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Abstract In the present work, the valence-bond-based compression approach for diabatization 

(VBCAD), previously presented in Ref. [J. Phys. Chem. Lett. 2020, 11, 5295-5301] in the case of 

avoided crossings, is extended to the more general situation of conical intersections and their vicinity. 

A pointwise phase-correction scheme for diabatic states is proposed, based on the explicit use of the 

peculiarities of the non-orthogonality of ab initio valence bond (VB) theory. Rather than fitting or 

propagating nonadiabatic couplings, it allows us to determine the phase of diabatic states consistently 

and automatically at each geometry point. Moreover, it is shown that the un-determination of 

degenerate states around a conical intersection can be fixed naturally from a straightforward classical 

VB picture. These are illustrated with two prototypical symmetry-induced (Jahn-Teller) conical 

intersection models.  

* To whom correspondence should be addressed.
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The degeneracy of electronic states leads to the breakdown of the Born-Oppenheimer approximation 

and thereby brings in difficulties to molecular dynamics due to the occurrence of representation 

singularities in the vicinity of a conical intersection. A practical cure for this is to change for a so-

called diabatic representation, which formally is based on the explicit computation of non-adiabatic 

couplings (NAC) in the adiabatic representation and subsequent elimination of them by a conveniently-

designed unitary transformation called diabatization. In addition, if a global diabatic representation 

were known, we could circumvent the heavy task of calculating such couplings around conical 

intersections; unfortunately, such a representation is not available directly and must be constructed 

with some diabatization scheme, which relies on the choice of a diabatic criterion. Among them, ab 

initio diabatization approaches are based on the properties of adiabatic electronic wave functions in 

terms of configurations1-13. Recently, a valence-bond-based compression approach for diabatization 

(VBCAD) has been proposed14; it allows a low-size diabatic Hamiltonian matrix to be built 

automatically. The central idea is to reduce, i.e., “compress”, the full electronic Hamiltonian matrix 

upon employing a series of Householder transformations coupled to a VB-based diabatization criterion, 

which take explicit advantage of Lewis VB structures with specific bonding patterns. One of the most 

advantageous features of our approach is its pointwise character, which circumvents the cumbersome 

requirement of an integration by propagation. 

However, the sign (or phase) of the diabatic wave function is a priori arbitrary in its definition and 

has to be initiated randomly in a pointwise diabatization approach. This issue could be fixed easily 

along a single coordinate associated to an avoided crossing, as we showed in our previous work, but 

essentially occurred as a major practical limitation of VBCAD for multidimensional situations, 

especially around a conical intersection. Practical solutions of such problems are obtained by 



propagating some condition that fixes the sign of diabatic wave functions or possibly with fitting 

procedures that minimize the (second-order) derivatives of diabatic coupling (H12) so as to generate a 

flat (or almost) H12 surface. But these will inevitably lead to the loss of the original pointwise character 

of VBCAD, that is, we will increase dramatically the computational cost if we are to achieve a phase 

correction with such strategies, i.e., if we have to implement from a point to the next a global condition 

on the smoothness of the coupling functions to be fulfilled within a high-dimensional space. 

In the present letter, our goal is to generalize the “VB-based diabatization by compression” approach, 

and thereby extend its applicability towards the vicinity of conical intersections. This will be explored 

according to the following aspects. 

A pointwise phase-correction scheme is first proposed. In this approach, even though the non-

orthogonality of the basis set has been known to bring heavy computational cost for VB calculations 

over the years15-16, it is shown here to become advantageous as a peculiar property that facilitates the 

phase-correction in the VBCAD scheme. Rather than propagating some condition here by integration, 

it propagates itself and its non-orthogonality smoothly by construction. That is, the phase of the 

diabatic wave functions as well as the sign of diabatic coupling elements can be determined 

automatically in a pointwise manner. This allows us to determine the phase without having to perform 

extra VB calculations. Moreover, the VB picture fixes the un-determination of degenerate states very 

naturally. Since we have equivalent choices in an MO framework because there may be several 

equivalent atoms due to molecular symmetry, here, one atom can be chosen specifically in a pictorial 

representation of VB wave functions via bond diagrams17. This makes it quite natural here to fix the 

uncertainty among degenerate cases around a conical intersection for the diabatization transformation. 



In ab initio classical VB theory15-18, a many-electron wave function is expressed with a linear 

combination of VB structures, 

(1)
 

K
KKC

where CK is the coefficient of the VB structure K, which is usually defined as Heitler-London-Slater-

Pauling function. K can be further expressed as a linear combination of atomic orbital based Slater 

determinants, 
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

  

where the expansion coefficients (dκK) are -1, 1 or 0, depending on the arrangement of atomic orbitals 

in determinant Dκ. Note that various convenient extensions of this are possible in terms of basis set 

(partly symmetrized orbitals, breathing orbitals, etc.); however, it must be understood that VB orbitals 

have an intrinsic diabatic propensity by construction, which is used to its full potential here, since they 

vary as little as possible with the nuclear coordinates due to their local character. 

The total energy and the coefficients can be obtained by solving the secular equation below:

HC = EMC (3)

where H, M and C are the VB Hamiltonian, overlap and coefficient matrices respectively. Among 

various classical VB methods, VBSCF19-20, which optimizes structure coefficients and orbitals 

simultaneously, is the elementary method of ab initio classical VB theory. If required, extra dynamic 

correlation can be introduced afterwards for better numerical accuracy, for example upon using the hc-

DFVB method21, which is a valence bond based multireference density functional theory method. 

The VB-based compression approach for diabatization (VBCAD) presented here starts with the VB 

Hamiltonian H followed by a symmetric Löwdin orthogonalization22-23 yielding HL. Then, a rank-

reduction procedure based on an eigenvalue decomposition (ED) is employed, which essentially is a 



factorization of the form, 
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where e and n denote the diagonal matrices with eigenvalues , ...,  and , ...,  respectively, 1 r +1r n

with r is the number of electronic states that are required to describe the system under study over a 

representative range of nuclear coordinates. Note that the matrix He is still of “full size” n×n at this 

stage (due to the presence of Q and its inverse in the similarity transform), yet of rank r < n due to its 

congruence with e. 

  Sequentially, the symmetric matrix He can be “compressed” into a low-dimension/size (r×r) but 

full-rank matrix (denoted as “pre-diabatic” Hpdia) by a series of Householder matrix transformations 

(by this, we mean a block diagonalization that produces the r×r diagonal block of rank r of interest 

together with a zero remainder diagonal block that is uncoupled). Then, the final transformation from 

the “pre-diabatic” Hamiltonian to the diabatic one is achieved by a two-step Householder 

transformation constrained by a VB-based diabatic criterion:  

(5)     1 2,   U U U

This criterion was implemented in such a way that, in eq.5,  is determined by maximizing ( , ) U

the quantity  defined as: [ ( , )]F  U
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where n is the number of VB structures, 1 and 2 correspond to the two diabatic states, WK,i is the weight 

of structure K in the diabatic state i. It must be stressed here that this VB-based criterion is a way to 

discriminate the “optimally contracted diabatic states” according to differences in their respective 

compositions in terms of disjoint VB subspaces, since VB structures are diabatic by construction but 

there are too many to be used directly to form a practical diabatic representation. This is how and why 



VBCAD makes plain use of the VB picture from a diabatic perspective. A more detailed exposition of 

VBCAD has been given14.

In what follows, we present the proposed phase-correction in details. For a simple 2 × 2 real-

symmetric Hamiltonian matrix in the diabatic representation,
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it is known from standard linear algebra that the two eigenvalues of Hdia, ε1 and ε2, satisfy (unitary 

preservation of the trace and determinant),
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This means that the actual sign of H12 from point to point is irrelevant in the formula giving the 

adiabatic eigenvalues ε1 and ε2 and thus must be fixed globally according to some consistent constraint. 

In this work, the central idea of the diabatic phase-correction is that the phases of the diabatic wave-

functions (represented by their expansion coefficient vectors, C in eq.1) can be determined through 

the geometric relationship between them. Note that the phases of the underlying VB molecular orbitals 

in terms of the basis set of atomic orbitals (AO) are easily determined by some constraints applied 

from the onset. Then, the phase correction of the C expansion coefficients is achieved by enforcing the 

vector distance to become minimal, making plain use of the peculiarity of VB non-orthogonality. To 

be more specific, first, two norms based on pre-diabatic states, which can be regarded as non-

orthogonal intermediate variables in the VBCAD procedure, are defined (denote as Na and Nb for a 

two-state case) by the following formula,
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where  is the coefficient of structure K in the pre-diabatic state i. Then, the phase constraint is pdia
,K iC



made so that if Na ≤ Nb, the signs of the pre-diabatic states are preserved, 

 (10)pdia,pc pdia ; a bN N C C （ ）

while if Na > Nb, the signs are corrected by a Σ matrix,  

 (11)pdia,pc pdia
a bN N  C C Σ；（ ）

Σ here is defined as a diagonal matrix with dimension n with 1 or -1 on its diagonal elements in order 

to inverse (or not) the phase of the pre-diabatic wave-functions. For a two-state case (n=2), 
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where the absolute values of κ and λ are equal to 1 respectively but with opposite sign. It should be 

noted here that this “minimal vector distance” trick for phase correction works only if non-orthogonal 

states are employed, because Na is identically equal to Nb if the two states are orthonormal. Furthermore, 

it is able to switch the constraint, i.e. if the phase correction matrix Σ is employed when Na < Nb, this 

will make all H12 values turned into their negative. Finally, we give a simple but intuitive geometrical 

illustration which helps for understanding: the angle between two non-orthogonal (but normalized) 

vectors is made acute by correcting the phase of either of them. Note that the whole procedure simply 

makes use of the preservation of the acute (or obtuse) character of the angle between both 

nonorthogonal vectors consistently at every point. This additional constraint is a peculiarity of VB that 

is turned here from an impediment to an advantage. It removes the arbitrary character of the relative 

phases of states, which was the only missing requirement for making the off-diagonal matrix element 

H12 as smooth as possible as a function of the nuclear coordinates. The procedure of the phase-

corrected VBCAD scheme is presented in the simplified flowchart displayed in Figure 1. Finally, let 

us stress here that the discriminating procedure is not limited in principle to a pair of states. The 

difference between two states is evident as a distance. For three states, this should be complemented 



with the difference between the third state and the average of the previous two, much as when building 

a sequential set of orthogonal Jacobi vectors from several points, so as to define a sequence of 

generalized relative distances. This is a group-theoretical geometrical construction that is quite general 

and can be found, for example in the definition of five d-orbitals from six monomials in a three-

dimensional space (xx, xy, …, zz). Suffice to say here that there is no formal difficulty in extending the 

procedure to any number of interacting states. 

(FIGURE 1 near here)

In a polyatomic molecule, electronic degeneracy may occur often, especially at highly symmetrical 

geometries. A prototypical example consists in the Jahn-Teller effect, which involves two-fold 

degenerate electronic states and first-order degeneracy lifting, hence stabilization upon symmetry 

breaking in the lower electronic state, along two-fold degenerate nuclear vibration modes. The Jahn-

Teller effect is the simplest prototype of symmetry-induced conical intersections, which is an obvious 

case to start for as an illustration. Note that many molecules that possess conical intersections involved 

in their photochemical reactivity can be understood upon making a comparison with a Jahn-Teller 

analogue involving the same number of electrons24. It is known that the dissociation of H3 radical has 

been well studied25, in this letter, we consider the doublet triatomic hydrogen (H3) in D3h symmetry, 

which represents the smallest member of the Jahn-Teller systems. It is known that the H3 system 

exhibits a conical intersection between the 1 2A’ and 2 2A’ electronic PESs for equilateral triangle 

geometries26. In this work, we first scanned over the bond length of all D3h geometries with various 

levels of calculation, in order to find minimum-energy D3h conical intersections. It is shown that the 

bond length is 1.38 Å at the hc-DFVB/6-31G* level of theory, which provides the similar result as 

other MO methods27.

 Figure 2. presents the double-cone shape of both potential energy surfaces (along two 

independent coordinates that span geometries breaking D3h) as well as the curve termed the intersection 



seam (along a coordinate that spans geometries preserving D3h) for the lowest-lying two adiabatic 

electronic states of doublet H3. They were calculated with three active electrons within three active 

orbitals. The state-averaged hybrid-atomic orbitals were used in VB calculations. One of the hydrogen-

hydrogen bonds (denoted as the H1-H3 bond) was fixed at the optimal D3h bond length (1.38 Å) in the 

symmetry-breaking situation so as to originate first-order degeneracy-lifting distortions (branching 

space) from the minimum-energy conical intersection. One such variable is the distance between the 

midpoint X of the fixed two hydrogen atoms and the third one. The other is the H2-X-H1 angle (θ), 

which varies from 80 to 100 degrees. As expected, the potential energy surfaces form a continuous 

double cone with a cusp at the equilateral triangle geometry (D3h).

(FIGURE 2 near here)

Figure 3a. shows a smooth crossing as expected between the diagonal diabatic matrix elements 

H11 and H22 obtained from VBCAD. They change smoothly with the variation of the nuclear geometry 

and cross along a curve that depends on R when θ = 90°. In this figure we also present the adiabatic 

PESs (grey surfaces). It is evident that at the crossing point, the diabatic adiabatic energies coincide. 

The diabatic surfaces are also tangent to the double-cone adiabatic surfaces along θ when R is fixed to 

its value at the crossing.

(FIGURE 3a,3b near here)

Figure 3b. presents the value of the H12 coupling matrix element along the two degeneracy-lifting 

coordinates (branching space). After our phase-correction was employed here, the shape of the H12 

surface becomes close to a flat plane as expected (we would obtain a folded one with a cusp line upon 

considering the absolute value, which could be unfolded “by hand” for a low-dimensional case such 

as here, but not in general without such an automated phase-correction procedure). We can see that it 

changes very little as a function of θ while it is essentially linear as a function of R around the conical 

intersection, due to the choice made for the defining the two diabatic states (see below). This illustrates 



how the non-orthogonality of VB can be nicely used to get rid of the randomness of the relative phase.

Our VB-based diabatization approach relies on distinct and specifically chosen chemical bonding 

patterns for the diabatic representation. Figure 4. presents the chemical picture of the VB structures 

of the doublet H3 complex (3c-3e). There are in total eight VB structures that consist of two covalent 

structures and six ionic ones. Among them, Φcov1, Φion1 and Φion2 (blue marked) describe the H1-H2 

two-electron bonding patterns that yield one covalent structure (Φcov1) and two ionic ones (Φion1 and 

Φion2); while Φcov2, Φion3 and Φion4 (red marked) describe those of H2-H3 bond. This is proved by the 

degenerate diabatic states along the curve corresponding to the θ=90° cut in Figure 2, where the H1-

H2 bond is equal to the H2-H3 bond in a VB picture according to the symmetry while stretching along 

R. A detailed VB weight analysis is presented in Supporting Information, which also supports this 

view.

(FIGURE 4 near here)

Now let us turn to a second prototypical example involving, however, quite a larger number of 

nuclear coordinates. The cyclopentadienyl radical (C5H5), Cp for short, possesses a degenerate ground 

state with D5h symmetry. It is another famous example of the Jahn-Teller effect. Much progress has 

been made theoretically towards understanding the implications of a conical intersection in this 

system28-30. We will consider here a two-dimensional description spanned by two-fold degenerate 

displacements (Q(a) and Q(b)) that will help in the description of the branching space for both adiabatic 

and diabatic states. To be more specific, Q(a) is one of the modes that breaks D5h into a C2v subgroup 

towards one of the ground-state minimum geometries on one side and towards the corresponding 

ground-state transition state (TS) geometry on the other side (there are five similar choices depending 

on which of the five equivalent C atoms is singularized). Q(b) is formed as the degenerate orthogonal 



complement to Q(a) and is obtained by the following formula,
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The geometries were obtained at the CASSCF(5,5)/6-31G* level of theory. The corresponding VB 

calculations with an active space of five electrons into five carbon pπ orbitals are denoted with 

VBSCF(5,5)/6-31G*. It leads to a total set of 75 VB structures (five covalent VB structures and seventy 

ionic ones) on which the different states expand as in eq.1. 

(FIGURE 5a, b, c near here)

The PESs of the adiabatic ground and first excited states for Cp around the conical intersection are 

shown in Figure 5a, whereas the diabatic ones and phase-corrected coupling are depicted in Figure 

5b&c. Also, cut curves passing through the conical intersection along Q(a) and Q(b) are presented 

nearby. It is confirmed that the adiabatic PESs, which form a typical five-fold warped Mexican hat31, 

reflect the occurrence of a Jahn-Teller conical intersection at the central high-symmetry point (D5h) 

where Q(a) = Q(b). For the diabatic ones, they exhibit a smooth crossing in the space spanned by Q(a) 

and Q(b). Similar with the H3 model presented before, the two-fold degenerate diabatic states appear 

along the Q(a) vibration, where the diabatic coupling is a non-zero quasi-linear function of it. For Q(b), 

the two diabatic PESs are close to the adiabatic ones and thus requires the diabatic coupling H12 to be 

near zero. Note that the small curvature of the H12 surface is expected because of the existence of 

quadratic terms. Furthermore, the flat (or quasi-flat) H12 plane without cusps also proves that the 

automatic phase-corrected technique of VBCAD works correctly. 



It is shown that the respective natures of the diabatic states involved in VBCAD here are maintained 

by a relatively stable bonding pattern (specific VB structure subsets). Especially, the result of the 

degenerate diabatic states is converging to our chemical insights. To be more specific, the VB structure 

pairs, STR2 and 3 with STR4 and 5, are equivalent by symmetry along C2V vibrations (vertical C2 axis 

in Figure 6) of Q(a). The detailed VB wave-function analysis is provided in Supporting Information.

At last, one should stress out again here that our VB treatment fixes the un-determination of 

degenerate states very naturally as illustrated with the Cp example. As induced by symmetry, the 

rotation of the regular pentagon is allowed in principle as there exist five-fold degenerate directions. 

However, in the diabatic representation, this rotation in the two-dimensional branching space will mix 

the H12 matrix element with diabatic energies H11 and H22 around the conical intersection. Thus, in the 

adiabatic-to-diabatic treatment within the MO framework, one should particularize one atom and make 

a special choice among degenerate vibrations which span the two-dimensional branching space, and 

the same for degenerate orbitals. Note that degenerate vibrations and orbitals are particularized 

randomly in practice for non-Abelian groups by quantum chemistry calculations when performing 

Hessian and Fock matrix diagonalizations in the situation of degenerate eigenvalues. This is 

determined numerically by the fact that the calculation is always made at a near-degenerate point 

within some numerical tolerance threshold; however, there is no direct control about the direction from 

this point to the truly degenerate point within the branching space, except for the history of the 

calculation. In contrast, in a classical VB framework, this is determined from the onset by using a 

particular linear independent VB structure set. Figure 6 presents a full covalent VB structure set (5 of 

75 in total) of a 5-centred ring model. There exist five equivalent sets via rotations, but they share the 

same determinant expansion by eq.2. Thus, in order to ensure that a linearly independent basis (VB 



structure set) is employed, the degenerate Jahn-Teller prototype is fixed a priori, which means that we 

have already made one choice among the five equivalent sets before the classical VB calculations. 

This has principally become one of the advantages of VB theory in constructing diabatic 

representations for a high-symmetry prototype.

(FIGURE 6 near here)

In conclusion, the “VB-based compression approach for diabatization” (VBCAD) has been 

extended to the general and multidimensional case of a conical intersection. Rather than fitting or 

propagating, an automated phase-correction technique has been used and illustrated. It makes plain 

use of the sometimes detrimental non-orthogonality of classical VB theory. This was achieved by a 

phase correction matrix that makes the vector distance between two states become minimal, which 

thus only works for non-orthogonal cases. Our numerical results show that the a priori relative 

arbitrary phase of diabatic states can be made consistent from a global perspective and automatically. 

Moreover, the pointwise character of our approach also makes it particularly appealing for quantum 

or semiclassical dynamics treatments of the nuclear motion for which global and/or on-the-fly diabatic 

(hence smooth) potential energy and coupling surfaces are required. These advantageous features were 

illustrated in two prototypical symmetry-induced Jahn-Teller conical intersections: namely, the H3 and 

the cyclopentadienyl (C5H5) radicals. Furthermore, the VB picture really fixes the un-determination of 

degenerate states, since chemically meaningful and nonredundant VB structures are specified from the 

onset and further employed. The VB wave functions obtained by VBCAD as a “black-box” also 

provide relevant chemical interpretation of the specific bonding patterns. These aspects obviously 

remind us again of the great advantages of thinking in terms of ab initio valence bond theory for 

chemists, here in particular for constructing diabatic states on both a rational and practical basis.



The computational details in this work are summarized as follows: The geometries were optimized 

with the Gaussian 16 program32. All the VB calculations were carried out with the Xiamen Valence 

Bond (XMVB) program33. The VBCAD treatment was performed by a post-processing algorithm with 

the MATLAB program version 2018b34.



Figure 1. Simplified flowchart representing the essential steps of the phase-corrected VBCAD scheme. 

Na and Nb denote the vector distances between two pre-diabatic states (Cpdia). Σ is a phase-correction 

matrix.



 

Figure 2. The global potential energy surface of the H3 radical complex in the vicinity of its conical 

intersection calculated by the hc-DFVB method. A) The double-cone adiabatic surfaces. R0 is fixed at 

the optimal D3h bond length, R denotes the distance between one of the atoms (H2) and the midpoint 

X of the remaining two fixed H atoms (H1 and H3). θ denotes the H2-X-H1 angle. B) The degenerate 

ground-state and first excited-state energy curves (conical intersection seam) along a D3h distortion; 

R0 denotes the minimum D3h bond length (1.38 Å).



Figure 3. Energies (left panel; red and blue meshed surfaces) and coupling (right panel) of both 

diabatic states around the conical intersection obtained from VBCAD. The grey surfaces denote the 

adiabatic energies (same as in Figure 2.). 



Figure 4. The linear independent VB structures of the H3 radical complex (3c-3e). Φcov1, Φion1 and 

Φion2 describe the H1-H2 two-electron bonding patterns that consist of one covalent structure (Φcov1) 

and two ionic ones (Φion1 and Φion2); Φcov2, Φion3 and Φion4 describe those of the H2-H3 bond.



Figure 5. Potential energy surfaces of the cyclopentadienyl radical (Cp) around the Jahn-Teller conical 

intersection along Q(a) and Q(b) distortions from its conical intersection (D5h) geometry. A) Adiabatic 

energies. B) Diabatic diagonal energies (H11 and H22). C) Phase-corrected diabatic coupling (H12).



Figure 6. One linearly independent covalent VB structure set of Cp in which the upper carbon atom 

is particularized. The other four sets can be obtained by rotating each of the VB structure through a 

specific angle (θ; θ=2nπ/5, n=1, 2, 3, 4).
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