devices, such as LIB and
supercapacitors.

3.2. Environment

BN is thermally and chemically stable and has good resistance to
oxidation. Furthermore, BN hydrophobic nature can be exploited to
produce non-wetting surfaces and filtration systems. Therefore, BN
is very interesting for emerging environmental applications, such
as water technologies.

3.2.1. Water technologies

Novel BN-based materials have been developed for water
technologies, particularly water purification. Owing to their good
adsorption properties, BNNTs are excellent candidates for the
sorption of pollutants, such as oil and organic solvents from heavy
industries, and for water purification [14,132,133]. For instance,
nanostructured BNNTs have been produced after deposition of
borazine on polycarbonate and polyacrylonitrile membranes using
a two-step atomic layer deposition (ALD) approach. The conformal
pre-ceramic polymer layer is grown at low temperature (80 °C)
using trichloroborazine and hexamethyldisilazane as precursors,
and then is converted into dense h-BN. The hydrophobic behavior
and high lipophilicity of the obtained nanostructures are inter-
esting for oil/water separation [134]. Weber et al. [18] prepared
BNNTs with controllable properties by combining ALD-mediated
BN deposition on a carbon nanofiber template and annealing
steps at high temperature. The obtained BNNTs presented good
mechanical and sorption properties (oil uptake up to 110 times
their own weight in oil while repelling water), and thus are very
attractive for depollution applications.
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BN-based nanocomposites for water purification have been
fabricated also using the templating method. Gonzalez Ortiz et al.
[19] developed novel h-BNNS/PVA-based nanocomposites. They
prepared porous membranes by casting the homogeneous h-BNNS/
PVA dispersion onto a glass support, followed by coagulation in a
water bath to eliminate the solvent and create the porous structure.
Then, they tested the h-BNNS/PVA nanocomposite permeability to
pure water and particle rejection (Fig. 13), and found pure water
permeability values of ~2,000 L h~! m~2 bar~! and a rejection ef-
ficiency of ~76% for particles of approximately 0.1pum in size. Other
approaches, such as modified interfacial polymerization reaction,
were developed to fabricate thin film nanocomposites decorated
with amine-functionalized BNNSs. Owing to the amine function-
alities and electron-deficient B atoms at the nanocomposite edges,
these BNNSs are highly hydrophilic and negatively charged, thus
limiting fouling. Compared with control material, these amine-
functionalized BNNSs displayed a 59% increase in water flux
(tested by cross-flow filtration experiments at 6 bars for 1 h) and a
50% improvement in total fouling resistance (using 0.2 g L~! so-
dium alginate or bovine serum albumin solutions at neutral pH),
while showing long-term functional stability [135]. Furthermore,
antibiotics, such as tetracycline hydrochloride (TCH), can be
removed from water by filtration using BN-based nanocomposites
as membranes. TCH rejection by the membrane was stable (above
85%) in different conditions (acidic, alkaline pH, and saline solu-
tion), and permeability reached 240 L h~! m~2 bar~' [136].

BN can be used also to enhance TiO; photocatalytic activity for
the treatment of pollutants in water. Nasr et al. [137] prepared new
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photocatalytic composite BNNS/TiO, nanofibers by electrospinning
with different BNNS loads and evaluated their effect on the pho-
tocatalytic degradation of dyes under UV light. They found that
BNNS addition increases the lattice strain in TiO, and reduces the
recombination of charge carriers. The photocatalytic degradation of
methyl orange using BNNS/TiO, nanofiber composites was four
times higher than with free BNNS nanofibers. Addition of silver
nanoparticles improved the antibacterial activity of such nano-
composites [138]. BNNS/TiO, nanocomposites have been also
tested to remove other contaminants, such as ibuprofen, by pho-
tocatalytic oxidation. BNNS addition improved the light absorbance
and reduced the electron/hole pair recombination. Moreover, the
nanocomposite photocatalytic oxidation rate increased with higher
BNNS loads [139].

3.2.2. Gas separation

Gas separation technologies are important in chemical in-
dustries because they are clean technologies with low energy re-
quirements and high transport selectivity [140,141].
Nanocomposites fabricated from polymeric materials are exten-
sively studied because they present some advantages, particularly
light weight, high process flexibility, and low cost [142]. However,
these materials display low gas permeation/separation properties.
The polymer material permeability and selectivity can be improved
by incorporating inorganic particles (e.g. 2D materials) in the
polymer matrix [143—145]. Some theoretic calculations demon-
strated h-BN potential applications for gas separation, for example,
H,/CHg4. Specifically, h-BN shows excellent H;/CH4 selectivity
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Fig. 13. Scanning electron microscopy photographs of the h-BNNS/PVA membrane nanocomposite: (a) cross-section and (b) surface. (c) Relative pore size distribution of the h-
BNNS/PVA membrane, and (d) Corresponding fluxes of the h-BNNS/PVA membrane before and after the particle rejection tests. Reproduced with permission from Ref. [19].
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(>10° at room temperature) and low adsorption energies (0.1 eV
more or less) for both H; and CH4 on monolayer membranes [146].
h-BN has been used as nanofiller to improve the transport prop-
erties of polymer membranes, thanks to the specific adsorption
effect of its functional groups. Functionalized BN nanosheets (FBN)
have been used as fillers to tailor the gas transport and mechanical
properties of thermally rearranged polyimide (XTR), thus produc-
ing an FBN-XTR nanocomposite (Fig. 14). FBN-XTR membranes
were used for H, separation, with excellent Hy/CH4 separation
performance, higher than those of state-of-the-art membranes
[147]. Kamble et al. [16] incorporated h-BN (0.35, 0.45, and
0.55 wt %) into a polyvinylidene fluoride (PVDF) matrix to fabricate
homogeneous h-BN/PVDF nanocomposites by phase inversion.
They demonstrated that h-BN incorporation improved the thermal
and mechanical properties and also the gas (CO, and CHg)
permeability of the composite membranes. h-BN/PVDF (0.55 wt %)
nanocomposites displayed permeabilities of 4.30559 x 10> and
3.19250 x 10° Barrer for CO, and CHg, respectively. These studies
pave the way to the development of new h-BN—based nano-
composites for gas separation technologies.

3.3. Health

3.3.1. Drug delivery

BN nanocomposites can be used also as drug delivery vectors.
Indeed, due to its stability, flexibility, size and shape, low toxicity,
and biodegradability, BN can be considered an ideal nanocarrier
candidate. Nanoparticles should be small enough to travel in the
blood vessels and penetrate into tissues, and large enough to avoid
endothelial fenestrations. BN can be synthesized in different sizes
that allow optimizing drug loading and delivery [148]. Duverger
et al. [149] used density functional theory, time-dependent
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density functional theory, and molecular dynamic simulation
methods to study the behavior of doxorubicin hydrochloride
(DOX), an anticancer drug, loaded on BN oxide nanosheets (BNO-
NS). This theoretical study showed that DOX molecules do not
alter BNO-NS optical properties in aqueous media due to w— and
covalent interactions. Moreover, BNO-NS nanocarriers can stabi-
lize DOX molecules on the cellular membrane, unlike isolated DOX
molecules that randomly move without any interaction with the
cell membrane. The same anticancer drug model was used to
study the behavior of a targeted anticancer drug delivery system
based on folate-conjugated BN nanospheres. Folic acid (FA) was
successfully grafted onto BN nanospheres by esterification. The
results showed that the nanosphere complexes are stable, as
indicated by the absence of changes in particle size and poly-
dispersity index in 5 days. Furthermore, DOX-releasing profile
from the FA—BN nanospheres showed that it is pH-dependent and
increases at lower pH [150]. Feng et al. improved the drug loading
capacity of BN nanospheres by functionalization with folate-con-
jugated mesoporous silica (MS) (BNMS-FA). BNMS with core—shell
structure was fabricated in two steps. First, tetraethylorthosilicate
was hydrolyzed in the presence of cetyltrimethyl ammonium
bromide to improve the dispersity. Then, FA was covalently grafted
to BNMS complexes by amide reaction. Analysis of DOX release
from BNMS-FA showed a sustained release pattern at low pH
values. The in-vitro antitumor effect was also studied using BN
nanospheres/DOX and BNMS/DOX complexes. BNMS/DOX com-
plexes showed stronger effects because of the better DOX inter-
nalization mediated by the FA receptor (Fig. 15). These results
suggest that BN nanospheres could be used for therapeutic ap-
plications, such as boron neutron capture [151]. Owing to its
unique properties, including hierarchical porosity and high spe-
cific surface area, h-BN is suitable for drug delivery.
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Fig. 15. (a) Schematic illustration of the preparation and application of folate-conjugated BNMS complexes for DOX targeted delivery. (b) pH-dependent DOX release from BNMS-
FA/DOX complexes over time. (¢) Transmission electron microscopy images of BN nanospheres and BNMS complexes. (d) Long-term stability of BNMS-FA (particle size and PDI) in
phosphate-buffered saline at room temperature. PDI, polydispersity index. Reprinted with permission from Ref. [151]. Copyright © 2018, Elsevier Ltd.

3.3.2. Sensors

The development of new sensing devices (e.g. wearable
biomedical electronic devices) and sensing functionalities (e.g.
detection of species by fluorescence or colorimetric methods) has
rapidly increased in the last years. Consequently, the design and
production of functional nanocomposite materials with suitable
physicochemical properties for fabricating sensors have become an
important research field [152].

For the development of new sensing functionalities, BNNS with
nanosized copper sulfide (CuS) dispersed on their surface
(BNNS@CuS) were synthesized using an easy solvothermal
approach. The authors used this sensing material for the visual
detection of total cholesterol in human serum and they showed
that BNNS@CusS devices display high selectivity toward cholesterol
(linear range of 10—100 uM and a detection limit of 2.9 pM) [153].
As this approach is cheap, reliable, and effective, it paves the way to
the development of novel sensing methods that exploit BN-based
nanocomposite materials. Luo et al. synthesized h-BN whiskers
using the polymeric precursor method, boric acid and melamine.
Analysis of h-BN whisker performance as nitrite sensor using cyclic
voltammetry and differential pulse voltammetry showed the
appearance of a peak corresponding to nitrite oxidation and
increased peak currents for NO, oxidation reactions. These results
can be explained by the high porosity, large surface area, and high
energy adsorption sites of h-BN whiskers [154].

Concerning novel sensing devices, Kim et al. [155] developed a
transparent and flexible piezoelectric sensor (TFPS) system to
detect the human body physical motion energy. The power device
was synthesized using the sol-gel method and BNNS dispersed in
PDMS. The produced TFPS using BN/PDMS nanocomposites was
self-powered, transparent, flexible, and biocompatible (Fig. 16). The
device can sense body movements and can generate electrical
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energy from such movements (e.g. folding and unfolding of joints)
and from mechanical push force.

3.3.3. Tissue engineering

BNNSs can be used as reinforcement in nanocomposite or scaf-
fold materials for tissue engineering and regenerative medicine
because of their ability to enhance their mechanical and thermal
properties without interfering with the polymer properties. Nagar-
ajan et al. [156] synthesized gelatin/h-BNNS bio-nanocomposites by
electrospinning and then crosslinked the nanocomposites to in-
crease their stability in aqueous media. Exfoliated h-BN strength-
ened the electrospun gelatin fibers that were stable in phosphate-
buffered saline. Viability assays using human osteosarcoma cells
showed that h-BN does not influence cell attachment or prolifera-
tion, while increasing the nanocomposite mechanical properties.
Furthermore, electrospun h-BNNS/gelatin mats are highly bioactive
because of the formation of densely packed hydroxyapatite layers
during mineralization in simulated body fluid. Three-dimensional
nanostructured h-BN interconnected with boron trioxide (B,03)
(3D h-BN/B,03) have been prepared by spark plasma sintering. The
density (1.6—1.9 g/cm?) and surface area (0.97—14.5 m?/g) of the
composite structure were significantly increased. Analysis of mouse
calvaria osteoblast cell viability and proliferation on these materials,
in view of a possible use as implant substitutes, showed no signifi-
cant toxicity at different concentrations (from 1 to 100 pg/mL).
Therefore, 3D h-BN/B,03 nanocomposites are good candidates for
bone implants because they are mechanically stable and promote
cell viability and proliferation [157].

Another promising emerging technology in the field of tissue
engineering is 3D printing because it allows fabricating many
different artificial scaffolds to be used in tissue regeneration, cancer
treatment, or the creation of artificial organs. Belaid et al. [158]
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fabricated a 3D multifunctional PLA scaffold reinforced with h- toxic and promote the attachment, proliferation, and differentia-
BNNS (PLA/h-BNNS) with a well interconnected porous structure tion of cells with osteogenic potential. Although h-BN—based
by fused deposition modeling (FDM)—based 3D printing. Analysis scaffolds are very interesting supports for bone regeneration
of the attachment and proliferation of osteoblast cells (MG-63 and (Fig. 17), research on 3D-printed h-BN scaffold applications for
MC3T3) showed that PLA/h-BNNS biomimetic scaffolds are non- tissue engineering is still in its early days.
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Besides these BN applications in the health field, h-BN possesses
also antibacterial and anticancer effects [159—161]. For instance, a
vertically aligned composite material using BN and a low-density
polyethylene (LDPE) polymer (BN-LDPE composite) displays a
highly structured morphology with BN oriented in the extrusion
flow direction. Its antibacterial activity was evaluated by culturing
some common pathogens on these composites and by counting the
colony forming units. The results suggest that in this composite, BN
kills the bacteria directly rather than by inhibiting bacterial
attachment [162]. For anticancer effects, hollow BN nanospheres
were synthesized by chemical vapor deposition using trimethox-
yborane and ammonia as precursors. The fabricated hollow BN
spheres showed controlled crystallinity and solubility and could
guide the release of boron by adjusting the post-treatment tem-
perature. Two prostate cancer cells line, androgen-sensitive LNCap
and androgen-independent DU-145 cells, were used to evaluate the
effects of hollow BN spheres on apoptosis, necrosis, and prolifera-
tion in vitro [163]. These results suggest that BN nanospheres might
be interesting candidate therapeutic agents to inhibit tumor
recurrence in patients with prostate cancer.

4. Conclusions and outlook

This review summarized the current research on BN-based
nanomaterials in terms of synthesis methods and prospective ap-
plications. First, the different synthesis methods to produce poly-
mer nanocomposites reinforced with BN were described (e.g. melt
intercalation/blending, in-situ polymerization intercalation, tem-
plate synthesis, and solvent mixing). Moreover, the use of pre-
ceramic polymers as BN precursors facilitates processing before
nanocomposite generation (dip-coating, spin-coating, casting,
warm or cold pressing). Porosity can be controlled with templating
and non-templating strategies. Although great progress has been
made in the synthesis of polymer and ceramic nanomaterials, novel
and effective synthesis approaches using harmless solvents and
with limited energy consumption should be investigated. Further-
more, more efforts have to be made toward the development of
strategies to produce nanostructured materials with well-
controlled size, shape, composition, and spatial arrangement. In
addition, it would be interesting to study the scalability of these
strategies to produce materials at the industrial scale because
currently, most of the methods used to produce these nano-
materials are at the laboratory scale.

Here, we outlined the trends for the synthesis of novel BN-based
nanocomposites. Additional interface engineering via chemical
modification or by other methods to enhance the interaction be-
tween matrices and nanofillers, such as binding, will be the next
important objective. The development of novel strategies to pro-
duce BN-based materials with controlled architectures is highly
desired. Liquid-phase atomic layer deposition (LALD) could be a
simple solution-phase deposition processes to produce these ma-
terials. LALD principle is similar to that of the classical ALD process,
but a solution of precursors is used instead of gas precursors, and
purging is not required. This technique ensures the layer-by-layer
growth of materials with the same precision as gas-phase ALD.
Furthermore, the subsequent injections of stoichiometric quantities
of precursor will avoid any unwanted reaction in solution. This
approach should allow producing well-ordered BN-based nano-
composites, by controlling the deposition rate, thickness, and
roughness of nanocomposites. LALD could be used for preparing
polymer- and ceramic-based BN nanocomposites. The PDC route is
considered the best approach to synthesize new BN liquid pre-
ceramic precursors adapted to LALD.

The development of printable materials also is a good alterna-
tive strategy to produce nanostructured, polymeric- and ceramic-
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based BN nanocomposites. Thanks to their unique formability and
much lower melting point compared with ceramics, polymers are
at a much more advanced stage of development. Very few additive
manufacturing (AM) techniques are suitable for ceramic materials,
and most of them use ceramic powders as feedstock. Owing to the
high melting point of ceramics, powder consolidation to a dense
material is a big challenge, and residual porosity is very hard to
avoid. One interesting solution would be to couple the PDC route
with AM where the preceramic polymer can be molecularly and
structurally engineered to be directly printed at the polymeric state
before its ceramic conversion. Various types of 3D printers using
different AM approaches to produce scaffolds are commercially
available, such as the stereolithographic printer that uses a resin
containing photopolymers to produce a matrix. BN nanoparticles
can be added to enhance their properties. Another interesting
printer approach is selective laser sintering that uses high-power
CO; lasers to fuse particles together and can produce ceramic- and
polymer-based scaffolds.

BN-based nanocomposites materials are interesting because of
the excellent properties that BN brings to these materials, such as
chemical stability, mechanical strength, resistance to oxidation,
thermal conductivity, and heat and electrical insulation. Much
research is focusing on the possible applications of such BN-based
nanomaterials in the energy, environment, and health fields. One of
the remaining challenges is to carefully control the nanofiller
dispersion and orientation in the matrices, a crucial point to opti-
mize the nanocomposite performances. The development of cell-
compatible BNNT and BN nanoplatelet nanocomposites with
improved mechanical properties opens new avenues for in vitro and
in vivo safety and efficacy studies in view of bone tissue engineering
and self-healing applications. Despite the significant progress in the
development of BN-based nanocomposites, their practical appli-
cations are still challenging and many obstacles must be overcome,
such as their durability and recovery. From the point of view of
sustainability, more research is needed on novel polymer-based
nanocomposites from clean, sustainable, and renewable energy
sources. The new devices for sensing applications and novel
nanocomposites for water purification are promising outcomes of
the research on BN-based materials. Moreover, as BN networks
exhibit low thermal resistance and interfacial heat scattering, BN-
based nanocomposites could be used as high-performance heat
spreaders in next-generation thermal management systems. Im-
provements in the field of photovoltaic cells are also expected, such
as easy manufacturing of high-performance devices, reduced pro-
cessing costs, and simple implementation of flexible and trans-
parent cell modules. BN-based nanocomposites could be good
candidates to meet such expectations.
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