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Abstract: The complexation of (3aR,7aR)-N-(3,5-bis(trifluoromethyl)phenyl)octahydro-2H-
benzo[d]imidazol-2-imine (BTI), as a guest, to ethane-bridged bis(zinc octaethylporphyrin), bis(ZnOEP),
as a host, has been studied by means of ultraviolet-visible (UV-Vis) and circular dichroism (CD)
absorption spectroscopies, single crystal X-ray diffraction, and computational simulation. The forma-
tion of 1:2 host-guest complex was established by X-ray diffraction and UV-Vis titration studies. Two
guest BTI molecules are located at the opposite sides of two porphyrin subunits of bis(ZnOEP) host,
which is resting in the anti-conformation. The complexation of BTI molecules proceed via coordina-
tion of the imine nitrogens to the zinc ions of each porphyrin subunit of the host. Such supramolecular
organization of the complex results in a screw arrangement of the two porphyrin subunits, inducing
a strong CD signal in the Soret (B) band region. The corresponding DFT computational studies are in
a good agreement with the experimental results and prove the presence of 1:2 host-guest complex as
the major component in the solution (97.7%), but its optimized geometry differs from that observed
in the solid-state. The UV-Vis and CD spectra simulated by using the solution-state geometry and
the TD-DFT/ωB97X-D/cc-pVDZ + SMD (CH2Cl2) level of theory reproduced the experimentally
obtained UV-Vis and CD spectra and confirmed the difference between the solid-state and solution
structures. Moreover, it was shown that CD spectrum is very sensitive to the spatial arrangement of
porphyrin subunits.

Keywords: porphyrin; guanidine; host–guest binding; chirality; supramolecular chemistry; circular
dichroism; DFT; TD-DFT simulation

1. Introduction

Porphyrins play an important role in different fields of science and technology, includ-
ing catalysis [1–3], light harvesting [4–6], medicine [7–10], supramolecular systems [11–21],
electronic devices [16–18], etc. Besides, porphyrin-based systems have found broad ap-
plication as chemical and chirality sensors [19–22] because of their notable property to
form supramolecular assemblies with different guest molecules. These assemblies produce
characteristic absorption bands in the low-energy regions of the corresponding UV-Vis and
circular dichroism (CD) spectra, which are essentially shifted from absorption of the major-
ity of analytes [23–26]. Recently, much attention has also been paid to the phenomena of
supramolecular chirogenesis, where a chiral guest determines the supramolecular chirality
of the entire host-guest system upon binding to an achiral host molecule [12–15,20,23–35].
In the case of ethane-bridged bis(zinc porphyrin)s (bis(ZnOEP)s) (Figure 1), steric hindrance
induced by coordination of a chiral guest forces the supramolecular system to adopt a screw
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conformation, with the chirality of a guest determining either a clockwise or anticlockwise
arrangement of porphyrin units in the bis-porphyrin host [30–32]. In turn, this directional
helicity results in induced CD in the porphyrin absorption region due to exciton coupling
between the corresponding electronic transitions. This phenomenon has been successfully
applied for determination of the absolute configuration of various chiral organic com-
pounds, including amines [27,29,33], amino acid derivatives [33], alcohols [15], carboxylic
acids [15], and epoxides [34]. For the zinc porphyrin-based sensing systems, amines and
other basic nitrogen-containing organic compounds are particularly privileged analytes
due to their strong electrostatic (Lewis acid-base) binding to zinc ion, which produces the
corresponding penta-coordinated zinc porphyrin complexes in general [31,32,35].
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Figure 1. Schematic representation of complexes of bis(ZnOEP) with both enantiomers of a chiral
amine and the corresponding CD signal induction. Ethyl substituents in bis(ZnOEP) are omitted
for clarity. “S” and “L” denotes small and large substituents in a chiral amine guest, respectively.
See [30–32] for the experimental CD spectra.

As a part of our ongoing studies towards application of bis(ZnOEP) for sensing
polyfunctionalized chiral organic molecules, here we report the complexation of a chiral
guanidine compound, (3aR,7aR)-N-(3,5-bis(trifluoromethyl)phenyl)octahydro-2H-benzo
[d]imidazol-2-imine (BTI, Figure 2), with bis(ZnOEP) [36]. Complexation and supramolec-
ular chirogenesis phenomena in the selected host-guest system were studied by means
of UV-Vis, CD spectroscopies, and single crystal X-ray analysis. The experimental results
were fully rationalized with the aid of computational simulation. Special attention was
paid to the reasons why experimental CD spectra in many cases are different from the
simulated, especially in the case of chiral porphyrin-based supramolecular systems with a
certain degree of conformational flexibility.
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Figure 2. Complexation between bis(ZnOEP) (host) in syn conformation and BTI (guest) resulting in anti-conformation of
the 1:2 host-guest complex in CH2Cl2 solution.

2. Materials and Methods

General methods. UV-Vis absorption spectra were recorded on a Jasco V-730 double-
beam spectrophotometer in a 1-cm thermally stabilized screw-cap quartz cuvette with
a septum cap. CD spectrum were recorded on a Jasco J-1500 spectrophotometer in a
1-cm screw cap quartz cuvette in analytical-grade CH2Cl2 at 20 ◦C. Data acquisition was
performed in the 375–475-nm range with a scanning rate of 50 nm/min, bandwidth of
2.6 nm, response time of 4 s, and accumulations in 3 scans. 1H NMR spectra of BTI were
recorded on a Bruker Avance III 400 MHz spectrometer. The chemical shifts (δ) are reported
in ppm and referenced to a CHCl3 residual peak at 7.26 ppm for 1H NMR, and a CDCl3
peak at 77.16 ppm for 13C NMR. HRMS measurement for BTI was performed on an Agilent
6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA,
USA) equipped with an AJS-ESI source.

Materials. Bis(ZnOEP) was prepared as described in [36]. BTI was prepared by
intramolecular cyclization of 1-((1R,2R)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phe-
nyl)thiourea [37] following the experimental procedure described in [38].

(3aR,7aR)-N-(3,5-bis(trifluoromethyl)phenyl)octahydro-2H-benzo[d]imidazol-2-imine
(BTI): 1H NMR (400 MHz, CDCl3) δ = 7.43 (s, 1H), 7.39 (s, 2H), 5.20 (br s, 2H, NH), 3.17–3.04
(m, 2H), 2.01–1.89 (m, 2H), 1.89–1.73 (m, 2H), 1.54–1.21 (m, 4H). 13C NMR (100.6 MHz,
CDCl3) δ = 159.0, 151.4, 132.5 (q, JCF = 32.9 Hz), 123.6 (q, JCF = 272.9 Hz, CF3), 123.2,
115.2 (m, JCF = 4.1 Hz), 61.8, 29.6, 24.0. HRMS (ESI) m/z calcd for C15H16F6N3

+ [M + H]+

352.1243, found 352.1252.
Spectroscopic Titrations. All the solutions were prepared and mixed by using prop-

erly calibrated analytic glassware (Hamilton® Gastight syringes, volumetric flasks). All
weights were balanced with a Radwag MYA 11.4 microbalance (accuracy ± 6 µg). The
concentration of zinc porphyrin was held constant throughout the titration sequence. The
titration data were fitted globally by using online software Bindfit [39–41]. UV-Vis spec-
trophotometric titration experiments were performed in analytical-grade CH2Cl2. To a
solution of zinc porphyrin, a solution of guest (dissolved in a stock solution of the host
to keep the concentration of the host constant) was added portion-wise using a gastight
syringe at 20 ◦C. The changes in the bathochromic shift of the Soret band were monitored
at different concentrations of the guest.

Single crystal X-ray analysis. The data was measured using a dual-source Rigaku
SuperNova diffractometer equipped with an Atlas detector and an Oxford Cryostream
cooling system using mirror-monochromated Mo-Kα radiation (λ = 0.71073 Å). Data collec-
tion and reduction for all complexes were performed using the program CrysAlisPro [42]
and the Gaussian face-index absorption correction method was applied [42]. All structures
were solved with Direct Methods (SHELXS) [43–45] and refined by full-matrix least squares
based on F2 using SHELXL-2013 [43–45]. Non-hydrogen atoms were assigned anisotropic
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displacement parameters unless stated otherwise. Hydrogen atoms were placed in ideal-
ized positions and included as riding. Isotropic displacement parameters for all H atoms
were constrained to multiples of the equivalent displacement parameters of their parent
atoms with Uiso(H) = 1.2 Ueq (parent atom). Enhanced rigid bond restraints (RIGU) [46,47]
with standard uncertainties of 0.001 Å2 were applied for several atom pairs as well as dis-
tance restraints (DFIX). Positional disorder of the trifluoromethyl (CF3) groups is observed.
Split positions were assigned with isotropic displacement parameters: site occupancy
refinement converged to 54.2(6)% to 45.8(6)% with the sum of the site occupancies of both
alternative positions constrained to unity. The X-ray single crystal data, experimental
details, and CCDC number (2051302) are given below.

Crystal data for the 1:2 complex of bis(ZnOEP) and BTI: CCDC-2051302, C104H120F12N14Zn2,
M = 1924.87 gmol−1, purple plate, 0.10 × 0.08 × 0.03 mm3, triclinic, space group P1
(No. 1), a = 10.2054(4) Å, b = 13.0749(6) Å, c = 18.7677(8) Å, α = 82.751(4)◦, β = 79.844(3)◦,
γ = 77.298(4)◦, V = 2394.71(18) Å3, Z = 1, Dcalc = 1.335 gcm−3, F(000) = 1010, µ = 1.270 mm−1,
T = 120(2) K, θmax = 76.019◦, 14,864 total reflections, 8633 with Io > 2σ(Io), Rint = 0.0431,
10,559 data, 1194 parameters, 61 restraints, GooF = 1.029, R1 = 0.0600 and wR2 = 0.1417
[Io > 2σ(Io)], R1 = 0.0767 and wR2 = 0.1544 (all reflections), 0.956 < d∆ρ < −0.668 eÅ−3.

Computational details. Structural optimization was performed using resolution of
identity (RI) approximation [48–50], PB86 functional [51,52] with D3 dispersion correc-
tion [53] and def2-SV(P) basis set [54] implemented in Turbomole 7.0 [55], which showed
good agreement with experimental data [56–58], as in a gas phase and in solvent. To include
solvent effect the COSMO solvent model [59] was used. To confirm that the optimized
geometry corresponds to a local minimum, the respective vibrational frequencies were
calculated using the same program and level of theory. To get a more accurate energy
value for Gibbs free energies calculations, a single point calculation was done using the
RI-BP86/def2-TZVP [60] level of theory and COSMO solvent model (ε = 8.93). The opti-
mized geometries of supramolecular host-guest complexes are given in Geometries.xyz
(provided in the Supplementary Materials).

The UV-Vis and CD spectra were simulated using the Gaussian16 [61] software and
TD-DFT method [62–64]. For spectra simulations, the ωB97X-D functional [65] and cc-
pVDZ basis set [66–68] with the SMD solvent model [69] were used, since this level of
theory showed good agreement with experimental data [56,57,70]. The first 10 excited
states were calculated in order to ensure that the B band region of the spectrum was covered.
The corresponding data are given in the Supplementary Materials.

The UV-Vis and CD spectra and host-guest geometries were visualized using GaussView
6.0.16 [71]. For plotting the simulated spectra, a bandwidth of 0.04 eV was used due to its
best agreement with the experimental spectra. The rotatory strengths were calculated on
the basis of dipole velocity formalism.

3. Results
3.1. Absorption UV-Vis and CD Spectroscopy

As reported before, bis(ZnOEP) adopts a syn-conformation (Figure 3) in non-coordinating
solvents (e.g., CH2Cl2) because of strong intramolecular π–π interactions between two por-
phyrin subunits [72]. Complexation with an external ligand results in the conformational
switch to the corresponding anti form, which also causes dramatic changes in the UV-Vis
spectra [31]. Similar to previously studied amine ligands [30–32], a portion-wise addition
of BTI (Figure 3) resulted in a noticeable bathochromic shift of the Soret band and its split
into two distinct absorption peaks at 426 and 437 nm that clearly indicates the formation
of 1:2 host-guest complex with bis(ZnOEP) resting in the anti-conformation (Figure 2).
As additional evidence, a Q(1,0) band at 559 nm was noticeably enhanced in comparison
to the ligand free bis(ZnOEP) [31]. The resultant UV-Vis spectrum obtained at the final
point of spectroscopic titration is shown on Figure 4A and consists of the following well-
resolved absorption peaks, λmax, nm (log ε): 426 (5.46), 437 (5.47), 561 (4.49), and 597 (4.00).
Curve fitting of the absorbance change observed during the spectroscopic titration with
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the 1:2 binding isotherm [39] yielded two association constants K1 = (0.51 ± 0.01)·103 M−1,
K2 = (3.1 ± 0.1)·103 M−1 at 293 K for the first and the second ligation events, respectively
(Figure 3, Figures S1–S3 and Table S1, see the Supplementary Materials). More than a 6-fold
increase of the second association constant is indicative of a highly positive cooperativity
of the complexation process as it was found previously for other amine guests [73].
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Figure 4. Experimental UV-Vis (A) and CD (B) spectra of 1:2 complex generated by mixing
bis(ZnOEP) (3.34 × 10−6 M, CH2Cl2, 293 K) and BTI (4.41 × 10−3 M).

The CD spectrum of the resulting 1:2 host-guest complex (Figure 4B) was measured
in CH2Cl2 at the end point of UV-Vis titration, after addition of the 1300-fold excess of
BTI. This corresponds to 97% conversion of free bis(ZnOEP) host into the corresponding
complex, and was calculated based on the values of the corresponding association constants
and initial concentrations of the host and guest. While the parent bis-porphyrin is achiral
and thus being CD silent, addition of BTI ligand induced a strong optical activity in the
Soret transition region (Figure 4B). The observed CD profile consists of four Cotton effects
(CEs): two positive peaks at 412 and 438 nm (with the intensities of 45 and 52 M−1·cm−1,
correspondingly), and two negative peaks at 426 and 451 nm (with the intensities of −106.5
and −13.5 M−1·cm−1, correspondingly). Surprisingly, such a complicated CD profile is
contrastingly distinguishable from more simple CD spectra of bis(ZnOEP) induced by con-
ventional chiral amines [30–32]. Apparently, this is a result of the more complex structure
of BTI in comparison to monodentate guests. To understand the origin of the observed
chirogenic phenomenon, the corresponding computational studies were undertaken (see
Section 3.3).



Symmetry 2021, 13, 275 6 of 14

3.2. Single Crystal X-ray Structure

Crystallographic data provided an additional proof of the structure of 1:2 complex between
bis(ZnOEP) and BTI, resting in the anti-conformation in the solid-state (Figure 5). Complex-
ation proceeds via coordination of the imine nitrogen of BTI ligands to the zinc ions of
bis(ZnOEP), with an average Zn–N bond distance of 2.18 Å. Commonly to zinc porphyrin
complexes, zinc is penta-coordinated and slightly shifted out of the mean porphyrin plane
towards the imine nitrogen of BTI ligand. Coordination of two guest molecules occurs
from the opposite sides of bis(ZnOEP). In the solid-state, two porphyrin units are arranged
nearly parallel to each other, with the Zn-Cmeso-Cmeso-Zn dihedral angle of 179.0◦, hence
indicating only a slight anticlockwise turn of the porphyrin moieties.
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Figure 5. Ball-and-stick model of BTI-bis(ZnOEP) 2:1 complex according to X-ray studies (CCDC
2051302). Hydrogen atoms as well as atom sites with minor occupancies are omitted for clarity.

3.3. DFT Modelling of the Complex

The obtained crystal structure was used as a starting point for further geometry opti-
mization. Three standard protocols were used as follows: (1) refining only the positions of
hydrogens and fluorine atoms [74,75], (2) full optimization in the gas phase [74,76–78], and
(3) full optimization in dichloromethane (COSMO solvent model) [76,77,79,80]. Optimiza-
tion was performed using the RI-PB86-3D/def2-SV(P) level of theory followed by further
simulation of the UV-Vis and CD spectra by using theωB97X-D/cc-pVDZ level of theory
with the SMD solvent model (see Figure 6 and Table S2 in the Supplementary Materials).
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The UV-Vis spectra calculated on the basis of the crystal structure (λmax at 391 and
399 nm) and optimized geometries (λmax at 401 and 415 nm) are blue shifted in comparison
to the experimentally obtained spectrum (λmax at 426 and 437 nm) (Figure 6A). Additionally,
it is of note that the absorption profile of the crystal structure-based spectrum shows a non-
resolved split of the Soret band with only a shoulder at 391 nm due to the close proximity
of the simulated electronic transitions. However, the optimized geometries in both the gas
phase and the solution give nearly the same absorption profile with a well-resolved split
Soret band, which is similar to the experimental spectrum.

In CD spectra, which are more sensitive to any geometry changes, the spectrum
simulated using the crystal structure has three CEs: a positive peak of +670.0 cgs at λmax at
380 nm, a negative peak of –2062.2 cgs at λmax at 396 nm, and a positive peak of +1752.3 cgs
at λmax at 403 nm (Figure 6B). This spectrum is somewhat similar to the experimental one
(Figure 4B), except the difference in the intensities of the positive bands and an absence
of the low-energy negative band at 451 nm. As in the case of UV-Vis spectra, the CD
spectral profiles simulated by using the geometries optimized in the gas phase and in
dichloromethane solution are essentially the same (Figure 6B). Both spectra have four CEs:
two positive peaks at 393 (393) and 490 (410) nm and two negative peaks at 409 (402) and
416 (417) nm in a gas phase and in dichloromethane (in brackets). However, the calculated
intensities and shape of the bands are different from the experimental one.

To explain the differences in the calculated and experimental spectra, we assumed that
the experimental spectrum represents the combined contribution of various conformers or
even differently organized host-guest complexes. We attempted to define these species,
since X-ray analysis usually defines only the most energetically favorable conformer. In
addition to the lowest energy conformer A (which also dominates in the solid-state, accord-
ing to X-ray analysis), three 1:2 complexes (B–D) differing by the spatial orientation of the
guest molecules and two 1:1 complexes differing by the coordination mode to the second
porphyrin moiety were built and their geometries were fully optimized. The calculated
Gibbs free energies of these complexes are presented in Figure 7. In the complex B, two BTI
molecules are placed asymmetrically at the opposite sides of the bis(ZnOEP) host. In the
complexes C and D, the guests are located at the same side of bis(ZnOEP); however, both
BTI molecules are facing each other either by the octahydrobenzo[d]imidazole fragments
(complex C) or by the bis(trifluoromethyl)phenyl fragments (complex D). In addition to
1:2 complexes, two possible 1:1 complexes with clockwise and anticlockwise positions of
two porphyrin subunits were also modelled. In the 1:1 complexes E and F, the host–guest
interaction occurs via a two-point coordination mode in a tweezer fashion by placing the
BTI molecule between two porphyrin moieties. As the most plausible binding modes, the
corresponding tweezer conformation is fixed either by simultaneous coordination of two
nitrogens of BTI with two zinc ions of bis(ZnOEP) (complex E) or by interaction of imino
nitrogen and one fluorine atom of the CF3 group with zinc ions of bis(ZnOEP) (complex F,
Figure 7). All of the corresponding energies and geometries are given in Table S3 and
Geometries.xyz (see the Supplementary Materials).

According to the Boltzmann distribution, the lowest energy complex A is a dominant
species in solution (97.7%), whilst another complex B makes up only 1%, with the Gibbs
free energy being by 2.8 kcal mol−1 higher than that of the complex A. The Gibbs free
energies of the complexes C and D are even higher by 4.5 and 22.7 kcal mol−1, which is
quite reasonable considering the fact that the approach of two BTI molecules from the same
side of bis(ZnOEP) is sterically hindered by the porphyrin’s ethyl peripheral substituents.
Formation of the 1:1 complexes E and F is also unfavorable, since their Gibbs free energies
are 2.5 and 11.0 kcal mol−1 higher as compared to the major complex A. Based on these
data, it is obvious that the formation of other complexes could not be the reason why the
simulated spectra differ from the experimental one.
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complex A. Ethyl substituents in bis(ZnOEP) are omitted for clarity.

In order to understand the differences with the experimental data, porphyrin geome-
tries obtained from the crystal structure and optimized in solvent were compared and two
major distinctions were found. In particular, one of the porphyrin planes is more deformed,
with the Cβ-Cβ-Cβopp-Cβopp dihedral angles being 18.1◦ and −15.2◦ (optimization in
solution) and 9.4◦ and −9.3◦ (crystal structure), and porphyrin planes are shifted in respect
to each other by 17.0◦ (based upon the Zn-Cmeso-Cmeso-Zn dihedral angle), as compared
to the crystal structure geometry (Figure 8A and Table 1). Additionally, it turned out
that solvation plays an insignificant role, resulting in the minor conformational changes
found for the complexes optimized as in the gas phase and in CH2Cl2. For example, in
the complex optimized in a gas phase, the Zn atoms became a bit closer to the average
porphyrin planes (N-Zn-Nopp angle), but the Cβ-Cβ-Cβopp-Cβopp and Zn-Cmeso-Cmeso-Zn
dihedral angles remained almost unchanged. Therefore, it was reasonable to conclude that
the differences observed between CD spectra, calculated using the geometries optimized
in solution, and the crystal structure are attributed to altering the spatial position of the
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two porphyrin units. Indeed, it is known that the CD spectra of bis-porphyrins are highly
sensitive to the orientation of porphyrin rings relative to each other [30–32]. Furthermore,
it was previously established that the CD amplitude has a parabolic-like dependence on
the dihedral angle between the coupling electronic transitions, with zero values at 0◦ and
180◦ and a maximum value at around 70◦ [81]. In the case of the porphyrin chromophores,
there are two B electronic transitions orientated along the corresponding meso (5–15 and
10–20) positions (Figure 8B) and any directional deviation from the coplanar conformation
makes these transitions optically active. In the crystal structure, both porphyrin planes are
situated almost on the same line, with the dihedral angle Zn-Cmeso-Cmeso-Zn being 179.0◦,
which can be attributed to a slight anticlockwise orientation. In the structure optimized in
dichloromethane, two porphyrin planes are orientated clockwise, with the dihedral angle
Zn-Cmeso-Cmeso-Zn equaling −163.5◦.
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Figure 8. Atom labelling (A) and corresponding porphyrin electronic transitions (B) of the bis(ZnOEP)-BTI complex. Ethyl
substituents in bis(ZnOEP) are omitted for clarity.

Table 1. Differences in the geometries in the solid-state (according to X-ray crystallography) and in
the gas phase and solution (according to DFT calculations).

Angles Experimental
(Solid-State)

Fully Optimized
(Gas)

Fully Optimized
(CH2Cl2 Solution)

N-Zn-Nopp (Por 1) 160.6◦ 162.9◦ 160.8◦

161.2◦ 163.5◦ 161.0◦

Cβ-Cβ-Cβopp-Cβopp (Por 1) 9.4◦ 18.4◦ 18.1◦

−9.3◦ −16.4◦ −15.2◦

N-Zn-Nopp (Por 2) 160.9◦ 164.0◦ 161.0◦

160.8◦ 163.5◦ 161.0◦

Cβ-Cβ-Cβopp-Cβopp (Por 2) 11.6◦ 10.9◦ 10.7◦

−13.5◦ −11.7◦ −11.9◦

Nguest-Zn-Nguest-Zn 0.0◦ 6.4◦ 6.1◦

Zn-Cmeso-Cmeso-Zn 179.0◦ −162.2◦ −163.5◦

To confirm this hypothesis unambiguously, a relaxed coordinate scan along the Zn-
Cmeso-Cmeso-Zn dihedral angle with the step of 2◦ using the RI-PB86-3D/def2-SV(P) level
of theory and COSMO solvent model was carried out (corresponding energies are given
in Table S4, see the Supplementary Materials). Further, for all these structures, the corre-
sponding CD spectra using the ωB97X-D/cc-pVDZ level of theory with the SMD solvent
model were simulated (corresponding data are given in Table S5, see the Supplementary
Materials). The spectrum calculated was average weighted and based on the conformers’
electronic energies (entropies and vibrational energies are not taken into account), as shown
in Figure 9A. In this spectrum, the intensity of the 4th CE decreased by 63 cgs, and the
intensities of the 3rd, 2nd, and 1st CEs increased by 158, 23, and 210 cgs, respectively, as



Symmetry 2021, 13, 275 10 of 14

compared to the CD spectrum of complex A in solution. These values better match the
experimental data; however, the intensities of the 2nd and 1st CEs are still relatively small
(+265 and −335 cgs).
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Figure 9. (A) Average simulated CD spectra, (B) the potential energy surface scan of the BTI/bis(ZnOEP) complex with
variable Zn-Cmeso-Cmeso-Zn dihedral angles. Red marker shows the minimum found during the geometry optimization,
blue marker shows the structure with the Zn-Cmeso-Cmeso-Zn dihedral angle of 155.5◦.

In turn, the energy scan showed that the potential energy surface is flat and continues
for the range of −167.5◦ to −151.5◦, with the energies varying within just 0.4 kcal mol−1

(Figure 9B and Table S4, see the Supplementary Materials), which makes difficult to deter-
mine the exact minimum. Nevertheless, the minimum found by the geometry optimization
process (and confirmed by frequency calculations) corresponds to the dihedral angle of
−163.5◦ and it is 0.2 kcal mol−1 higher than in the case of the complex with the dihedral
angle of −155.5◦. Such a small energy difference is within an accuracy error of the DFT
method and could be a result of the numerical noise. Therefore, it is plausible to assume
that the Zn-Cmeso-Cmeso-Zn dihedral angle of bis(ZnOEP) complex in solution is about
−155.5◦, since the UV-Vis and CD spectra of this structure (Figure 10) has the best match
with the experimentally measured spectrum (Figure 4). All other simulated spectra are
presented in Figure S4, see the Supplementary Materials.
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concentrations of BTI, Table S2: Transition energies, oscillator strengths and rotational strengths, 
Table S3: Energies of complexes A–F, Table S4: Energies of complexes optimized in CCl2H2 with 
frozen Zn-Cmeso-Cmeso-Zn dihedral angle, Table S5: Transition energies, oscillator strengths and ro-
tational strengths for complexes with frozen Zn-Cmeso-Cmeso-Zn dihedral angle, Cartesian coordi-
nates (Geometries.xyz).  

Figure 10. (A) Simulated UV-Vis spectra, (B) simulated CD spectra of bis(ZnOEP)/BTI complexes with variable Zn-Cmeso-
Cmeso-Zn dihedral angles.
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4. Conclusions

In the present work, the complexation of bis(trifluoromethyl)phenyl)octahydro-2H-
benzo[d]imidazol-2-imine (BTI), as a guest, with bis(ZnOEP), as a host, was studied
from the experimental and theoretical points of view. It was found that the host-guest
complexation ratio is 1:2 and the BTI binding occurs via coordination of the imine group
to the zinc ions of bis(ZnOEP). In agreement with the crystallographic results and DFT
study, in solution the main host-guest complex is a supramolecule, in which the two guest
molecules are located symmetrically at the opposite sides of bis(ZnOEP) host.

Complexation of the guests to bis(ZnOEP) causes the formation of a screw confor-
mation in the bis-porphyrin host due to the shift of the porphyrin planes relative to each
other, which results in low-energy shifts of the porphyrin electronic transitions and the
appearance of a strong CD signal in the Soret band region. Although the simulated UV-Vis
spectra based on solid-state geometry and structure optimized in the CH2Cl2 solution
are similar, the CD spectra are more sensitive to geometry changes and differ drastically.
The relative orientation of porphyrin planes changes upon solvation with the resultant
complex, adopting a clockwise screw, with the Zn-Cmeso-Cmeso-Zn dihedral angle being
ca −155.5◦. The CD spectrum simulated for this spatial orientation is a good match with
the experimental data and showed four clearly observed Cotton effects in the Soret band
region induced by the chirogenic process of asymmetry transfer from a chiral guest to an
achiral host.

This study is one of the rare examples of comprehensive CD analysis of chirality
induction in bis-porphyrins caused by external chiral ligands, which can be a benchmark
approach for the rationalization of supramolecular chirogenesis in bis-porphyrins. Further-
more, the obtained results demonstrate the necessity of careful consideration of all external
and internal factors that influence the supramolecular organization of complex to attain
the best match between experimental and simulated CD spectra.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-8
994/13/2/275/s1, Figure S1: UV-Vis spectra of bis(ZnOEP) titration with BTI in CH2Cl2, Figure
S2: UV-Vis experimental and 1:2 fitted titration curves of bis(ZnOEP) and BTI in CH2Cl2, Figure S3:
Residual analysis of UV-Vis titration between bis(ZnOEP) and BTI in CH2Cl2 using 1:2 model, Figure
S4: UV-vis and CD spectra simulated for complexes with altered Zn-Cmeso-Zn-Cmeso dihedral angle,
Table S1: Absorptions of bis(ZnOEP) (3.3×10−6 M) derived from the UV-Vis titration of bis(ZnOEP)
with BTI in CH2Cl2 and concentrations of BTI, Table S2: Transition energies, oscillator strengths and
rotational strengths, Table S3: Energies of complexes A–F, Table S4: Energies of complexes optimized
in CCl2H2 with frozen Zn-Cmeso-Cmeso-Zn dihedral angle, Table S5: Transition energies, oscillator
strengths and rotational strengths for complexes with frozen Zn-Cmeso-Cmeso-Zn dihedral angle,
Cartesian coordinates (Geometries.xyz).
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