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Abstract. This paper evaluates whether snow-covered area
and streamflow measurements can help assess altitudinal gra-
dients of temperature and precipitation in data-scarce moun-
tainous areas more efficiently than using the usual interpo-
lation procedures. A dataset covering 20 Alpine catchments
is used to investigate this issue. Elevation dependency in the
meteorological fields is accounted for using two approaches:
(i) by estimating the local and time-varying altitudinal gradi-
ents from the available gauge network based on determinis-
tic and geostatistical interpolation methods with an external
drift; and (ii) by calibrating the local gradients using an in-
verse snow-hydrological modelling framework. For the sec-
ond approach, a simple two-parameter model is proposed
to target the temperature/precipitation–elevation relationship
and to regionalize air temperature and precipitation from the
sparse meteorological network. The coherence of the two ap-
proaches is evaluated by benchmarking several hydrologi-
cal variables (snow-covered area, streamflow) computed with
snow-hydrological models fed with the interpolated datasets
and checked against available measurements. Results show
that accounting for elevation dependency from scattered ob-
servations when interpolating air temperature and precipi-
tation cannot provide sufficiently accurate inputs for mod-
els. The lack of high-elevation stations seriously limits cor-
rect estimation of lapse rates of temperature and precipita-
tion, which, in turn, affects the performance of the snow-
hydrological simulations due to imprecise estimates of tem-
perature and precipitation volumes. Instead, retrieving the lo-
cal altitudinal gradients using an inverse approach enables
increased accuracy in the simulation of snow cover and dis-
charge dynamics while limiting problems of over-calibration
and equifinality.

1 Introduction

1.1 Providing accurate meteorological inputs in
mountainous regions

Regionalizing air temperature and precipitation is a critical
step in producing accurate areal inputs for hydrological mod-
els in high-altitude catchments. The ability to correctly re-
produce areal precipitation is essential to avoid the failure of
hydrological models, which are sensitive to input volumes
at the catchment scale (e.g. Oudin et al., 2006; Nicótina et
al., 2008). Accurate temperature fields are also particularly
important in mountainous regions because temperature is the
main driver of snow–rain partition and snowmelt and con-
sequently influences seasonal discharge (e.g. Hublart et al.,
2015, 2016).

However, in areas with complex topography, the charac-
teristic spatial scales of temperature and precipitation esti-
mates are typically poorly captured, notably when the net-
work of measurements used is sparse. Gridded datasets ob-
tained by interpolating measurements taken at meteorologi-
cal stations are thus affected by inaccuracies, which are spa-
tially and temporally variable and difficult to quantify (Hay-
lock et al., 2008; Isotta et al., 2014). Measurement errors
depend on local conditions and increase with terrain ele-
vation as the operational conditions become more extreme
(Frei and Schär, 1998). In the case of precipitation, a well-
known problem arises from the systematic errors associated
with precipitation under-catch during snowfall (Strasser et
al., 2008), especially in windy conditions (Sevruk, 2005). In
addition, temperature and precipitation are under-sampled at
high elevations, because meteorological stations are mainly
located at low elevations for logistical reasons (Hofstra et
al., 2010). This makes it difficult to derive the local and
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seasonal relationship between meteorological observations
and topography, even though this is indispensable for accu-
rate spatial temperature and precipitation estimates (Masson
and Frei, 2014). Indeed, atmospheric uplift caused by relief
tends to increase precipitation with elevation through the so-
called orographic effect (Barry and Chorley, 2010). Never-
theless, precipitation accumulation trends can show consid-
erable scatter with altitude depending on the region’s expo-
sure to wind and synoptic situations (Sevruk, 1997). The rela-
tionship between temperature and elevation is generally more
obvious. The rate at which air cools with a change in eleva-
tion ranges from about − 0.98 ◦C (100 m)−1 for dry air (i.e.
the dry-air adiabatic lapse rate) to about−0.40 ◦C (100 m)−1

(i.e. the saturated adiabatic lapse rate; Dodson and Marks,
1997). Average temperature gradients of −0.60 ◦C (Dodson
and Marks, 1997) or −0.65 ◦C (100 m)−1 (Barry and Chor-
ley, 2010) are often used when high precision is not required.
However, such average values are known to be rough ap-
proximations which are not suitable for more precise stud-
ies (see e.g. Douguédroit and De Saintignon, 1984). Notably
they mask significant variations in different meteorological
conditions and in different seasons. For instance, tempera-
ture lapse rates are generally lower in winter than in summer,
as shown by Rolland (2003) for Alpine regions.

1.2 Schemes for spatial interpolation of air
temperature or precipitation

The mapping of air temperature and precipitation using dis-
crete observations based on gauge networks has been ex-
tensively studied. Readers can refer to, for instance, Ly et
al. (2013) for a review of the different deterministic and geo-
statistical methods designed for operational hydrology and
hydrological modelling at the catchment scale.

Schemes for spatial interpolation of meteorological vari-
ables vary in three ways (Stahl et al., 2006): (1) the model
used to characterize the spatial variation of the variable of in-
terest, (2) the method used to choose the surrounding points
(number or distance, angular position relative to the predic-
tion point), and (3) the approach used to adjust for eleva-
tion. The simplest approach is to choose the nearest station
and adjust for elevation according to an assumed lapse rate.
However, this method is fairly crude and ignores fine-scale
spatial variations. Where more than one station is used in
the prediction, a model is required to determine how to in-
terpolate from them. Interpolation weights have been esti-
mated using approaches including inverse distance weight-
ing (IDW) (e.g. Dodson and Marks, 1997; Shen et al., 2001;
Frei, 2014) and geostatistical methods based on kriging
(e.g. Garen and Marks, 2005; Spadavecchia and Williams,
2009). Kriging relies on statistical models involving auto-
correlation, which refers to the statistical relationships be-
tween measured points. Ordinary kriging (OKR) is well-
known among kriging algorithms (see e.g. Goovaerts (2000)
for a detailed presentation of these algorithms). Different

methods have been developed to deal with the statistical re-
lationship between temperature/precipitation and elevation,
like regression analysis (Drogue et al., 2002) or more elabo-
rate geostatistical techniques including simple kriging with
local means, kriging with external drift (KED), and co-
kriging (CKR): see Goovaerts (2000) for a comparison of
these approaches. Among these techniques, KED has been
widely used to generate temperature and precipitation maps.
For instance, Masson and Frei (2014) showed that KED
led to much smaller interpolation errors than linear regres-
sions in the Alps. This was achieved with a single predic-
tor (local topographic height), whereas the incorporation of
more extended predictor sets (slope, circulation-type depen-
dence of the relationship, inclusion of a wind-aligned predic-
tor) enabled only marginal improvement. For daily precip-
itation, interpolation accuracy improved considerably with
KED and the use of a simple digital elevation compared to
OKR (i.e. with no predictor). These results confirm that ac-
counting for topography is important for spatial interpolation
of daily precipitation in high-mountain regions. Conversely,
other authors showed that, even though taking topography
into account was indispensable for temperature reconstruc-
tion whatever the temporal resolution, it was less clear for
daily precipitation. For example, Ly et al. (2011) reported no
improvement in precipitation estimated at a daily timescale
if topographical information was taken into account with
KED and CKR, compared to simpler methods such as ORK
and IDW. In a recent and very complete comparative study,
Berndt and Haberlandt (2018) analysed the influence of tem-
poral resolution and network density on the spatial interpo-
lation of climate variables. They showed that KED using el-
evation performed significantly better than ORK for temper-
ature data at all temporal resolutions and station densities.
For precipitation, using elevation as additional information
in KED improved the interpolation performance at the an-
nual timescale, but not at the daily timescale.

Theoretically, KED can account for local differences in
topographic influence in different seasons and synoptic sit-
uations. Indeed, the regression coefficients computed be-
tween the primary variable (temperature or precipitation) and
the secondary variable (elevation) are implicitly estimated
through the kriging system within each search neighbour-
hood (Goovaerts, 2000). The relation between variables is
thus assessed locally, meaning changes in correlation across
the study area can be taken into account. However, as sug-
gested by Stahl et al. (2006) concerning temperature and
by Ly et al. (2011) concerning precipitation, care should be
taken in applying KED when interpolating daily variables
with very few neighbouring sample points. Indeed, methods
that compute local lapse rates from the surrounding control
points can perform poorly in regions with insufficient high-
elevation data, due to inaccurate estimation of local lapse
rates.
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1.3 Placing meteorological fields in a hydrological
perspective

A subject that requires further investigation is which meth-
ods that produce daily temperature and precipitation fields
can provide the best snow-cover and streamflow simulations.
The usual cross-validation for the inter-comparison of inter-
polation methods is limited, especially in ungauged areas like
the highest parts of mountainous areas. As stressed by Got-
tardi et al. (2012), a method can perform well in interpolation
(at the ground network altitudes) but poorly in extrapolation
(higher). This is because the observed set is not representa-
tive of the entire feature space. As a result, estimations at
high elevations are difficult to check due to the lack of me-
teorological data. To go further, the use of other data like
streamflow measurements may be a good alternative way to
validate temperature and precipitation estimations at high-
elevation sites.

To date, few studies have compared the performance of
different interpolation methods evaluated by hydrological
modelling in mountainous areas. Among the few that have,
Tobin et al. (2011) showed that kriging (and more specif-
ically KED) can be used effectively to estimate tempera-
ture and precipitation fields in complex Alpine topography
during flood events. Their comparative analyses of the dif-
ferent interpolation techniques suggested that geostatistical
methods performed better than IDW. In particular, with el-
evation as auxiliary information, KED gave the overall best
validation statistics for the set of events under study. How-
ever, it can be hypothesized that, in many mountainous ar-
eas, gauge observations do not include sufficient informa-
tion to accurately account for the elevation dependency of
air temperature and precipitation using interpolation tech-
niques, which are thus limited to providing accurate in-
puts for snow-hydrological models. On the other hand, nu-
merous calibration parameters controlling snow accumula-
tion (the temperature threshold between the solid and liq-
uid phases, temperature range of phase separation, snowfall
gauge under-catch factor) and snowmelt (temperature thresh-
old for snowmelt, degree-day melt factor, snowpack ther-
mal state, etc.) have been introduced in most of the snow
accounting routines (SARs) used in operational hydrology:
see e.g. HBV (Bergström, 1975), MOHYSE (Fortin and Tur-
cotte, 2006), CEMANEIGE (Valéry et al., 2014), and MOR-
DOR (Garavaglia et al., 2017). The aim of using these pa-
rameters is to adapt to local snow processes, but they could
be used primarily to compensate for errors in the input data
without satisfactorily achieving it.

1.4 Inverting the hydrological cycle

In contrast, inverting the hydrological cycle with snow-
hydrological models may help identify the dependency of
the areal inputs on elevation more realistically and enable
more accurate snow-hydrological simulations while simulta-

neously limiting the number of free parameters. The idea is
not completely new and was notably introduced by Valéry
et al. (2009) in an attempt to use streamflow measurements
to improve knowledge of yearly precipitation in data-sparse
mountainous regions. Their results suggested that it was pos-
sible to unambiguously identify the altitudinal precipitation
gradients from streamflow at a yearly timescale. In another
paper, Valéry et al. (2010) proposed regionalization of daily
air temperature and precipitation to better estimate inputs
over high-altitude catchments as regards to the water balance.
In their conclusion, the authors claimed that their region-
alization approach also significantly improved the perfor-
mance of a rainfall-runoff model at a daily timescale. How-
ever, the lapse rates in the temperature and precipitation in-
puts were estimated from gauge observations at the regional
scale based on a leave-one-out procedure. This leaves room
for potential improvement by locally inferring the lapse rates
based on inverse modelling applied at the catchment scale.

A few studies proposed approaches to estimate lapse rates
based on hydrological modelling in specific catchments.
Zhang et al. (2015) showed that the runoff simulation re-
sults involving snowmelt and rainfall runoff were highly sen-
sitive to the temperature and precipitation lapse rates in a Ti-
betan catchment. Rahman et al. (2014) calibrated the SWAT
model in a snow-dominated basin in the Swiss Alps and
found also that the temperature lapse rate was significantly
important for hydrological performance. Naseer et al. (2019)
considered a dynamic lapse rate based on a vertical profile
of temperature in a catchment in Japan and succeeded in
improving the precipitation phase in a distributed hydrolog-
ical modelling framework. Henn et al. (2016) investigated
the value of snow data to constrain the inference of pre-
cipitation from streamflow, using lumped hydrologic mod-
els and an elevation-band snow model in a Californian basin.
Their results suggested that multiple types of hydrologic ob-
servations, such as streamflow and SWE, may help to con-
strain the water balance of high-elevation basins. Le Moine
et al. (2015) proposed a calibration strategy where the pa-
rameters of both an interpolation model and a daily snow-
hydrological model are jointly inferred in a multi-variable
approach applied in a catchment in the French Alps. Using
a hydro-meteorological modelling chain involving 31 cali-
brated parameters, they showed the potential of using differ-
ent types of observations (rain gauges, snow water equiva-
lent measurements, and streamflow data) to help assess tem-
perature and precipitation lapse rates according to different
weather types. These studies encourage testing of whether
an inverse modelling approach based on calibrated constant
lapse rates can perform well in numerous basins with parsi-
monious conceptual models.

Improvement is also to be expected from the use of ob-
servations such as remotely sensed snow-cover data to cal-
ibrate and validate models in addition to the runoff mea-
surements, which can help better assess the reliability of
the modelled snow processes (see e.g. Parajka and Blöschl,
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2008; Thirel et al., 2013). Moreover, other authors (Franz
and Karsten, 2013; He et al., 2014; Riboust et al., 2019)
showed that adding snow data information to the calibration
procedure enabled the identification of more robust snow pa-
rameter sets by making the snow models less dependent on
the rainfall-runoff model with which they are coupled. Us-
ing both streamflow and snow-cover observations in an in-
verse modelling approach could thus provide further insights
into the most relevant snow parameters while improving our
knowledge of the altitudinal temperature and precipitation
gradients in data-sparse mountainous regions.

1.5 Objectives

Based on the above issues, this paper investigates whether
altitudinal gradients should be inferred from available gauge
information when interpolating air temperature and precip-
itation or from key parameters of snow-hydrological mod-
els in mountainous areas. To address this question, we use
a large dataset of mountainous, snow-affected catchments
in the French Alps, and we propose a framework to assess
the hydrological coherence of gridded datasets and to infer
orographic gradients based on snow-hydrological observa-
tions. The rest of the paper is organized as follows. Sec-
tion 2 describes the study region, the data, and their pre-
processing. Section 3 provides a brief description of the in-
terpolation procedures tested. Section 4 presents the model
assessment methodology. The results are presented and dis-
cussed in Sect. 5, and the main findings, recommendations,
and future outlooks are summarized in Sect. 6.

2 Study area and dataset

2.1 Meteorological data

The study was carried out in the French Alps, whose al-
titudes range from 79 to nearly 4800 m a.s.l. (Fig. 1). A
dataset of 78 temperature gauges and 148 precipitation
gauges was gathered from the RADOME (Réseau Automa-
tisé d’Observations Météorologiques Etendues) database
of Météo-France (https://publitheque.meteo.fr, last access:
May 2020) for six administrative departments (Alpes-
de-Haute-Provence, Hautes-Alpes, Alpes-Maritimes, Isère,
Savoie, and Haute-Savoie). The extracted series are the mean
daily air temperature and the daily liquid equivalent wa-
ter depth of total precipitation for each station over an 18-
year period from 1 September 1998 to 31 August 2016.
These gauges were selected because no gap was originally
present in their time series from 1 September 2000 to 31 Au-
gust 2016, thus allowing a coherent and stable signal to be
represented over the 16-year period of analysis. The cor-
responding gauge density is ∼ 3 stations per 1000 km2 for
temperature and ∼ 5 stations per 1000 km2 for precipita-
tion, which is close to the recommended minimum density
for mountainous areas (∼ 4 stations per 1000 km2, WMO,

2008). Although the spatial distribution of the available me-
teorological stations is reasonably balanced, high altitudes
(above 2000 m a.s.l.), which represent approximately 20 % of
the whole study area and 45 % of the catchment surface area
(Fig. 1b), are not monitored, as temperature and precipita-
tion gauges are mainly located at low and mid elevations: be-
tween 235 and 2105 m for temperature and between 235 and
2006 m for precipitation.

2.2 Streamflow data

In order to avoid case-specific results, a dataset of 20 catch-
ments was gathered from the French hydrological database
(http://www.hydro.eaufrance.fr/, last access: May 2020) over
the study area (Fig. 1 and Table 1). The catchments were
selected based on the following criteria: (i) their stream-
flow regime is considered to be natural since they are lo-
cated upstream from any major hydraulic installations, such
as dams and water transfers; (ii) their streamflow regime
is moderately to strongly affected by snow; and (iii) their
streamflow series present good quality measurements ac-
cording to the hydrological reports, with less than 10 % daily
missing values for the period 2000–2016. The catchments
are located on high reliefs (the median range of altitude is
around 2000 m a.s.l.) and are differently affected by snow
(between 15 % and 66 % of their total precipitation falls in
the solid form). During the catchment selection process, we
tried avoiding glacierized catchments to minimize possible
interactions with non-snow-related processes that could also
influence streamflow. Therefore, most catchments have zero
or limited glacierized areas. Catchment areal precipitation
and temperature were estimated after inferring altitudinal
gradients, as detailed in the current paper. The dataset cov-
ers a large range of hydrological conditions, with mean an-
nual precipitation, temperature, and streamflow ranging from
811 to 2315 mm, −2.3 to +8.9 ◦C, and 344 to 1771 mm, re-
spectively.

2.3 Snow-cover data

MOD10A1 (Terra) and MYD10A1 (Aqua) snow products
version 5 were downloaded from the National Snow and Ice
Data Center for the period 24 February 2000–1 January 2017.
This corresponds to 6157 dates, among which 98.8 % are
available for MOD10A1 and 85.8 % for MYD10A1 since
Aqua was launched in May 2002 and became operational
in July 2002. These snow products are derived from a Nor-
malised Difference Snow Index (NDSI) calculated from the
near-infrared and green wavelengths and for which a thresh-
old was defined for the detection of snow (Hall et al., 2006,
2007). Cloud cover represents a significant limit for these
products, which are generated from instruments operating in
the visible-near-infrared wavelengths. As a result, the grid
cells were gap-filled to produce daily cloud-free snow cover
maps of the study area. The different classes in the original
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Figure 1. Study area and data: (a) location of the selected precipitation, temperature, and streamflow stations, as well as elevations from a
SRTM digital elevation model (DEM resampled to a grid with 0.5× 0.5 km cells) in the French Alps; (b) elevation distributions of in situ
stations, DEM, and basins. The station numbers refer to Table 1.

products were first merged into three classes: no-snow (no
snow or lake), snow (snow or lake ice), and no-data (clouds,
missing data, no decision, or saturated detector). The missing
values were then filled according to a gap-filling algorithm
inspired by techniques proposed in the literature (Parajka and
Blöschl, 2008; Gafurov and Bárdossy, 2009; Gascoin et al.,
2015). The algorithm works in three sequential steps.

i. Aqua–Terra combination: for every pixel, if no-data was
found in MOD10A1, then the value from MYD10A1
was used instead. Priority was given to MOD10A1 be-
cause MYD10A1 was found to be less accurate (see Ga-
furov and Bárdossy, 2009).

ii. Temporal deduction by sliding time filter: a no-data
pixel was reclassified as snow (no-snow) if the same
pixel was classified as snow (no-snow) in both the pre-
ceding and following grids. The preceding and follow-
ing grids were searched within a sliding temporal win-
dow, whose size was incremented up to 9 d in order to
reduce the remaining fraction of no-data pixels to below
10 % (Fig. 2a). It should be noted that three periods of
gaps in an upper time window (11, 13, and 18 d) were
present in the data because of technical failures of the
MODIS sensor. In these cases, a longer time deduction
was used beforehand to specifically fill these periods.

iii. Spatial deduction based on elevation and neighbour-
hood filter: for each date and each pixel, a 3× 3 neigh-
bourhood spatial filter was used to account for the el-
evation and the data in the neighbouring pixels to fill
the remaining no-data pixels. Two configurations were
considered: either the central pixel has no-data and the
algorithm tries to attribute a neighbouring value or the
central pixel has a value that can be assigned to some
of its neighbours. The two configurations were repeated
until there were no more gaps (Fig. 2a).

The resulting database consists of 5844 binary (snow/no-
snow) maps at 500 m spatial resolution for the period 2000–
2016 (16 hydrological years, from 1 September 2000 to
31 August 2016). As a synthesis of these maps, snow-cover
durations over the study area are presented in Fig. 2c.

In order to validate the gap-filling technique, a daily snow
product with less than 10 % of no-data pixels was selected for
each month of the studied period. These images were “black-
ened” (i.e. with 100 % no-data pixels) before applying the al-
gorithm over the entire period to fill all gaps, including vali-
dation images. Filling accuracy was estimated for each image
removed by computing confusion matrices which compared
the pixels of the removed validation images and the filler re-
constructions of these images. Validation based on confusion
matrices with one image per month showed that the gap-
filling technique applied to the MODIS snow products led
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Table 1. Streamflow gauging stations and main catchment characteristics. Percentages of glacierized area were estimated from the World
Glacier Inventory (NSIDC, 2012). Mean annual precipitation (P ), snowfall fraction (S), and temperature (T ) were estimated after calibrating
local altitudinal gradients over 2000–2016 using the snow-hydrological inverse approach proposed in the current paper (see Test no. 4 in
Table 5).

No. Station River Area Glacierized Elevations (m a.s.l.) Mean Snowfall Mean Mean

(km2) area Min Max annual fraction annual annual
(%) precip. (S) temp. streamflow

(P ) (%) (T ) (Q)
(mm yr−1) (◦C) (mm yr−1)

1 Barcelonnette Ubaye 549 0 1132 3308 856 49 1.9 521
2 Lauzet-Ubaye Ubaye 946 0 790 3308 979 45 3.0 654
3 Beynes Asse 375 0 605 2273 921 15 8.9 344
4 Saint-André Issole 137 0 931 2392 1013 23 7.0 481
5 Villar-Lourbière Séveraisse 133 4 1023 3623 1781 49 2.4 1317
6 Val-des-Prés Durance 207 0 1360 3059 847 55 0.9 688
7 Briançon Durance 548 1 1187 3572 811 52 1.6 714
8 Argentière-la-Bessée Durance 984 3 950 4017 1064 52 2.3 765
9 Embrun Durance 2170 2 787 4017 1075 48 3.1 693
10 Espinasses Durance 3580 1 652 4017 1054 45 3.5 654
11 Villeneuve Var 132 0 926 2862 1072 37 4.6 650
12 Val-d’Isère Isère 46 9 1831 3538 1245 63 −1.5 1119
13 Bessans Avérole 45 12 1950 3670 1635 66 −2.3 1311
14 Taninges Giffre 325 0 615 3044 2315 35 5.0 1771
15 Vacheresse Dranse d’Abondance 175 0 720 2405 1671 30 4.8 1088
16 La Baume Dranse de Morzine 170 0 690 2434 1637 32 4.6 1285
17 Dingy-Saint-Clair Fier 223 0 514 2545 1649 26 6.6 1243
18 Allèves Chéran 249 0 575 2157 1486 23 6.9 819
19 Mizoën Romanche 220 9 1057 3846 1369 56 0.9 978
20 Allemond L’Eau Dolle 172 2 713 3430 1553 47 2.4 1164

Figure 2. Results of gap-filling applied to MODIS snow products: (a) evolution of the number of pixels classified as no-data (e.g. clouds)
during the gap-filling procedure; (b) mean monthly accuracies according to validation based on confusion matrices with one image per
month, i.e. ∼ 200 cloud-free images over the 2000–2016 period; (c) snow-cover duration based on gap-filled MODIS snow products over
the 2000–2016 period.
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to the reconstruction of images with average accuracies of
94 % (Fig. 2b). The mean monthly accuracies show greater
ease in filling gaps in summer than in winter due to the dif-
ferences in cloud obscuration. However, it should be noted
that the actual accuracy of the MODIS gap-filling technique
is necessarily greater than that of the validation procedure,
in which many quality images needed to fill the gaps were
missing.

3 Interpolation procedures

This section briefly presents the different spatial estima-
tors used in the present study. The interpolation methods
analysed include inverse distance weighted (IDW), ordi-
nary kriging (ORK), kriging with external drift (KED), and
IDW with external drift (IED). Interest readers can refer to
Goovaerts (2000) for a detailed presentation of the different
kriging algorithms and to Diggle and Ribeiro (2007) for their
implementation in the public domain in the GeoPackage in R.

3.1 Spatial interpolation methods

3.1.1 Inverse distance weighting

Let us consider the problem of estimating the given variable z
at an unsampled location u using only surrounding observa-
tion data. Let {z(uα), α = 1, . . . , n} be the set of data mea-
sured at n surrounding locations uα . The inverse distance
weighting (IDW) method estimated z as a linear combina-
tion of n(u) surrounding observations with the weights be-
ing inversely proportional to the square ω distance between
observations and u:

ZIDW(u)=
1

n(u)∑
∝=1

λα(u)

n(u)∑
∝=1

λα(u)z(uα) ,

with λα(u)=
1

|u− uα|
ω . (1)

The basic idea behind the weighting scheme is that observa-
tions that are close to each other on the ground tend to be
more alike than those located further apart; hence, observa-
tions closer to u should receive a larger weight.

3.1.2 Ordinary kriging

Instead of Euclidian distance, geostatistics uses the semivar-
iogram as a measure of dissimilarity between observations.
The experimental semivariogram is computed as half the av-
erage squared difference between the components of data
pairs:

γ̂ (h)=
1

2N(h)

N(h)∑
∝=1

[z(uα)− (uα +h)]2, (2)

where N(h) is the number of pairs of data locations a vec-
tor h apart. The hypotheses of spatial variability were here
homogeneity and an isotropic spatial pattern due to the lack
of sufficient sampled points, and hence identical variability
in all directions.

Kriging is a generalized least-squares regression technique
that makes it possible to account for the spatial dependence
between observations, as revealed by the semivariogram,
in spatial prediction. Like the inverse distance weighting
method, ordinary kriging (ORK) estimates the unknown vari-
able z at the unsampled location u as a linear combination of
neighbouring observations:

ZORK(u)=

n(u)∑
α=1

λORK
α (u)z(uα) with

n(u)∑
α=1

λORK
α (u)= 1. (3)

The ordinary kriging weights λORK
α (u) are determined such

as to minimize the estimation variance Var{ZORK(u)−

z(u)} while ensuring the unbiasedness of the estimator
E{ZORK(u)−z(u)} = 0. These weights are obtained by solv-
ing a system of linear equations known as the ordinary krig-
ing system:{ ∑n(u)

β=1λβ (u)γ
(
uα − uβ

)
−µ(u)= γ (uα − u) α = 1, . . ., n(u),∑n(u)

β=1λβ (u)= 1,
(4)

where µ(u) are Lagrange parameters accounting for the con-
straints on the weights. The only information required by the
kriging system (Eq. 4) is semivariogram values for differ-
ent lags, and these are readily derived once a semivariogram
model has been fitted to experimental values. In this study,
we dealt with the fitting of the semivariogram using two ex-
isting theoretical models, as presented below.

– Exponential model

γ (h;θ)

{
0, h= 0,
θ0+ θ1

[
1− exp

(
−3(‖h‖/θ2

]
, h 6= 0, (5)

for θ0 ≥ 0, θ1 ≥ 0 and θ2 ≥ 0.

– Spherical model

γ (h;θ)


0, h= 0,

θ0+ θ1

(
3‖h‖
2θ2
−

1
2

(
‖h‖
θ2

)3
)

0< ‖h‖ ≤ θ2,

θ0+ θ1 h > θ2,

(6)

for θ0 ≥ 0, θ1 ≥ 0 and θ2 ≥ 0.

The spherical model was tested because it is the most widely
used semivariogram model and is characterized by linear be-
haviour (Goovaerts, 2000). The exponential model was se-
lected in addition because it is recommended in the litera-
ture for spatial analysis of temperature (Tobin et al., 2011)
and precipitation (Bárdossy and Pegram, 2013; Masson and
Frei, 2014) in high-mountain regions. Each of these mod-
els was combined with a nugget effect, sill, and range as pa-
rameters. An automatic procedure was necessary to fit the
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semivariogram model to experimental values over the study
period (1998–2016). The models were fitted using regression
such that the weighted sum of squares of differences between
the experimental and model semivariogram is minimum (see
Goovaerts, 2000).

3.2 Accounting for elevation dependency

3.2.1 Kriging with external drift

Kriging with an external drift (KED) predicts sparse vari-
ables which are poorly correlated in space by considering
that there is a local trend within the neighbourhood; primary
data are assumed to have a linear relationship with auxil-
iary information exhaustively sampled over the study area
(Ahmed and de Marsily, 1987). KED thus uses secondary in-
formation (such as elevation) to derive the local mean of the
primary attribute z and then performs kriging on the corre-
sponding residuals:

ZKED(u)−mKED(u)=

n(u)∑
α=1

λKED
α (u) [z(uα)−mKED (uα)] ,

with mKED(u)= a0(u)+ a1(u)y(u), (7)

where y(u) are elevation data available at all estimation
points, and a0 and a1 are two regression coefficients esti-
mated from the set of collocated variables of interest and ele-
vation data {z(uα), y(uα), α = 1, . . . , n} using a simple linear
relation.

The KED procedure was applied at each time step inde-
pendently and within each search neighbourhood when the
time series were interpolated. The coefficients a0 and a1 thus
varied in space and time, which makes it possible to consider
a variable space–time relationship between the primary vari-
able (temperature or precipitation) and the secondary vari-
able (elevation).

3.2.2 Inverse distance weighting with external
drift (IED)

The external drift approach was also tested using the inverse
distance weighting procedure to propose an original tech-
nique, which we called IDW with external drift (IED), as
follows:

ZIED(u)−mIED(u)=
1

n(u)∑
∝=1

λα(u)

n(u)∑
∝=1

λα(u)

[z(uα)−mIED (uα)] ,

with mIED(u)= a0(u)+ a1(u)y(u). (8)

3.3 Leave-one-out procedure

The interpolation parameters (n(u) and ω for IDW and
IED, and n(u) and theoretical models for ORK and KED)
were calibrated and the interpolation performance was as-
sessed by “leave-one-out” cross-validation, which consists
of the following principle: a successive estimation of all
sampled locations was performed by using all other stations
while always excluding the sample value at the location con-
cerned. The spatial models were validated against RMSE
(root mean square error) for temperature and precipitation
at daily, monthly, and yearly timescales. Since the external
drift computation and kriging weights can sometimes lead to
negative precipitation amounts (Deutsch, 1996), a posteriori
correction was performed to replace all negative-estimated
precipitation values with a zero value.

The elevations of the gauging stations were used when ap-
plying the KED and IED procedures for the “leave-one-out”
cross-validation. When interpolating temperature and precip-
itation exhaustively over the study area, the elevation pre-
dictors were based on the digital elevation model (DEM) of
the Shuttle Radar Topography Mission (SRTM; Farr et al.,
2007). The SRTM originally had a resolution of about 90 m.
In this study, we used the SRTM elevation model resampled
to a grid with 0.5× 0.5 km cells from the UTM32N coor-
dinate reference system. This spatial resolution was judged
to be a good balance between computational constraints and
elevation accuracy.

4 Model assessment methodology

The way of accounting for orographic gradients in the tem-
perature and precipitation datasets was also assessed with
respect to its ability to contribute to simulations of snow-
covered area and streamflow at the catchment scale using the
following modelling experiment.

4.1 Snow accounting routine (SAR)

The selected SAR (Fig. 3a) is a modified version of CE-
MANEIGE proposed by Valéry et al. (2014). The original
version was modified to account for a snowfall under-catch
correction factor as used in the HBV snow routine (see Beck
et al., 2016), the computation of fractional snow-covered
area (FSC) from a snow water equivalent (SWE) threshold,
and possible integration of temperature and precipitation al-
titudinal gradients.

Depending on the objectives, the model can be run in a
full distributed mode or according to elevation bands. As
distributed (or semi-distributed) inputs, it requires the daily
liquid equivalent water depth of total precipitation (P ) and
mean daily air temperature (Tmean). In the case of a semi-
distributed application at the catchment scale, the first step
is to divide the catchment into elevation zones of equal area.
Mean areal inputs (P and Tmean) are then extracted for each
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Figure 3. Snow accounting routine: (a) conceptual scheme and (b) associated equations (modified from Valéry et al., 2014). P , R, Tmean,
M , and FSC stand for total precipitation, rainfall, mean temperature, melt, and factional snow cover, respectively.

elevation zone from gridded temperature and precipitation
datasets. In the present study, the number of elevation zones
was set at five due to computational constraints and because
preliminary tests showed no significant improvement in the
snow-hydrological simulations when a higher spatial resolu-
tion (more elevation bands or full distribution) was used.

In each elevation band, the functions of the SAR described
in Fig. 3b are applied with a unique set of parameters. In-
ternal states (snowpack represented according to snow water
equivalent (SWE) and its thermal state STS) vary indepen-
dently in each elevation zone according to the differences
in input values. When gridded temperature and precipitation
datasets interpolated without elevation dependency are used,
the SAR enables forcing data for each elevation zone to be
modified based on two orographic gradients (TLR and PLR)
used as key parameters:

Ti(t)= T
IDW
i (t)+


(

TLR+ 1
2 TLR×Si×CSV

)
100

×
(
yi − y

IDW
i (t)

)]
, (9)

with:

Si

 sin
(

2π×(d−80.5)
366

)
, lat> 0,

−sin
(

2π×(d−80.5)
366

)
, lat< 0,

Pi(t)= P
IDW
i (t)×

[
1+

PLR
1000

×
(
yi − y

IDW
i (t)

)]
, (10)

where T IDW
i (t) and P IDW

i (t) are, respectively, the mean areal
temperature and precipitation interpolated based on the IDW
procedure in elevation zone i at time step t ; yIDW

i (t) is the
mean areal elevation interpolated based on the IDW proce-
dure in elevation zone i from the available gauges at time
step t ; yi is the mean areal elevation extracted from the DEM

in elevation zone i; TLR and PLR are the constant temper-
ature and precipitation lapse rates to be calibrated; CSV is
a coefficient of seasonal variation due to solar radiation to
be applied to TLR (when set to 0, no seasonal variation is
applied); Si is an index of seasonal change in solar radiation
accounting for daytime length and ranges from−1 on 21 De-
cember (winter solstice) to 1 on 21 June (summer solstice) in
non-leap years in the Northern Hemisphere (lat> 0); d is the
number of days since 1 January of the current year.

In the original version of CEMANEIGE, FSC area is cal-
culated as follows:

FSCi(t)=min
(

SWEi(t)
SWEth

,1
)
, (11)

where SWE is the quantity of snow accumulated in snow
water equivalent (a state variable of the model, in mm), and
SWEth is the model’s melting threshold. SWEth is calculated
as being equal to 90 % of mean annual solid precipitation on
the catchment considered (Valéry et al., 2014). Alternative
approaches have been proposed to account for the hysteresis
that exists between FSC and SWE during the accumulation
and melt phases (Riboust et al., 2019). However, introducing
such a hysteresis adds two additional free parameters to the
SAR. Instead, SWEth was fixed to 40 mm since preliminary
sensitivity analyses showed that this value gave satisfactory
FSC values when compared to the MODIS observations in
the studied catchments.

To ensure insightful comparison with the modelling exper-
iment, the SAR was calibrated according to different modes
and degrees of freedom (Table 2). In mode M1, elevation de-
pendency, which was accounted for (or not) in the T and
P inputs based on the interpolation procedures, was tested
by calibrating five parameters (TS, TR, SFCC, θ , Kf) which
control snow accumulation and snowmelt. This mode is usu-
ally used to allow snow processes to be adjusted to local con-
ditions and/or the errors in the T and P inputs. In mode M2,
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Figure 4. Diagrams of the two hydrological models used: (a) GR4J and (b) HBV9. Calibrated parameters are in red and are further described
in Table 3. R, M , PE, and Q stand for rainfall, snowmelt, potential evapotranspiration, and streamflow, respectively.

Table 2. Parameters of the snow accounting routine and their associated fixed values or ranges tested in each modelling experiment.

Fixed values or ranges tested

Param. Meaning Unit M1 M2 M3 M4

TS Temperature between the solid and liquid phases ◦C [−3; 3] −1 −1 −1
TR Thermal range for the phase separation above TS

◦C [0; 10] 4 4 4
SFCC Snowfall gauge under-catch correction factor – [1; 3] 1 1 1
θ Weighting coefficient for snowpack thermal state – [0; 1] 0 0 [0; 1]
TM Temperature threshold for snowmelt ◦C TS+ 1 0 0 0
Kf Degree-day melt factor mm ◦C−1 d−1

[0; 10] 5 5 [0; 10]
SWEth Snow water equivalent threshold to compute FSC mm 40 40 40 40
TLR Temperature lapse rate ◦C (100 m)−1 – [0; −1.5] [0; −1.5] [0; −1.5]
CSV Coefficient of seasonal variation applied to TLR – – 0 [0; 1] [0; 1]
PLR Precipitation lapse rate % (km)−1 – [0; 200] [0; 200] [0; 200]

all parameters of the SAR were fixed in order to introduce
two parameters (TLR and PLR) as orographic gradients. The
aim of using this mode was to account for elevation depen-
dency in the T and P inputs from constant, calibrated oro-
graphic gradients while fixing the parameters that control
snow accumulation and snowmelt to physical or general val-
ues: precipitation phase determined based on a linear sepa-
ration between −1 and +3 ◦C (USACE, 1956), temperature
threshold for snowmelt fixed at 0 ◦C, and degree-day melt
factor set at 5 mm ◦C−1 d−1 (mean general value taken from
Hock, 2003). In mode M3, the same approach was chosen,
but an additional parameter (CSV) was associated with the
TLR gradient in order to test the value of introducing a sea-
sonal variation in the temperature lapse rates (see Eq. 9). In

mode M4, elevation dependency in the T and P inputs was
also accounted for based on three (TLR, CSV, and PLR) pa-
rameters, and two other parameters (θ , Kf) were calibrated in
addition to allow for snowmelt adjustment.

In each altitudinal band, five outputs (rainfall, snowfall,
snowmelt, potential evapotranspiration, and fractional snow-
covered area) are computed at each daily time step. Rain-
fall (R) and snowmelt (M) are summed to compute the total
quantity of water available for production and transfer in the
catchment. Potential evapotranspiration (PE) is computed for
each altitudinal band using the temperature-based formula-
tion proposed by Oudin et al. (2005):

PEi(t)=
Re

λρ

Ti(t)+ 5
100

if (Ti(t)+ 5) >; else PEi(t)= 0, (12)
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where Re is the extra-terrestrial solar radiation (MJ m−2 d−1)
which depends on the latitude of the basin and the Ju-
lian day of the year, λ is the net latent heat flux (fixed at
2.45 MJ kg−1), ρ is the water density (set at 11.6 kg m−3),
and Ti(t) is the air temperature (◦C) estimated in the eleva-
tion zone i at time step t .

The outputs of each band are averaged to estimate the total
liquid output of the SAR and PE at the catchment scale in
order to feed the combined hydrological models (Fig. 4).

4.2 Hydrological models

To avoid model-specific results, two well-known hydrologi-
cal models (see structures in Fig. 4 and parameters in Table 3)
were chosen in association with the SAR: the four-parameter
GR4J presented by Perrin et al. (2003) and a nine-parameter
lumped version of the HBV model (Bergström, 1975; Beck
et al., 2016), here referred to as HBV9 to avoid confusion
with the original version.

The two models were run at a daily time step and used
in lumped mode with the SAR on top. The structure and
the number of degrees of freedom differ between GR4J and
HBV9, which should make results more generalizable.

4.3 Calibration and validation methods

4.3.1 General model assessment

The models (GR4J and HB9 with the SAR on top) were
cross-validated using a split-sample test procedure. The sim-
ulation period (2000–2016) was split into two sub-periods
alternatively used for calibration and validation. Thus two
calibration and two validation tests were performed to pro-
vide evaluation on all available data. Mean annual precip-
itation increased by around 17 % between the two periods,
while mean annual temperature was stable (9.2 ◦C vs. 9.3 ◦C)
across the in situ network presented in Sect. 2.1. Although
the second period was generally wetter, differences can be
observed locally. At the basin scale, the differences between
the two periods ranged from −10 % to +15 % for precipita-
tion,−0.5 to+0.5 ◦C for temperature, and−11 to+50 % for
streamflow.

The models were run in a continuous way for the
whole reference period, while only hydrological years (from
1 September to 31 August) corresponding to the calibration
and validation periods were considered to compute the effi-
ciency criteria. The 3-year period before the simulation pe-
riod was used for model warm-up to limit the effect of the
storage initialization and was not included in performance
computation.

4.3.2 Optimization algorithm and objective function

The parameters of the SAR and the hydrological model were
optimized simultaneously, using the shuffled complex evo-
lution (SCE) algorithm (Duan et al., 1992). The algorithmic

parameters of SCE were set to the values recommended by
Duan et al. (1994) and Kuczera (1997) to reduce the risk
that SCE fails in local optimal solutions. The objective func-
tion (OF) used was a multi-criteria composite function focus-
ing simultaneously on variations in snow-covered areas and
streamflow dynamics at the basin scale, as follows:

OF= 1−
(
0.5×NSESNOW+ 0.5×NSEsqrQ

)
,

with

NSESNOW =
1
E

E∑
i=1

1−

N∑
t=1

(
FSCisim,t −FSCiobs,t

)2

N∑
t=1

(
FSCiobs,t −FSC

i

obs

)2

 , (13)

NSEsqrQ = 1−

N∑
t=1

(√
Qsim,t −

√
Qobs,t

)2
N∑
t=1

(√
Qobs,t −

√
Qobs

)2
,

where FSCiobs,t and FSCisim,t are the observed and simulated
FSC areas in elevation zone i at daily time step t ,N is the to-
tal number of time steps, FSC

i

obs is the mean observed FSC
in elevation zone i over the test period, E is the total num-
ber of elevation zones (fixed to five for the study),Qobs,t and
Qsim,t are the observed and simulated streamflows at daily
time step t , and

√
Qobs is the mean observed square root

transformed flows over the test period.
NSESNOW relies on the Nash–Sutcliffe efficiency crite-

rion. Perfect agreement between the observed and simulated
values gives a score of 1, whereas a negative score represents
lower reproduction quality than if the simulated values had
been replaced by the mean observed values. NSEsqrQ can be
considered a multi-purpose criterion focusing on the simu-
lated hydrograph. It puts less weight on high flows than the
standard NSE on non-transformed discharge (Oudin et al.,
2006). As the majority of basins had negligible glacierized
areas (see Table 1), no specific glacier model was activated.
This led to neglect of the late summer contribution of glacier
melt to river discharge in the three basins with 9 %–12 %
glacierized areas.

4.3.3 Efficiency criteria in validation

Four criteria were used to evaluate model performance dur-
ing validation. The first one was the NSESNOW criterion.
To put more emphasis on high- and low-flow conditions,
we used the NSE on non-transformed streamflows (NSEQ),
which gives more weight to large errors generally associated
with peak flows, and the NSE on log-transformed stream-
flows (NSElnQ). The absolute cumulated volume error (VEC)
was also computed to obtain information on the agreement
between observed and simulated total discharge over the test
periods:
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Table 3. Parameters of the hydrological models and their associated ranges tested.

Model Parameter Meaning Unit Tested range

GR4J X1 Maximum capacity of the production store S mm [0; 1500]
X2 Inter-catchment exchange coefficient mm d−1

[−5; 5]
X3 Maximum capacity of the non-linear routing store R mm [0; 500]
X4 Unit hydrograph (UH) time base d [0.5; 5]

HBV9 BETA Shape coefficient of recharge function – [0.5; 5]
FC Maximum water storage in the unsaturated-zone store S mm [10; 1500]
LP Fraction of soil moisture above which actual evapotranspiration reaches PE – [0.3; 1]
K0 Additional recession coefficient of the upper groundwater store R – [0.05; 1]
K1 Recession coefficient of the upper groundwater store R – [0.1; 0.8]
UZL Threshold value for extra flow from the upper zone mm [0; 500]
PERC Maximum percolation to the lower zone mm d−1

[0; 6]
K2 Recession coefficient of the lower groundwater store T – [0.01; 0.15]
MAXBAS Length of the equilateral triangular weighting function – [1; 7]

Table 4. Cross-validation of the interpolation methods against yearly, monthly, and daily series from meteorological gauges over the pe-
riod 2000–2016. The best efficiency criteria for each analytical timescale and each variable of interest (temperature and precipitation) are in
bold. The values of n(u) and ω (for IDW and IED) and of n(u) and model (for ORK and KED) represent the interpolation parameters, which
were optimized using the leave-one-out procedure, as described in Sect. 3.3.

Temperature (78 gauges) Precipitation (148 gauges)

Without elevation dependency With elevation as external drift Without elevation dependency With elevation as external drift

IDW ORK KED IED IDW ORK KED IED

Y
ea

rl
y RMSE 1.82 ◦C 1.82 ◦C 0.65 ◦C 0.65 ◦C 177.05 mm 174.27 mm 153.75 150.31 mm

n(u) 6 6 8 10 4 15 12 12
ω 1 – – 2 3 – – 3
model – exponential exponential – – exponential exponential –

M
on

th
ly RMSE 1.91 ◦C 1.92 ◦C 0.86 ◦C 0.80 ◦C 23.19 mm 22.73 mm 22.35 mm 22.20 mm

n(u) 7 6 8 10 5 15 12 12
ω 1 – – 2 2 – – 2
model exponential exponential – – exponential exponential –

D
ai

ly

RMSE 2.16 ◦C 2.18 ◦C 1.21 ◦C 1.20 ◦C 2.83 mm 2.86 mm 2.91 mm 2.90 mm
n(u) 7 6 10 10 10 10 17 17
ω 1 – – 2 2 – – 2
model – exponential exponential – – exponential exponential –

VEC = 1−

∣∣∣∣ N∑
t=1
Qsim,t −

N∑
i=1
Qobs,t

∣∣∣∣
N∑
t=1
Qobs,t

. (14)

A value of 1 indicates perfect agreement, while values less
than 1 indicate over- or under-estimation of the volume.

5 Results and discussion

5.1 Cross-validation of the interpolation methods

Table 4 lists the results of cross-validation of the interpola-
tion methods against yearly, monthly, and daily series from
temperature and precipitation gauges. Kriging with ORK led

to an improvement over IDW only for precipitation interpola-
tion at the yearly and monthly timescales. Considering eleva-
tion dependency with external drift (KED and IED) improved
the performance of the kriging and inverse-distance methods,
except for precipitation estimated at the daily timescale. This
shows that the correlation between precipitation and topogra-
phy increases with the increasing time aggregation as already
reported in other studies (e.g. Bárdossy and Pegram, 2013;
Berndt and Haberlandt, 2018). The elevation dependency of
precipitation thus depends significantly on the accumulation
time. At the daily timescale, the orographic enhancement is
limited because on a given day there is no monotonic rela-
tionship between elevation and precipitation amount: it de-
pends on where the precipitation event occurs in the first
place.
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Of all the methods tested, IED provided the best per-
formance in terms of lower RMSE for each variable (tem-
perature and precipitation) and at all temporal resolutions
(yearly, monthly, and daily), except for precipitation at the
daily timescale for which IDW performed best.

The exponential variogram model for the ORK and KED
method performed systematically better than the spherical
model whatever the variable and the timescale. In con-
trast, the exponent ω used with the IDW and IED meth-
ods varies from 1 to 3 depending on the considered vari-
able and timescale. The optimized number of surrounding
neighbours n(u) also varies depending on the method and
timescale. At the daily timescale, n(u) ranged from 6 when
interpolating temperature with ORK to 17 when interpolating
precipitation with KED and IED. Hence, 10 (17) surround-
ing neighbours were used to compute altitudinal gradients of
temperature (precipitation) based on the daily linear regres-
sions with KED and IED.

Figure 5 shows the annual temperature and precipitation
maps obtained by interpolating daily data from the meteo-
rological gauges over the period 2000–2016 using the IDW,
ORK, KED, and IED methods and their optimized param-
eters (Table 4). The maps of IED estimates of mean tem-
perature and annual precipitation closely resemble the KED
maps. Temperature estimates range from −9.2 to 16.0 ◦C
with KED and from −11.2 to 16.6 ◦C with IED. Precipita-
tion estimates range from 630 to 3273 mm with KED and
from 642 to 3184 mm with IED. As expected, these ranges
are wider than those obtained with the IDW and ORK pro-
cedures, which, unlike the KED and IED methods, do not
consider either local or seasonal elevation dependency. As
a result, the ranges obtained with KED and IED are proba-
bly more realistic with respect to temperature, but not nec-
essarily with respect to precipitation, for which daily cross-
validation shows that the simple IDW method provided better
results. However, cross-validation was based on gauges sam-
pled only below 2006 (2105) m a.s.l., meaning evaluation of
the precipitation (temperature) gridded datasets at higher al-
titudes was not possible. Another approach is thus needed to
further explore whether elevation dependency should be dis-
regarded when estimating daily precipitation (as suggested
by cross-validation), and, if not, whether this dependency
should be accounted for in the interpolation process or by
inverting the hydrological cycle. A sensitivity analysis of
snow-hydrological simulations to the orographic gradients
was thus conducted.

5.2 Sensitivity of the snow-hydrological simulations to
the orographic gradients

For the sake of brevity, here we only present the results
obtained with the datasets interpolated with the IDW and
IED procedures, since cross-validation at the daily timescale
showed that they slightly outperformed the ORK and KED
methods, respectively. Table 5 summarizes the six tests per-

formed to account for elevation dependency in the T and
P inputs via the modelling experiment described in Sect. 4.

Figure 6 and Table 6 summarize the efficiency distribu-
tions obtained in validation with the GR4J and HBV9 models
combined with the snow model in the different tests on the
20 snow-affected Alpine catchments. The results produced
by the two hydrological models are in agreement and high-
light the following main findings.

– Not considering elevation dependency in either the
T or P inputs (Test no. 1) leads to notable failures of
the snow-hydrological models, due to incorrect snow–
rainfall partitioning and snowmelt in space and over
time caused by too high temperatures and insufficient
input volumes of precipitation, which cannot be offset
by the free parameters of the SAR. Notably, calibrating
temperature thresholds and ranges for snow–rain parti-
tion and snowmelt, as well as snow under-catch (using
the SFCC parameter), is clearly unsatisfactory.

– Considering elevation dependency only in the T inputs
based on the IED procedure (Test no. 2) significantly
improves the snow-hydrological simulations, but con-
sidering elevation dependency in the P inputs based on
the same procedure (Test no. 3) is not as efficient, no-
tably for streamflow simulations. This shows that the
estimated precipitation with IED over the catchments is
of limited accuracy.

– Improving the areal temperature and precipitation es-
timation clearly requires the calibration of altitudi-
nal temperature and precipitation gradients. The snow-
hydrological simulations are considerably improved
when using the parsimonious two-parameter SAR based
only on the calibration of TLR and PLR (Test no. 4).

– Compared to Test no. 4 based only on a two-parameter
SAR, only limited improvements in the performance
distributions are obtained by introducing additional free
parameters to account for the seasonal variability of the
temperature gradients (Test no. 5) and for local adjust-
ment of snowmelt (Test no. 6).

As a representative example of the studied catchments, Fig. 7
illustrates the differences in the simulations obtained by
Test nos. 1 to 4 for the Durance at Serre-Ponçon. This
3580 km2 catchment with altitudes ranging between 652 and
4017 m a.s.l. ensures inflows to one of the biggest dams
in Europe (maximum capacity of 1.3 km3). Dynamics of
fractional snow-cover area and streamflow are better simu-
lated when considering elevation dependency of the T and
P inputs via two calibrated, altitudinal gradients (Test no.
4). Compared to the other tests, mean annual temperature
(4.0 ◦C) is lower and mean annual precipitation (1160 mm) is
higher. Less precipitation is considered in solid form (44 %
of total precipitation on average) and accumulation is longer
during winter, which fits streamflow observations better, both
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Figure 5. Maps of mean annual temperature (◦C) and total precipitation (mm yr−1) obtained by interpolation of (a) 78 gauges (temper-
ature) and of (b) 148 gauges (precipitation) with daily data for the period 2000–2016 using inverse distance weighting (IDW), ordinary
kriging (ORK), kriging with external drift (KED), and IDW with external drift (IED). The numbers below each map stand, respectively, for
minimum, mean, and maximum values (expressed in ◦C for temperature and in mm yr−1 for precipitation) in the maps.

Table 5. Description of the tests to account for elevation dependency in the T and P inputs via the modelling experiment described in Sect. 4.
Note that each calibration test also included the hydrological parameters of GR4J or HBV9 (the parameter ranges tested are listed in Table 2
for the SAR and in Table 3 for the hydrological models).

Mode Test T input P input Calibrated parameters Principle
number (excluding hydrological

models)

M1 1 T-IDW P-IDW TS, TR, SFCC, θ , Kf No elevation dependency in the T and P inputs, and five calibrated parameters
for adjustment of snow accumulation and snowmelt

2 T-IED P-IDW TS, TR, SFCC, θ , Kf Elevation dependency only in the T input based on the IED interpolation
procedure, and five calibrated parameters for adjustment of snow accumulation
and melt

3 T-IED P-IED TS, TR, SFCC, θ , Kf Elevation dependency in the T and P inputs based on the IED interpolation
procedure, and five calibrated parameters for adjustment of snow accumulation
and melt

M2 4 T-IDW P-IDW TLR, PLR Elevation dependency in the T and P inputs considered based on two calibrated
parameters in the SAR, and fixed parameters for snow accumulation and snowmelt

M3 5 T-IDW P-IDW TLR, CSV, PLR Elevation dependency in the T and P inputs considered based on three calibrated
parameters in the SAR, and fixed parameters for snow accumulation and snowmelt

M4 6 T-IDW P-IDW TLR, CSV, PLR, θ , Kf Elevation dependency in the T and P inputs considered based on three
calibrated parameters in SAR, and two calibrated parameters for adjustment of snowmelt

for low flows from December to April and for flood peaks be-
tween May and July. It is worth noting that these improved
simulations were obtained with a SAR calibrated on only two
parameters targeting the local lapse rates, whereas the other
simulations were based on a SAR calibrated on five param-

eters. This shows that calibrating the usual snow parameters
to compensate for errors in the input data and/or to adapt to
local snow-related processes is less efficient in the simula-
tions than inferring only temperature and precipitation lapse
rates while fixing all the other parameters. This suggests that
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Figure 6. Boxplots (showing 0.00, 0.25, 0.50, 0.75, and 1.00 percentiles) of the efficiency distributions obtained in validation by the (a) GR4J
and (b) HBV9 models combined with the snow model according to six different tests (see Table 5) to account for elevation dependency in
the T and P inputs on the 20 snow-affected Alpine catchments.

Table 6. Mean validation efficiency of the six modelling tests (see Table 5) on the set of 20 catchments with the GR4J model and the
HBV9 model.

Model Test Number Mean Mean Mean Mean
number of free NSESNOW NSEQ NSElnQ VEC

parameters
of the SAR

G
R

4J

1 5 0.53 0.37 0.66 0.29
2 5 0.78 0.74 0.76 0.94
3 5 0.79 0.72 0.74 0.94
4 2 0.86 0.79 0.82 0.95
5 3 0.85 0.80 0.82 0.95
6 5 0.85 0.80 0.81 0.95

H
B

V
9

1 5 0.59 0.34 0.69 0.27
2 5 0.79 0.74 0.68 0.94
3 5 0.78 0.72 0.65 0.93
4 2 0.86 0.79 0.76 0.94
5 3 0.86 0.79 0.75 0.94
6 5 0.85 0.79 0.75 0.94

correcting for temperature and precipitation distribution has
a stronger impact on model predictions than adjusting for
snow-related processes like phase partitioning or melt and
that correctly estimating total accumulation is likely to play
a first-order role in the snow-hydrological responses of the
studied catchments.

5.3 Identifiability of the parameters

Figure 8 shows a representative example of parameter sen-
sitivity to the objective function (OF) according to the six
tests (see Table 5) with the GR4J model on the Durance
at Serre-Ponçon. The maximum allowed parameter range is
only reached for the parameters X1 and X2 with Test no. 1.
This test differs from the others because no elevation depen-
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Figure 7. Comparison of snow-hydrological simulations with elevation dependency according to Test nos. 1 to 4 (see Table 5) with GR4J
for the Durance at Serre-Ponçon. The graphs show mean inter-annual time series of temperature, precipitation, streamflow, and fractional
snow cover at the catchment scale in validation over the period 2008–2016. Tmean, Pmean, and Smean stand for mean annual temperature,
precipitation, and snowfall, respectively. The efficiency criteria NSESNOW, NSEQ, NSElnQ, and VEC are computed from continuous (not
mean seasonal) series over 2008–2016.
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dencies in the T and P inputs are considered. Consequently,
hydrologic predictions of Test no. 1 are significantly outper-
formed by the other approaches. Extending the parameter
ranges beyond the tested values would be both poorly effi-
cient in improving the simulations and incorrect from a nu-
merical point of view since they were set to values recom-
mended by the models’ authors. Moreover, no maximum pa-
rameter limits were reached in the other tests, thus suggesting
that the parameter ranges are adequate.

As already shown, considering elevation gradients
(Test nos. 4–6) minimizes OF and significantly improves
model performance. It also improves the parameter identi-
fiability. The temperature altitudinal gradient (TLR) is easily
identifiable, with values ranging from −0.64 ◦C per 100 m
(Test nos. 4 and 5) to −0.67 ◦C per 100 m (Test no. 6)
and with variation coefficients of 0.1 % for the 20 % best-
performing parameter solutions. It clearly proves to be a key
parameter for improving snow and streamflow simulations
compared to parameters calibrated using elevation gradients
inferred from the usual interpolation method with external
drift (Test nos. 2 and 3). The optimum value of the CSV
parameter (Test nos. 5 and 6) is zero, clearly indicating no
need to account for the seasonal variation in the temperature
lapse rate in the catchment studied here (which is also the
case in most catchments). The precipitation lapse rate (PLR)
is also easy to identify, with optimized values of 62 % km−1

(Test nos. 4 and 5) and variation coefficients 0.4 %. Intro-
ducing additional parameters controlling snowmelt (θ and
Kf in Test no. 6) does not significantly improve the simu-
lations and decreases the parameter identifiability (variation
coefficients increase compared to Test nos. 4 and 5 based
on a two-parameter and three-parameter SAR, respectively).
This shows that model performance is mainly sensitive to
the use of parameters for temperature and precipitation lapse
rates and that a two-parameter SAR based on TLR and PLR
(Test no. 4) on top of the hydrological models tested is both
essential and sufficient to achieve satisfactory simulations.

Equifinality is also reduced in Test nos. 4–6 for the pa-
rameters controlling runoff generation and routing (X1, X3,
and X4). On the opposite end, the parameter of the inter-
catchment groundwater flows (X2) is poorly identifiable,
with variation coefficients of 24.8 %, 20.3 %, and 143.1 %
with Test no. 4, Test no. 5, and Test no. 6, respectively. This
suggests that inter-catchment groundwater exchanges (IGE)
do not play a key role in the studied catchments. Indeed, fix-
ing X2 to a value of 0 (i.e. without potential IGE) with an
alternative GR3J model provided similar mean validation ef-
ficiency on the set of catchments as compared to the GR4J
associated with the two-parameter SAR (Table 7). However,
other objective functions may result in other findings as far as
IGE are concerned. For instance, additional tests (not shown
here for the sake of brevity) confirmed that it was possi-
ble to greatly reduce the X2 equifinality without decreasing
the model efficiency by adding a water balance term in the
objective function to constrain the proportion of years re-

specting the water and energy balance in the Turc–Budyko
non-dimensional graph (see Andréassian and Perrin, 2012).
These tests suggested that it may be relevant to explicitly rep-
resent inter-catchment groundwater transfers in association
with correcting or scaling factors applied to the precipitation
input data to render the distribution between evapotranspira-
tion, streamflow, and underground fluxes more realistic, as
already reported by Le Moine et al. (2007).

5.4 Ranges of the calibrated altitudinal gradients

Figure 9 shows that the temperature and precipitation lapse
rates vary considerably from one catchment to another.

The mean values of the calibrated temperature lapse
rates are −0.68 and −0.65 ◦C (100 m)−1 with GR4J and
HBV9, respectively. These values are higher than the yearly
lapse rates identified by Rolland (2003) from gauge ob-
servations in Alpine regions, which ranged from −0.54 to
−0.58 ◦C (100 m)−1 in the Italian and Austrian Tyrol. In-
stead, the mean calibrated values are close to the average
temperature gradients generally proposed as approximations
in the literature (−0.65 ◦C (100 m)−1 in Barry and Chorley,
2010). They can be used as suitable estimates for daily snow-
hydrological purposes in the French Alps. However, to better
account for local meteorological conditions, it may be advis-
able to calibrate them since the TLR parameter ranges from
−0.41 to −0.83 ◦C (100 m)−1, depending on the catchments
and on the models, and is easily identifiable (see Fig. 8 and
Sect. 5.3.).

The mean value of the calibrated precipitation lapse rates
is 30 % (km)−1 and 29 % (km)−1 with GR4J and HBV9, re-
spectively. The differences in ranges between the two mod-
els may be due to the GR4J ability to gain (or lose) water
from inter-catchment groundwater flows through its X2 pa-
rameter (see Sect. 5.3), unlike HBV9, which considers the
catchment to be a closed system. On the other hand, HBV9
relies on more parameters for production and transfer, thus
enabling one to compensate differently for the errors in the
precipitation volumes. Whatever the model, the calibrated
lapse rates indicate the need for increased precipitation vol-
umes in most catchments, either to counterbalance for er-
roneous measurements such as the systematic errors asso-
ciated with precipitation under-catch during snowfall or to
consider the orographic effect that cannot be sufficiently ac-
counted for by the gauges used for interpolating the precip-
itation fields. However, the ranges of the precipitation lapse
rates, from 0 % (km)−1 to 100 % (km)−1 with GR4J and from
0 % (km)−1 to 82 % (km)−1 with HBV9, suggest that the re-
quired correction is catchment-specific and depends either
on the local meteorological conditions or on data from the
available surrounding stations to interpolate the daily precip-
itation.
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Figure 8. Parameter sensitivity to the objective function (OF) according to Test nos. 1 to 6 (see Table 5) with GR4J combined with the snow
accounting routine (SAR) on the Durance at Serre-Ponçon. The values and dots in red indicate the optimized calibrated parameters when
minimizing OF, the black dots represent trials of the SCE-UA optimization algorithm, and the values in blue are the variation coefficients
(in %) of the 20 % best-performing parameter solutions compared to the optimized values for each parameter (the lowest value, the easiest
parameter identifiability). Note that, depending on the tests, the calibrated parameters of the SAR vary from 2 to 5 (see Tables 2 and 5), while
the GR4J hydrological model has four free parameters (see Table 3).
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Table 7. Mean validation efficiency on the set of 20 catchments with the GR4J model and the GR3J model in association with the two-
parameter SAR.

Model Total Mean Mean Mean Mean
number NSESNOW NSEQ NSElnQ VEC
of free

parameters

Two-parameter SAR/GR4J 6 (2+ 4) 0.86 0.79 0.82 0.95
Two-parameter SAR/GR3J 5 (2+ 3) 0.86 0.78 0.81 0.94

Figure 9. Boxplots (showing 0.00, 0.25, 0.50, 0.75, and 1.00 percentiles) of the ranges of (a) temperature and (b) precipitation lapse
rates calibrated with the two-parameter SAR (Test no. 4) in association with the GR4J and HBV9 models on the 20 snow-affected Alpine
catchments. The red crosses indicate mean values.

6 Summary and conclusions

6.1 Synthesis

In this paper, several alternative approaches for distributing
daily air temperature and precipitation are compared in the
French Alps. Elevation dependency in the temperature and
precipitation fields was accounted for using two main strate-
gies: (1) by estimating the local and time-varying altitudinal
gradients from the available gauge network based on deter-
ministic (inverse distance weighted) and geostatistical (krig-
ing) methods with external drift; and (2) by calibrating the lo-
cal gradients using an inverse snow-hydrological modelling
procedure.

Cross-validation of the mapping methods showed that,
whatever the timescale, temperature estimates can clearly
benefit from taking altitude into account with interpolation
methods based on external drift. For precipitation, incorpo-
rating elevation into the interpolation methods was helpful
for yearly and monthly accumulation times, but could not
achieve an improvement for daily time resolution. Results
also showed that accounting for elevation dependency from
gauge networks when interpolating air temperature and pre-
cipitation was not sufficient to provide accurate inputs for
the snow-hydrological models tested here. The lack of high-
elevation stations seriously limited correct estimation of lo-
cal, time-varying lapse rates of temperature and precipita-
tion, which, in turn, affected the performance of the snow-
hydrological simulations due to too imprecise estimates of
temperatures and of precipitation volumes. Conversely, op-

timizing lapse rates as part of a snow-hydrological mod-
elling procedure provided evidence of increased accuracy
in the simulation of snow cover and discharge dynamics
while limiting the problems of over-calibration and equifi-
nality through parsimonious parametrization.

6.2 Recommendations

These results suggest that interpolation methods using el-
evation as external drift such as those tested (KED and
IED) should be used with caution in the absence of suf-
ficient high-elevation data. Although the gauge density in
the French Alps is close to the minimum density recom-
mended by WMO (2008) for mountainous areas, the number
of weather stations is insufficient for complete cover of the
altitude ranges. This seriously limits estimates of local and
seasonal relations with elevation, notably for daily precipita-
tion, but also for temperature, which was initially not appar-
ent when using the leave-one-out procedure against available
gauges. Placing meteorological fields in a snow-hydrological
perspective thus proved indispensable to confirm the limited
suitability of standard interpolation methods for generating
reliable spatially distributed modelling inputs in mountain-
ous areas. It also made it possible to propose a modelling
approach to correct meteorological inputs in complex, moun-
tainous environments and showed that it is possible (and even
advisable) to use remotely sensed snow-cover and stream-
flow measurements to improve our knowledge of tempera-
ture and precipitation inputs in data-scarce mountainous re-
gions. Using auxiliary observations of snow cover notably
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proved to be useful in giving additional insights into the reli-
ability of the modelled snow processes.

However, the differences in the two compared approaches
are worth discussing. The first is to regionalize temperature
and precipitation based on in situ data and various interpo-
lation/extrapolation schemes based on IDW or kriging; the
second is to “embed” part of the distribution process into the
snow-hydrologic models via calibrated lapse rates correct-
ing a first-guess distribution based on IDW. While the first
approach is independent of hydrological data like fractional
snow cover and streamflow, the second does take advantage
of these data to adjust some of the distribution parameters.
The second strategy proved superior to the first, especially
since calibrating distribution parameters rather than adjust-
ing snow parameters allowed the models to significantly im-
prove their performance. This improvement was however as-
sessed based on the same hydrological variables that were
used to calibrate the snow-hydrologic models, rather than on
independent measurements of temperature and precipitation.
This left us wondering whether improving hydrologic pre-
dictions by calibrating the local gradients using an inverse
snow-hydrological modelling framework also improves ac-
tual temperature and precipitation estimates. In principle,
one would expect the obtained altitudinal gradients to be
both more effective in terms of hydrologic predictions and in
terms of temperature and precipitation, but the improvement
obtained by “embedding” part of the distribution process into
the snow-hydrologic models was only quantified in terms of
modelling skills. An improved fit for hydrologic variables
may not automatically mean that the model is also better at
representing weather patterns of temperature and precipita-
tion. A good example is that the optimized lapse rates (Fig. 9)
can locally be different between the two hydrologic models
considered. Since independent data of temperature and pre-
cipitation at high elevations are not available, it was not pos-
sible to clarify the extent to which these results apply to tem-
perature and precipitation in addition to hydrologic variables.
As pointed out by Dettinger (2014), we are largely blind to
what is happening in these high-altitude regions.

Another key issue concerns the level of complexity re-
quired to control snow accumulation and snowmelt. Most
degree-day snow models in the literature use free parameters
to adjust snowpack processes and streamflow responses, in-
cluding the whole water balance. Some parameters (temper-
ature thresholds for snow–rain partition and snowmelt, solid
precipitation correction factor) aim to compensate for the er-
rors in the T and P inputs, while others (thermal state of
the snowpack, degree-day melt factor) aim to fit snowmelt
to local conditions. Our results showed that calibrating these
parameters based on a five-parameter SAR was much less
efficient in improving the modelling performance than fixing
them and calibrating only local temperature and precipitation
altitudinal gradients based on a simple two-parameter SAR.
These results show that altitudinal gradients of temperature
and precipitation inputs should be inferred from key parame-

ters in snow-hydrological models since they play a first-order
role in snow-hydrological simulations. Accurate estimation
of these parameters greatly helps in determining the form of
precipitation and spatial distribution of temperature and pre-
cipitation and is critical for snow cover and runoff modelling
in high mountain catchments, as already reported in other re-
gions (Zhang et al., 2015; Naseer et al., 2019). Inferring the
gradients reduces the input errors originating from the non-
representative vertical distribution of stations while allowing
the parameters of snow accumulation and snowmelt to be set
at general or physical values (see Table 2 in Sect. 4.1). Intro-
ducing additional free parameters to account for the seasonal
variability of the temperature gradients and for adjustment
of snowmelt led to only limited improvements in the perfor-
mance distributions compared to the simulations based on
the parsimonious two-parameter SAR. This finding suggests
that correcting errors in the model inputs is more critical than
adapting the SAR to local snow processes. It also suggests
limiting the degree of freedom allowed in degree-day snow
models in order to reduce the risk of over-parametrization.

6.3 Prospects

It would be instructive to further explore the sensitivity of
snow-hydrological simulations to seasonal variations in the
lapse rates, e.g. by using daily altitudinal gradients instead
of a uniform constant gradient at the basin scale. However,
as shown in the present paper, establishing the relationship
between temperature/precipitation and elevation at the daily
timescale from a sparse network of gauges is challenging in
mountainous regions. For temperature, the methods tested
for computing local and daily lapse rates for each predic-
tion point (KED, IED) outperformed the methods that did not
account for altitudinal gradients (IDW, ORK) in the leave-
one-out procedure. On the other hand, using only a constant
lapse rate calibrated from the inverse modelling approach
performed substantially better with regards to the snow-
hydrological predictions than using the interpolated datasets
of temperature with external drift. This shows either that the
local temperature lapse rates (including their seasonal vari-
ation) were not correctly captured by the daily application
of interpolation methods with external drift or that, for our
experiment, accurately estimating a constant, uniform gra-
dient for temperature was more important than estimating
its seasonal variations for hydrological simulations. A sea-
sonal variation in temperature gradient was also tested with
a sinusoidal approach, which required an additional free pa-
rameter to determine the variation interval. When we com-
pared the modified three-parameter SAR version (Test no.
5 in Table 5) with the two-parameter SAR, we found that
the snow-hydrological performance distributions of the two
SARs were very similar (Fig. 6). This means that, although
the seasonal variation in the temperature altitudinal gradi-
ent can be put in evidence from gauge networks, as shown
by Rolland (2003) for Alpine regions, it did not appear in-
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dispensable for the daily snow-hydrological processes repre-
sented in our modelling experiment. Alternatively, improv-
ing the snow-hydrological simulations could consist in using
minimum and maximum air temperature rather than daily
mean temperature (see e.g. Turcotte et al., 2007) in order
to better determine the snow–rain partition. For the region-
alization of these extreme temperatures, one challenge that
remains will be characterizing the high variability of daily
lapse rates, which reflects temperature inversions as well as
rapidly changing circulation patterns, as reported in Stahl et
al. (2006). The problem is even more challenging for precip-
itation whose lapse rates could not be related to seasonal or
other types of systematic variations as they are strongly de-
pendent on the synoptic meteorological conditions and there-
fore highly variable. Further research could thus build on the
works of Jarvis and Stuart (2001) for temperature and Got-
tardi et al. (2012) for precipitation and focus on methods for
interpolation and extrapolation that are capable of account-
ing for differences in the influence of topography in different
seasons and synoptic situations.

Finally, it is worth mentioning that spatial variability was
only considered along five elevation bands in each catchment
since preliminary tests showed no improvement in the hy-
drologic predictions when applying the SAR in a full dis-
tribution mode. However, the SAR was not designed to ex-
plicitly account for topographic effects (slope, aspect, and
shading) on snow accumulation, redistribution, and melt
(see e.g. Frey and Holzmann, 2015). For instance, a grid-
based temperature-index model could be implemented to in-
clude potential clear-sky direct solar radiation at the sur-
face, thus considering both the seasonal variations of melt
rates and the geometric effects on melt attributable to ter-
rain (see e.g. Hock, 1999). It would thus be interesting to
assess whether accounting for the influence of such effects
can further improve the daily hydrologic predictions at the
basin scale.
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