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Abstract: Flash floods are common in small Mediterranean watersheds and the alerts provided by
real-time monitoring systems provide too short anticipation times to warn the population. In this
context, there is a strong need to develop flood forecasting systems in particular for developing
countries such as Morocco where floods have severe socio-economic impacts. In this study, the AROME
(Application of Research to Operations at Mesoscale), ALADIN (Aire Limited Dynamic Adaptation
International Development) and WRF (Weather Research and Forecasting) meteorological models
are evaluated to forecast flood events in the Rheraya and Ourika basin located in the High-Atlas
Mountains of Morocco. The model evaluation is performed by comparing for a set of flood events
the observed and simulated probabilities of exceedances for different precipitation thresholds. In
addition, two different flood forecasting approaches are compared: the first one relies on the coupling
of meteorological forecasts with a hydrological model and the second one is a based on a linear
relationship between event rainfall, antecedent soil moisture and runoff. Three different soil moisture
products (in-situ measurements, European Space Agency’s Climate Change Initiative ESA-CCI remote
sensing data and ERA5 reanalysis) are compared to estimate the initial soil moisture conditions before
flood events for both methods. Results showed that the WRF and AROME models better simulate
precipitation amounts compared to ALADIN, indicating the added value of convection-permitting
models. The regression-based flood forecasting method outperforms the hydrological model-based
approach, and the maximum discharge is better reproduced when using the WRF forecasts in
combination with ERA5. These results provide insights to implement robust flood forecasting
approaches in the context of data scarcity that could be valuable for developing countries such as
Morocco and other North African countries.

Keywords: flood forecasting; AROME; ALADIN; WRF; ESA-CCI; ERA5; Rheraya; Ourika; Morocco

1. Introduction

Flash floods mainly affect small watersheds where the response time to a rainfall event is very
short, from a few minutes to a few hours [1–3]. Flash floods are common in the Mediterranean
region, mainly caused by convective rainfall with an intensity that exceeds the infiltration capacity
of the basin, which may potentially generate devastating floods [4,5]. The concentration time of
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small- to medium-sized basins before flash floods are very short, as well as it is the time available
to alert and warn the population of their impacts. These short flash-flood response times become
especially challenging for civil protection authorities so as to issue dependable alerts and warning
to the population [6]. The development of flood forecasting systems increases the lead time and
preparedness to potentially high-impact flood events [7,8]. In this context, any increase in lead time by
using quantitative precipitation forecasts (QPFs) is important to reduce the impacts of flood events.
This goal is even becoming more relevant with the projected increase in the frequency and intensity of
extreme rainfalls in the current context of global warming [9,10].

The classical approaches to flood forecasting are based on thresholds of rain intensity and water
levels to set-up early warning systems [11,12]. This results in lead-times between 15 min and a few
hours, depending on the concentration time of the basins of interest and the rainfall pattern. However,
the level of protective actions for essential social assets requires anticipation times of at least 1 day
for extreme floods [13], hence the interest of using Numerical Weather Prediction models (NWPs).
Several studies have used NWP as input to a hydrologic model so as to increase the anticipation time
and forecast the maximum discharge on the short range [7,14–20]. Notwithstanding, this approach
cumulates several uncertainties related to the observed data, the parameters of the hydrological model,
the NWPs or the structure of the forecast chain [21,22] which can make decision-making difficult. Other
approaches, generally applied in mountain basins, rely on the simpler relationships between antecedent
soil moisture, rainfall intensity and runoff [23,24]. Indeed, Tromp van Meerveld and McDonnell [25],
James and Roulet [26,27], Latron and Gallart [28], Zehe et al. [29] and Penna et al. [30] have shown
strong relationships between flow rates and initial soil moisture conditions. This relationship can
be implemented in our basins in order to integrate it into a flood forecasting system based on soil
moisture and rainfall thresholds.

Flash floods are not rare in Morocco. As an example, the Ourika valley flood occurred in 17 August
1995 was characterized by a rainfall intensity of 100 mm/h, a peak flow of 1030 m3/s and a rising time
of 15 min [31], causing important damage and more than 200 deaths [32]. Despite the number of
events occurred in recent years, no operational flood forecasting protocols are currently implemented
in Morocco. Since 2009, a real-time warning system has been deployed in the high Atlas Mountains
upstream the city of Marrakech, based on rainfall and water level thresholds to issue civil protection
alerts (Figure 1). This system has shown its effectiveness for low magnitude flood events [33]. However,
in the case of an intense rain and major flood such as the event of 1995, the anticipation time is still too
short to evacuate the population. If a major flood occurs, 2 h are only available to evacuate or to look
for a safe place [33]. This is the reason why there is a need to develop flood forecasting methods that
allow for longer lead times in Morocco. The Atlas basins emerge as particularly interesting for pilot
studies as they have experienced in the past several events that caused fatalities.

The objective of this research is to validate the QPFs provided by three state-of-art meteorological
models, in order to use their outputs to provide hydrological forecasts by forcing the Hydrologic
Engineering Center—Hydrologic Modeling System model (HEC-HMS). These quantitative discharge
forecasts (QDFs) are then compared with the hydrological simulations forced by simpler relationships
between rainfall, soil moisture and discharge. The considered NWP models are the AROME
(Application of Research to Operations at Mesoscale) and the ALADIN (Aire Limited Dynamic
Adaptation International Development) meteorological models that are implemented operationally
by the Meteorological office of Morocco (Météo-Maroc/DMN) and the WRF (Weather Research and
Forecasting) model that is used operationally by several meteorological institutes, including the
US. National Weather Service. The WRF model is fully-compressible and non-hydrostatic with
a scalar-conserving flux form for the prognostic variables and a complete set of physic schemes
for describing the following processes: land-surface, planetary boundary layer (PBL), radiation,
microphysics and cumulus [34]. WRF has been widely used by multiple research groups as the
reference model when dealing with heavy rainfall and associated flash-flooding worldwide [35–39].
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and rain station in the Rheraya basin. 

Both basins have a flood warning system based on pre-defined threshold exceedance of observed 
water levels and rainfall intensities. The rainfall data recorded by all the warning system stations are 
used in this study. Raw rainfall is recorded at 10 min time step which is then converted to 3 h time 
step accumulations in order to be comparable with meteorological models’ outputs (Figure 1). In 
addition, the Rheraya watershed is also monitored by the rainfall network deployed by the Joint 
International Laboratory Télédétection et Ressources en Eau en Méditerranée semi-Aride (LMI TREMA, 
[42,43]). This rainfall network covered the 2003–2016 periods with recording period of 30 min. 30-min 
accumulations have also been converted to 3-h accumulations for the LMI TREMA network. In total, 
9 rainfall stations are available in the Rheraya basin and 6 in the Ourika basin (Figure 1). As most of 
Moroccan basins are only monitored by daily rain-gauges, a 3 h rainfall accumulation has also been 
aggregated to daily accumulations, in order to mimic the actual case when implementing the regression 
method. Rainfall spatial distributions have been obtained after applying the Inverse Distance 
Weighting (IDW) interpolation method. The discharge data is provided by two ultrasonic water level 
gauges covering the period from 2013 to 2016 (Figure 1).  

Figure 1. Geographical location of the study area The basin on the left is the Rheraya, while the Ourika
is the watershed on the right, PR and PO denote the Rheraya and Ourika rain-gauges, respectively, QR:
Rheraya’s hydrometric station; PQO: Ourika’s hydrometric and rain station; SMPR: soil moisture and
rain station in the Rheraya basin.

To the knowledge of the authors, this is the first time that this modeling approach is tested in a
North African country. The main goal is to provide local authorities with recommendations about
the best strategy to implement a reliable forecasting system in a context of data scarcity in semi-arid
mountainous basins.

2. Study Area and Datasets

2.1. Study Area and Hydrometeorological Data

The Rheraya and Ourika small basins (225 km2 and 503 km2, respectively) are located in the High
Atlas of Marrakech, where the slopes are steep and altitudes range from 1000 to 4167 m (Figure 1).
These basins are characterized by a semi-arid climate with mean annual precipitations of 732 mm and
541 mm in the Rheraya and Ourika catchments, respectively. Precipitation is characterized by a strong
variability in time and space. Snow is only present above 2000 m during winter months [40]. Previous
studies have shown that snowmelt has little influence on flood volumes [41], since snow cover is
concentrated only in the highest elevation areas. The geology of the basins consists of impervious
formations in the upper part of the basins mainly by igneous rocks such as granite, dolerite and andesite,
while in lower part of the basins; the dominant formations are clays and massive sandstones [31]. The
slopes of the basins are devoid of vegetation because of the steep slopes that favor thin and rocky soils
and erosion; these conditions also favor the genesis of high magnitude floods. Vegetation cover exists
only along the riverbed.

Both basins have a flood warning system based on pre-defined threshold exceedance of observed
water levels and rainfall intensities. The rainfall data recorded by all the warning system stations are
used in this study. Raw rainfall is recorded at 10 min time step which is then converted to 3 h time step
accumulations in order to be comparable with meteorological models’ outputs (Figure 1). In addition,
the Rheraya watershed is also monitored by the rainfall network deployed by the Joint International
Laboratory Télédétection et Ressources en Eau en Méditerranée semi-Aride (LMI TREMA, [42,43]). This
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rainfall network covered the 2003–2016 periods with recording period of 30 min. 30-min accumulations
have also been converted to 3-h accumulations for the LMI TREMA network. In total, 9 rainfall stations
are available in the Rheraya basin and 6 in the Ourika basin (Figure 1). As most of Moroccan basins
are only monitored by daily rain-gauges, a 3 h rainfall accumulation has also been aggregated to
daily accumulations, in order to mimic the actual case when implementing the regression method.
Rainfall spatial distributions have been obtained after applying the Inverse Distance Weighting (IDW)
interpolation method. The discharge data is provided by two ultrasonic water level gauges covering
the period from 2013 to 2016 (Figure 1).

There are 13 flood events available for the Rheraya and 7 for Ourika (Table 1). Those events show
two main types of weather that are responsible of floods; (i) a stormy weather predominant in summer
linked to thermal convection between the warm air of the plain of Marrakech and the cooler air of the
Atlas mountains, the case of 21/07/2016 event in the Ourika basin; (ii) the oceanic rain regime where
the cold season disturbances that come from the Atlantic ocean when the atmospheric depressions are
centered off Morocco, in this case the rainfall events last longer as the case of the events of November
2014. These floods events have been used to compare the hydrological forecasts rendered by the QPFs
and by using the regression model method.

Table 1. Selected flood events for the Rheraya and Ourika basins and the 2013–2016 period.

Events Dates Cumulative Rain
[mm]

Intensity Max
[mm/h] Q Max [m3/s] Duration [Hours]

Rheraya

29 January 2014 6.37 1.14 40.60 9
10 February 2014 7.30 1.28 20.60 15

12 March 2014 20.59 1.91 75.80 24
29 March 2014 10.78 1.45 17.90 18
2 April 2014 8.99 1.36 18.60 24

21 April 2014 14.47 2.28 43.50 12
21 September 2014 10.85 0.84 29.10 30
4 November 2014 18.03 2.62 51.60 21
9 November 2014 12.27 1.36 42.20 21

21 November 2014 81.89 4.35 103.40 48
27 November 2014 38.98 3.85 80.50 48

23 March 2016 11.69 1.25 22.91 24
4 May 2016 14.53 1.91 7.64 21

Ourika

21 September 2014 22.49 1.30 22.3 21
4 November 2014 27.69 1.15 18.9 21
9 November 2014 30.57 1.27 23.9 15

21 November 2014 103.20 8.25 424.3 48
23 March 2016 6.15 0.95 54.5 18

4 May 2016 25.72 1.42 158.2 24
21 July 2016 2.33 0.40 82.4 9

2.2. Soil Moisture Datasets

The European Space Agency’s Climate Change Initiative (ESA-CCI; http://www.esa-soilmoisture-
cci.org/) produced the satellite moisture product ESA-CCI Sm V03.2 in order to obtain long time
series of soil moisture data [44–46]. The procedure is based on the fusion between active and passive
microwave sensors from 1978 and 2016 with a temporal resolution of 1 day and a spatial resolution of
25 km. Within, the Copernicus Climate Change service (https://climate.copernivus.eu/) satellite soil
moisture products will be release with a short latency, between a few hours to a day. The product has
been validated over the world by Dorigo et al. [47]. ESA-CCI has been used to estimate the antecedent

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
https://climate.copernivus.eu/
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wetness conditions prior to flood events in Europe [46–48] and in Morocco [41]. In this study, two grids
points of ESA-CCI are used that cover the study area.

The ERA5 [49] reanalysis is the latest generation of reanalysis products by the European Centre for
Medium-Range Weather Forecasts (ECMWF) and The Copernicus Climate Change Service (C3S). The
ERA5 is the improved version of ERA-Interim at different scales by using the latest parameterizations
of Earth processes at enhanced spatial and temporal resolutions (i.e., hourly time step and 31 km
horizontal resolution), the latency time of the product is five days. The first soil layer of the volumetric
soil layer has been selected and then converted to daily soil moisture content.

In addition, in the Rheraya basin, 30 min soil moisture measurements are available from 2013 to
2016 at the SMPR7 station (Figure 1) with three Thetaprobes at different soil depths: 0.05 m and 0.3 m
(Figure 1). Soil moisture data are converted from 30-min to daily time step in order to derive the initial
soil moisture conditions of the basin before the flood events. This station is located at an altitude of
2030 m with a slope of 30%. In this study we used the Thetaprobes measurements with 0.05 m depth.

3. Meteorological Models

Weather forecasting is carried out by the Directorate of National Meteorology (DMN) in Morocco.
The DMN uses two NWP models at different spatial resolution:

• The AROME model is based on the ALADIN model cy36t1 with an hourly time step, 36-h term
and a spatial resolution of 2.5 km. The physical parameterizations are from the Méso-NH research
model [50,51]. The Rapid Radiative Transfert Model (RRTM) longwave equation is used [52]
and the shortwave radiation is represented by six spectral bands [53]. The externalized SURFEX
module is used to represent the surface exchanges [54] with a parameterization of the natural
land surfaces by ISBA scheme [55]. The lateral boundary conditions are from hourly ALADIN
forecasts with 7.5 km horizontal resolution. No deep convection parameterization is needed due
to the high resolution and a bulk microphysiscs scheme [56] that regroups the six equations of
water variables (water vapor, cloud water, rain water, primary ice, graupel and snow).

• The ALADIN (ALADIN—France, Aladin International Team 1997) with a three-hour time step, 72 h
term and a spatial resolution of 10 km. The model’s runs are with a two-time-level semi-Lagrangian
advection scheme are used with a complete package of physical parameterizations. The physics are
the same as in ARPÈGE model [57]. The operational version at Morocco is ALADIN-Morocco [58].

The full set-up of the two models over Morocco are described in Hdidou et al. [59]. Since forecast
data are not stored by the DMN, AROME and ALADIN models have been run to simulate the flood
events considered in the present work (Table 1). These runs are fully comparable to real-time forecasts,
since no data assimilation is performed during the events. The ALADIN and AROME models have been
developed by Météo France and are used both for precipitation [60,61] and flash flood forecasts [62].

In addition, the WRF model [34] has also been implemented in an operational mode, mimicking
the operational configuration routinely used by the Meteorology Group at the University of the Balearic
Islands [63,64]; http://meteo.uib.es/wrf). That is, a single computational domain of 650 × 550 grid
points centered in Morocco and spanning the whole country, the Atlantic Ocean and the southern part
of the Mediterranean Sea has been selected. A horizontal resolution of 2.5 km, 50 vertical levels and an
integration time step of 12 s is used for all the WRF model simulations, which allow for deep moist
convective systems with a relevant entity to be explicitly resolved [65,66]. Physical parameterizations
are the single-moment 6-class microphysics (WSM6) scheme, including Graupel [67]; the 1.5-order
Mello-Yamada-Janjić (MYJ) boundary layer scheme [68], the Dudhia shortwave scheme [69]; the RRTM
longwave scheme [52]; the unified Noah land surface model [70]; and the Eta similarity surface-layer
model [68]. Initial and lateral boundary conditions have been provided by the operational deterministic
forecasts by the European Centre for Medium-Range Weather Forecasts (ECMWF). Lateral boundary
conditions are updated every 3 h. QPF fields are rendered at hourly frequency and forecasts span a
48 h period.

http://meteo.uib.es/wrf
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Note that it has only been possible to select flood events from 2014 to 2016 as before 2014, the
meteorological models of the DMN were running on a much coarser spatial resolution and this version
of the models are no longer operational.

4. Methods

4.1. Evaluation of the Quantitative Meteorological Forecasts

The first evaluation of the meteorological runs is carried out by comparing the QPFs for each event
against the observed precipitations in order to examine the temporal evolution of the 3 h precipitation
amounts. The second verification is based on dichotomous skill scores which are commonly used
for evaluation and validation purposes, when assessing the performance of meteorological model
outputs [71,72]. These statistical scores are based on a contingency table [73] and allow estimating the
probability of exceeding or not predefined rainfall thresholds (Table 2). The selected rainfall thresholds
are 10, 20 and 30 mm, which correspond to the precipitation return periods of 2, 5 and 10 years,
respectively. Furthermore, these thresholds are currently used in the operational flood alert system.
The following skill scores are selected:

Table 2. The contingency table used to build the dichotomous skill scores. Note that a corresponds to a
forecasted event that occurred; b to a forecasted event that did not occur; c to a non-forecasted event
but that it occurred and; d to a non-forecasted event that did not occur.

Observation

yes no

Forecast
yes a: hits b: false alarms a + b: yes forecasts

no c: misses d: correct rejection c + d: no forecasts

a + c: yes observed b + d: no observed N: Total forecasts

• Probability of Detection (POD) is the fraction of predicted events relative to the number of
observed events:

POD = a/(a + c) (1)

• Probability of False Detection (POFD) is the fraction of predicted events that have not been
observed relative to the total number of unobserved events:

POFD = b/(b + d) (2)

• False Alarm Ratio (FAR) is the ratio of the predicted events that were not observed:

FAR = b/(a + b) (3)

• Bias (BIAS) is the ratio between the number of predicted and observed events:

BIAS = (a + b)/(a + c) (4)

• Accuracy or anomaly correlation coefficient (ACC) is the fraction of the correct forecasts
relative to all forecasts:

ACC = (a + d)/N (5)

where, a, b, c and N represents the number of rain events that fulfilled the conditions in Table 2.
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4.2. Rainfall-RunoffModel

The HEC-HMS rainfall-runoff model has been selected in this study (USACE 2015). The Soil
Conservation Service-Curve Number method (SCS-CN; [74]) is used to calculate runoff from rainfall.
The SCS-CN has been widely used in Mediterranean basins [18,41,64,75,76]. The choice of the SCS-CN
model is based on its simplicity, as it has only one parameter to estimate. The Clark Unit Hydrograph
(CUH) transfer model has been used to simulate the conversion of the rainfall excess to runoff, owing
to the complex topography of the study area. Tramblay et al. [76] and El Khalki et al. [41] have
shown that it is suitable for this type of basins, CUH is based on two distinct processes: (i) the Time
of Concentration parameter (Tc) which is based on a synthetic time histogram; and (ii) the Storage
Coefficient parameter (Sc) that represents the impact of basin storage. The Base flow is simulated by
using the exponential recession model [77] with the Recession Constant (Rc) and Ratio (R) parameters
set constant for all the events. The limited contribution of long-term storage makes this approach more
suitable for this type of basins [41].

The calibration of the HEC-HMS model is carried out using 13 events for the Rheraya and
7 events for the Ourika. The model inputs are rainfall measurements interpolated by the IDW method.
El Khalki et al. [41] carried out these calibration tasks by adjusting CN, Tc, Sc, Rc and R parameters
The calibrated parameters were able to reproduce well the observed discharge for all the selected
events [41]. This allows us to consider the calibration results as a benchmark model. Afterwards, the
HEC-HMS model has been forced by using the QPFs coming from the AROME, ALADIN and WRF
models so as to evaluate the capability of the driven runoff simulations to reproduce the flood events.

4.3. Regression Model

In addition to the hydrological model, a simple statistical model based on a multiple regression
adjustment is also tested. This is due to the fact that the lack of long time series of complete rainfall and
runoff data can make difficult to develop a forecasting system based on a hydrological model. Note
that over most basins of Morocco, and in other developing countries, the only hydro-meteorological
data available are maximum discharge and rainfall at daily time step. Therefore, it also becomes
an important objective to develop a flood forecasting system compatible with the existing limited
observed databases. According to Penna et al. [30], maximum discharge and soil moisture are well
correlated for alpine, impervious and semi-arid basins. Therefore, a multiple regression model is fitted
individually for the Rheraya and Ourika basins to the end of correlating maximum precipitation, peak
discharge and the different soil moisture products available for each flash-flood event. The parameters
of the multiple regression models are estimated by the Generalized Least Square (GLS, [78]) method, so
as to avoid these issues related to potential collinearity in the variables. The validation of the regression
models is performed with a resampling procedure due to the limited sample size. The jack-knife
(or leave one out) method is implemented for all the events where each event is successively removed
and the regression between rainfall, maximum discharge and the three different soil moisture products
is re-calculated using the remaining events (events–1). After the validation of the regression model, the
maximum discharge forecast by this method is performed by replacing the observed rainfall with the
different QPFs in the three resulting equations where each of them represents a soil moisture product.
This gives three maximum discharges for each QPF.

4.4. Metrics

The efficiency criterions considered in this study for evaluating the performance of HEC-HMS
simulations are: Nash-Sutcliffe [79] Equation (6) and BIAS on maximum discharge and volume
Equation (8). For the regressions models; the root-mean-square error (RMSE) Equation (7) and BIAS
on peak discharge are used:

Nash = 1−

∑n
i=1(Qobs,i −Qsim,i)

2∑n
i=1(Qobs,i −Qobs)

2
(6)
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RMSE =

√∑ (Qsim −Qobs)
2

n
(7)

BIAS =

(
Qsim −Qobs

Qobs

)
× 100 (8)

To evaluate the benefit of the regression model against the HEC-HMS model, the efficiency skill
score (EFF) has also been employed:

EFF = 1−


∑

(Qreg −Qobs)
2∑ (

Qhydro−Qobs

)
2

 (9)

where RMSE in [m3/s], BIAS in [%], Qsim denotes the simulated peak discharge, Qobs stands for the
maximum observed discharge, Qhydro is the peak discharge predicted by the hydro-meteorological
forecasting chain using the hydrological model and Qreg is the maximum discharge predicted by the
regression model. EFF ≥ 0 denotes an improvement of the peak discharge estimation by using the
regression model when compared with the hydrological model, while EFF < 0 means no improvement
of the maximum discharge when compared with the hydrological model.

5. Results

5.1. Validation of Forecasted Rainfall Events

The QPFs by AROME, WRF and ALADIN are evaluated by the comparison with the interpolated
precipitation to all the rain-gauges for each event and for both basins. QPFs successfully reproduce
the timing of heavy precipitation for the majority of the events (Figure 2). The ALADIN model
underestimates the amount of precipitation over the Rheraya (Figure 2) and Ourika (Figure 3) with an
average of −23% and −46%, respectively. The WRF and AROME models overestimate the cumulative
precipitation over the Rheraya with an average of +113% and +62.5% respectively. In the Ourika, the
WRF model shows an underestimation of −2.6% and an overestimation using the AROME model
of +24%. It seems clear that the use of NWP models with convective-permitting horizontal scales
(~2.5 km) is paramount in order to simulate realistically the high rainfall amounts from convective
origin as well as its timing.

5.2. Evaluation of Meteorological Models

The application of the contingency table shows different results for each basin. For the Rheraya, the
WRF model gives accepted results in different thresholds followed by AROME model. As the threshold
values increase, the percentage of false alarm events increases for WRF model where the rejected
events increase for AROME and ALADIN models (Figure 4). This is due to the fact that the cumulative
precipitation given by the two NWP models exceeds the observed cumulative precipitation. Conversely,
ALADIN exhibits an increase in the percentage of missed events for the higher thresholds. No false
alarms are detected for the first two thresholds over the Ourika basin by using WRF and AROME
models, because the forecasted and observed cumulative rainfalls exceed them. This exceedance is
identified in the percentage of detected events, which is very important for the first two thresholds
considered. For the ALADIN model, when the highest threshold exceeds the observed and forecasted
cumulative rainfall, the percentage of rejected events increases.
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The contingency table allowed us to calculate the different skill scores (Figure 5). WRF and
AROME exhibit BIAS > 1 which is explained by the fact that the two models overestimate the amount
of the observed precipitations. Conversely, the ALADIN model features a general under-estimation
of the total rainfall amounts over the two basins. The ACC indicates that forecasts based on smaller
threshold are generally more in agreement with the observed amounts of rainfall.
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5.3. Quantitative Discharge Forecasting

5.3.1. Hydro-Meteorological Approach

The calibration of the HEC-HMS model gave good results with an average Nash of 0.79 and 0.66
for the Rheraya and Ourika catchments, respectively. Mean bias on the maximum discharge were
of −2.47% and −3.15%, respectively (Table 3). After calibration, the HEC-HMS model shows a good
reproduction of the maximum discharge for each event that allows forcing the model with the QPFs by
considering the hydrological as a benchmark.
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Table 3. Statistical parameters of the Hydrologic Engineering Center—Hydrologic Modeling System
model (HEC-HMS) calibration.

Events BIASQ [%] BIASV [%] Nash

Rheraya

29 January 2014 −11.75 −14.39 0.81
10 February 2014 −3.65 16.73 0.92

12 March 2014 −14.59 7.87 0.76
29 March2014 −4.00 11.27 0.91
2 April 2014 6.20 7.00 0.82
21 April 2014 4.12 8.54 0.77

21 September 2014 −12.20 −4.28 0.51
4 November 2014 −0.43 2.95 0.93
9 November 2014 −3.15 5.09 0.82

21 November 2014 −2.51 −10.65 0.51
27 November 2014 0.28 8.88 0.94

23 March 2016 −2.31 3.64 0.89
4 May2016 11.89 7.61 0.63

Mean BIAS [%] −2.47 3.87 0.79

Ourika

21 September 2014 −24.71 −10.05 0.62
4 November 2014 2.14 6.43 0.81
9 November 2014 −3.78 1.07 0.89

21 November 2014 0.63 17.38 0.63
23 March 2016 −0.57 8.98 0.30

4 May 2016 0.56 11.29 0.81
21 July 2016 3.67 0.52 0.53

Mean BIAS [%] −3.15 5.09 0.66

As expected, the result of the hydro-meteorological forecasting approach shows that the ALADIN
model underestimates the maximum discharges with average biases of −30% and −37% for the Rheraya
and Ourika basins, respectively (Table 4). On the opposite, WRF and AROME driven runoff simulations
overestimate the maximum discharges with +178% and +145% for the Rheraya basin, and +35% and
+163% for the Ourika catchment. The WRF-HEC-HMS system satisfactorily forecasts the floods of
greater magnitude, which would be recommendable for a flood forecasting system because the risk of
impacts is larger for this kind of floods. On the other hand, low magnitude floods are better predicted
by the multi-model mean: the rainfall underestimation by ALADIN and the overestimation by AROME
and WRF provide a bias compensation in rainfall accumulation.

Table 4. Statistical indices of the QDFs for the Rheraya and Ourika basins. Note that Qobs stands
for the observed maximum discharge, QWRF denotes the simulated maximum discharge using WRF
model, QALADIN is the simulated maximum discharge using ALADIN model, QAROME is the simulated
maximum discharge using AROME model and QMean is the simulated maximum discharge by using
the multi-model mean.

Metrics QWRF [m3/s] QALADIN [m3/s] QAROME [m3/s] QMean [m3/s]

Rheraya

RMSE [m3/s] 84.97 37.22 54.85 34.50
BIAS [%] 176.92 −29.46 145.14 61.35

Ourika

RMSE [m3/s] 207.50 133.24 233.22 60.08
BIAS [%] 35.46 −37.62 163.37 16.83
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5.3.2. Regression Approach

As aforementioned, the regression approach is composed by three equations per basin, each
equation representing a different soil moisture dataset (i.e., observed, ESA-CCI and ERA5) used to
perform the regression. The Equations (10)–(12) correspond to Thetaprobes, ESA-CCI and ERA5 soil
moisture product respectively for the Rheraya basin, and the equation 13, 14 and 15 for the Ourika
basin using the same three soil moisture data.

Qobs−Rh = 0.67× P + 6.31× SM + 24.24 (10)

QESA−CCI−Rh = 0.59× P + 158× SM− 8.4 (11)

QERA5−Rh = 0.37× P + 303.5× SM− 58 (12)

Qobs−Ou = 5.1× P− 3015× SM + 257.6 (13)

QESA−CCI−Ou = 4.42× P− 550× SM + 78.7 (14)

QERA5−Ou = 0.52× P + 1935× SM− 481 (15)

With Qobs-Rh the predicted maximum discharge using in-situ measurements of soil moisture for
Rheraya basin, Qobs-Ou predicted maximum discharge using in-situ measurements of soil moisture for
Ourika basin, QESA-CCI-Rh predicted maximum discharge using ESA-CCI for Rheraya basin, QESA-CCI-Ou

predicted maximum discharge using ESA-CCI product for Ourika basin, QERA5-Rh Predicted maximum
discharge using ERA5 product for Rheraya basin, QERA5-Ou predicted maximum discharge using ERA5
for Ourika basin, P: Precipitation in 24 h of the meteorological models and SM: Soil Moisture of the
used product before the flood event.

Those equations illustrate the good relationship between precipitation, event maximum discharge
and soil moisture. The squared-correlation coefficient is larger than 0.78, which allow validating
the equations by the leave-one-out method. Validation shows a good performance in the Rheraya
basin with a RMSE of 16 m3/s provided by ERA5 dataset. On the other hand, the multiple regression
models based on the ESA-CCI and Thetaprobe datasets exhibit weaker results (26 m3/s and 31 m3/s,
respectively). It is worth noting that the small number of events considered strongly reduces the
robustness of the regression model for the Ourika basin. That is, the three multiple regression equations
provide an overestimation of the maximum discharge, being the lowest RMSE of 216 m3/s for the ERA5
product. Overall, the ERA5 soil moisture dataset gives the best performance s when compared against
the observed soil moisture or ESA-CCI database (Table 5).

On the other hand, the best performance of mixing soil moisture products and NWP models
comes from the combination of the WRF and the ERA-5 database. This combination presents the lowest
RMSE and bias. In the Ourika basin, the rainfall amount of some events is strongly underestimated by
ALADIN resulting in maximum discharges close to zero. To alleviate this problem, the multi-model
mean of the three NWP model simulations has been used. This approach reduces errors when using all
the soil moisture products and renders an efficient result over the Ourika basin, with bias reductions
up to 26%, 3.4% and 20.2% for the ESA-CCI, ERA5 and observed soil moistures, respectively.

Comparing the results between the hydrological and multiple regression approaches when forced
by the QPFs, most of the cases results in EFF greater than 0 (Table 5). These results suggest that a
better performance is obtained when using the regression method instead of the hydrological model.
However, these results also depend on the basin and the model and dataset used. For instance, the
ALADIN model in combination with the soil moisture obtained for the ESA-CCI and Thetaprobe
products yields an EFF smaller than 0 over the Ourika basin. In this case, the hydrological model
approach performs better than the regression method. Conversely, the EFF coefficients are positive
when using the ERA5 dataset.
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Table 5. Statistical indices after the application of the linear regression equations approach for the
Rheraya and Ourika basins. Note that QWRF is the simulated maximum discharge using the WRF model,
QALADIN is the simulated maximum discharge using the ALADIN model, QAROME is the simulated
maximum discharge using the AROME model and QMean is the simulated maximum discharge using
the average of the three meteorological models. The best results for each meteorological model are
represented in bold.

Forecasted
Discharge

Soil
Moisture

Data

Rheraya

RMSE
[m3/s]

BIAS
[%] EFF

Ourika

RMSE
[m3/s]

BIAS
[%] EFF

QWRF
[m3/s]

ESA-CCI 23.07 83.55 0.92 71.36 81.76 0.73
ERA5 13.24 17.26 0.87 35.94 94.53 0.9

Thetaprobes 25.36 90.09 0.78 80.37 76.84 0.77

QALADIN
[m3/s]

ESA-CCI 19.1 34.2 0.69 115.65 −65.28 −5.52
ERA5 26.1 18.93 0.9 39.57 69.39 0.97

Thetaprobes 29.07 17.07 0.39 122.53 −84.67 −0.14

QAROME
[m3/s]

ESA-CCI 25.97 65.84 0.77 99.45 221.08 0.65
ERA5 14.12 1.7 0.83 42.41 109.56 0.12

Thetaprobes 28.01 70.08 0.9 119.45 248.59 0.23

QMean
[m3/s]

ESA-CCI 19.91 56.11 0.71 52.77 55.7 0.79
ERA5 21.17 62.43 0.85 38.15 91.16 0.95

Thetaprobes 21.46 59.08 0.61 59.74 56.66 −0.74

6. Conclusions

This study provides a first evaluation of two distinct approaches for a flood forecasting chain
that could be implemented operationally in Morocco to reduce the vulnerability to flood risk; the first
approach rely on the HEC-HMS hydrological model driven with NWP model outputs, the second
approach is using a regression model between observed rainfall, soil moisture and observed maximum
discharge in combination with NWP forecasts. The study area is focusing on two basins located south
of Morocco, which are recurrently hit by severe flood events and highly representative of the basins
impacted by floods in Morocco. The AROME, ALADIN and WRF models have been evaluated for
a set of flood events over the two basins, with 13 events over the Rheraya basin and 7 events over
the Ourika watershed. The AROME model tends to overestimate the observed cumulative rainfalls
for all the flood events, while the WRF model overestimates the observed cumulative rainfalls just
over the Rheraya basin. Furthermore, both models clearly outperform the ALADIN model which
strongly underestimated rainfall amounts. The use of convective-permitting horizontal scales in
NWP models appear to be paramount to satisfactory reproduce the high rainfall rates and its timing
before flash-flood. That is, the WRF and AROME models have been found more effective when
forecasting heavy precipitation events with less false alarms and missing events than ALADIN. The
skill scores indicate that the accuracy of the meteorological models tend to decrease for increasing
rainfall thresholds.

Next, two methods have been compared in order to produce reliable hydrological forecasts based
on the outputs of these NWP models. The first method relies on a standard hydrological model based
on the SCS-CN infiltration method. The second method is based on a linear regression approach
linking event rainfall, antecedent soil moisture and event peak discharge. The comparison of these
two distinct flood forecasting approaches has shown that the regression method outperforms the
hydrological model to simulate maximum discharge with a 24 h lead time. The best results have
been obtained by combining the WRF model with the ERA5 dataset as the estimate of the initial soil
moisture conditions. This improvement is more marked in the case of the Rheraya basin, although the
same conclusion can also be drawn for the Ourika catchment. However, the Ourika basin has a smaller
number of events, thus caution is required since with small sample size the results cannot be tested
with a great robustness.
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This study provides the first evaluation of flash-flood forecasting methodologies in Morocco.
Results indicated that a relatively simple forecasting model based on linear regression model could
be efficient in the case of a relatively small database of events. Yet, this approach does not take into
account the spatial variability of precipitation and there is not a physical definition of the model
parameters. In the other hand, the hydrological modeling approach is more difficult to implement
in the context of data scarcity, where the high-resolution spatial and temporal hydro-meteorological
data required to setup such model are rare. However, prior to the operational implementation of such
forecasting systems, there is a strong need to test and validate different methods on other basins with
different sizes, physiographic characteristics and climate conditions. In particular, this methodology
could be useful for larger Moroccan basins upstream of dams where the impact of floods is critical
for dam safety. In addition, the consideration of a larger sample of flood events could allow to better
analyze the large-scale synoptic conditions associated with these events, but also the variability of
soil moisture for different seasons and its influence on the flood generation mechanisms [80]. This
would require a national inventory for available hydrometerological data and also to implement a
monitoring strategy to increase the spatial coverage of gauged basins. Similarly, the evaluation of
different remote sensing soil moisture products is necessary in order to identify the most suitable
products to properly estimate the state of initial soil saturation over different basins in Morocco, where
the density of hydro-meteorological networks is low and where usually no measured soil moisture is
available. Finally, in complement to the regression approach considered herein, other machine-learning
methods such as logistic regression [80] could be valuable tools to estimate the probability of a flood
event over pre-determined thresholds in combination with a quantitative precipitation forecast.
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