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On Random Extended Intervals and their ARMA Processes

Babel Raïssa GUEMDJO KAMDEM∗, Jules SADEFO KAMDEM†, Carlos OUGOUYANDJOU∗

July 7, 2020

Abstract

This work introduces and characterizes the so called "random extended intervals", these
are random intervals for which the left bound may be higher than the right one. To carry out
this study, we introduce on the set of random extended intervals a structure of metric space
relevant to study extended interval-valued ARMA time series. This is done by extending the
Hausdorff metric on extended intervals and defining a family of metrics dγ relevant for the set
of random extended intervals and which do not have some disadvantages of the Hausdorff
metric. We show that there exists a unique metric dγ for which γ(t)dt is what we have
called "adapted measure" and we use this metric to define variability for random extended
intervals.

Keywords: Uncertainty Modeling, Stochastic Processes, Random Extended Interval, Hausdorff
Metrics , Time series, ARMA

1 Introduction

Intervals analysis (see Bauch (1992); Moore (1966); Jaulin et al. (2001); Alefeld and Herzberger
(2012)) initially developed from the 1960s to take into account in a rigorous way, different types
of uncertainties (rounding errors due to finite precision calculations, measurement uncertainties,
linearization errors) makes it possible to build supersets of the domain of variation of a real
function. Coupled with the usual theorems of existence, for example, the Brouwer or Miranda
theorems, the interval theory also makes it possible to rigorously prove the existence of solutions
for a system of equations (see Goldsztejn et al. (2005)). With interval analysis, it was now
possible to modeling interval data.

In recent years, more precisely since the end of 1980s years, interval modeling has caught
the attention of a growing number of researchers. The advantage of an interval-valued time
series over a point-valued time series lies in that it contains both the trend (or level) information
and volatility information (e.g., the range between the boundaries), while some informational
loss is encountered when one uses a conventional point-valued data set, e.g., the closing prices
of a stock collected at a specific time point within each time period, since it fails to record the
valuable intraday information. Higher-frequency point-valued observations could result in hardly
discriminating information from noises. A solution is to analyze the information in an interval
format by collecting the maximum and minimum prices in a day, which avoids undesirable noises
in the intraday data and contains more information than point-valued observations Sun et al.
(2018). There is an increasing literature using interval financial time series for markets risk
analysis. A part of this literature is based on fuzzy approach (see for instance Mbairadjim
et al. (2014b), Mbairadjim et al. (2014a) and Sadefo Kamdem et al. (2012) and some references
therein).
∗Institut de Mathématiques et de Science Physique, UAC, Bénin
†Université de Montpellier (MRE EA 7491)
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A huge progress in the field of interval-valued time series has been done by Billard and Diday
Billard and Diday (2000, 2003) who first proposed a linear regression model for the center points
of 37 interval-valued data. They have been followed by other authors Maia et al. (2008); Hsu and
Wu (2008); Wang and Li (2011); González-Rivera and Lin (2013); Wang et al. (2016). To study
interval data, all those references apply point-valued techniques on the center, the left bound or
the right bound. By so doing, they may not efficiently make use of the information contained in
interval data. In 2016, Han et al Han et al. (2016) developed a minimum-distance estimator to
match the interval model predictor with the observed interval data as much as possible. They
proposed a parsimonious autoregressive model for a vector of interval-valued time series processes
with exogenous explanatory interval variables in which an interval observation is considered as
a set of ordered numbers. It is shown that their model can efficiently utilize the information
contained in interval data, and thus provides more efficient inferences than point-based data and
models Han et al. (2015). Despite all those good items, the classical theory of interval modeling
has some inconveniences. We can enumerate two which are address in another work and in the
present paper, respectively.

Firstly, the set of random intervals (or more generally random sets) is not a vector space.
Indeed, the set of intervals is not an abelian group for the classical addition of intervals. So,
all the useful theorems obtain through orthogonal projection as Wold decomposition Theorem
cannot be extended to interval-valued processes. Secondly, in time series, interval-valued data
does not take into account some specifications or details of the study period, as for instance
in the financial markets where a movement in stock prices during a given trading period is an
observation of bounded intervals by maximum and minimum daily prices (see Han et al. (2016)).
One can use two concepts to address each of those both inconveniences. One can consider the set
of random intervals as a "pseudovector space" where vectors do not necessarily have opposites.
This concept of pseudovector space has been developed in Sadefo Kamdem et al. (2020) to address
the first inconvenience stated above. The second inconvenience can be address by working with
"extended intervals" instead of classical intervals; as in the present paper.

Indeed, it may be often more relevant to consider extended intervals formed by the opening
and closing prices, regarding stock prices. Also, for the daily temperature in meteorology, instead
of taking the max and min, it would be better in some cases to take the morning and evening
temperature, as well as for the systolic and diastolic blood pressures in medicine. For this last
example of blood pressure, when plotting the blood pressure of somebody as extended intervals
of morning and evening records, one can see easily days where the morning blood pressure was
higher than the evening one, which can indicate illness or emotional issue.

Therefore, given the constraints imposed by classical interval theory and its application on
time series, our approach is based on the concept of extended or generalized intervals for which
the left bound is not necessarily less than the right one. This generalization makes our modeling
approach relevant for time series analysis. This generalization guarantees the completeness of
interval space and consistency between interval operations. Extended intervals are also used for
time series analysis in Han et al. (2012) but their approach does not highlight the advantages of
generalized interval-valued variables.

Our contribution is therefore both theoretical and empirical. In other words, we have concep-
tualized and redefined some of the specific characteristics of the set of extended intervals. More
precisely, we define on the set of extended intervals, a topology which generalizes the natural
topology on the set of classical interval, unlike the topology introduces by Ortolf and Kaucher
Ortolf (1969); Kaucher (1973) on generalized intervals, and which restricted on classical interval
is completely different from their natural topology.

The rest of the work is organized as follows: The main purpose of Section 2 is to fix notations,
give a consistent definition of extended intervals, and introduce operators such as inclusion,
intersection, and union. In Section 3 we introduce a suitable class of distances on the set
of random extended intervals, that solves a disadvantage of the Hausdorff. We use this new
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distance to define variance and covariance of random extended intervals and we show that they
share some useful properties with point-valued random variables, (see propositions 3.2 and 3.3).
Section 4 is concerned with stationary extended interval-valued time series and ARMA model are
investigated. In Section 5, we prove the Wold decomposition version of extended interval-valued
time series. Section 6 is about the numerical study and we have used there the software R. We
make a simulation of an I-AR(1) process and illustrate the interpretation of a plot of extended
intervals on a few data on blood pressure. We also do empirical analysis and forecasting of the
French CAC 40 market index from June 1st to July 26, 2019.

2 Extended intervals

In this section, we first recall some concepts related to standard intervals. Next, we define what
we mean by "extended interval" and we introduce a new topology on the union R ∪ R← of real
numbers with decreasing real numbers, that generalizes the topology of R.

Let Kkc(R) be the set of nonempty compact (and convex) intervals. For A = [a1, a2], B =
[b1, b2] ∈ Kkc(R) and λ ∈ R, we recall the operations

A+B = [a1 + b1, a2 + b2] (1)

λA =

{
[λa1, λa2] if λ ≥ 0

[λa2, λa1] if λ ≤ 0
. (2)

It is noteworthy that Kkc(R) is closed under those operations, but it is not a vector space, since
A + (−1)A is not necessarily {0}, unless A = {0}. The Hausdorff distance dH is defined for
closed intervals [a1, a2] and [b1, b2] by

dH([a1, a2], [b1, b2]) = max(|b1 − a1|, |b2 − a2|).

It is well-known that (Kkc(R), dH) is a complete metric space (see Yang and Li (2005) for details).
For A ∈ Kkc(R), the support function of A is the function s(·, A) : R→ R defined by

s(x,A) = sup{ax ; a ∈ A}. (3)

Equivalently, if we set A = [a1, a2],

s(x,A) = max(xa1, xa2).

Keep in mind that s(x,A) returns x times the left bound of A when x is negative and x times
the right bound of A when x is positive. The precede remark will be used to extend the support
function on extended closed intervals.

It is clear that the daily temperature of a given region is not a single real value, but a
continuous function from day hours to the set of real numbers. In classical interval analysis
Maia et al. (2008); Kearfott (1996); Moore (1966) the daily temperature is the interval bounded
from below and above by the minimum and maximum daily temperatures. This approach is
quite precise, but we can still do better. In fact, most often, from midnight (i.e. from 00:00),
the temperature is decreasing until the sun begins to rise. When sun is rising, the temperature
increases until the sun is at its zenith and temperature begins decreasing again, and so on. (The
reader can visit the page hourly weather of the web site weather.com.) In such a situation, we may
consider that the temperature of each day is a union of what we will call extended intervals, each
of them being either increasing or decreasing. This model gives more information. Decreasing
interval indicates that the temperature is more or less decreasing during the considered period.

Definition 2.1. Let A,A ∈ R ∪ {±∞}. An extended interval is the range A of real numbers
between A and A, and runs through from A to A.
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A difference with standard intervals is that, for extended intervals we do not impose that
A ≤ A. But, the running direction is important. We say that A is an increasing extended
interval or a proper interval when A < A, is an decreasing extended interval or an
improper interval when A > A and is a degenerate interval when A = A. When A and A
are in A, we say that A is an extended closed interval and denote it by A = bA,Ac. We also
have extended open intervals cA,Ab, R =c −∞,∞b and R← :=c∞,−∞b.

Any non-degenerate extended interval A represents the classical interval from min(A,A)
to max(A,A) ran in the increasing direction (for increasing extended interval) or ran in the
decreasing direction (for decreasing extended interval). We call A the left bound and A the right
bound of the extended interval A. To extend the natural topology of R to R� := R∪R← we need
to define properly intersection for extended intervals. A preliminary observation is that in R� we
have that ([0, 1] ∩ [1, 2])c = {1}c = (R ∪ R←)r {1} and [0, 1]c ∪ [1, 2]c = (−∞, 1)∪ (2,∞)∪R←;
where Ac represent the complementary of A in R�. So, for the Moivre’s formula (A ∩ B)c =
Ac ∪ Bc to hold, we must precise if a given degenerate interval is increasing or decreasing. For
any a ∈ R, we denote by {a} the increasing degenerate extended interval made by a and by
{a}← the decreasing one.

We will write A ⊆ B when B ≤ A ≤ A ≤ B or B ≥ A ≥ A ≥ B. This definition of
inclusion takes into account the running direction. For instance, b1, 2c * b3, 1c, although all
elements of b1, 2c are elements of b3, 1c. The only obstruction for the inclusion to hold in this
example is the difference in the running direction between both intervals. In addition, we agree
that {2}← * b1, 3c and {2} * b3, 1c but {2}← ⊆ b3, 1c and {2} ⊆ b1, 3c. We extend now
the definition of intersection to extended intervals in such a way that the elementary properties
A ∩A = A, A ∩ ∅ = ∅, A ∩ R� = A and (A ⊆ B =⇒ A ∩B = A) still hold.

Definition 2.2. If A and B are running in opposite directions then A ∩B = ∅. Otherwise, the
intersection A ∩B is the biggest extended interval C such that C ⊆ A and C ⊆ B.

Example 1. b2, 1c∩b3, 1c = b2, 1c, b3, 1c∩b4, 2c = b3, 2c, b1, 2c∩b3, 1c = ∅, b1, 2c∩b2, 1c = ∅.

Definition 2.3. The natural topology of R� is the topology generated by the set of extended open
intervals.

The topology induced on R by the one of R� coincide with the natural topology of R. We
denote by K(R) the set of all extended closed intervals except decreasing degenerate extended
intervals. That means, all degenerate intervals in K(R) are increasing. We extend Hausdorff
distance on K(R) as

dH(A,B) = max(|A−B|, |A−B|). (4)

Example 2. In K(R), the extended closed interval bA,Ac and bA,Ac are different, unless A = A,
and dH(bA,Ac, bA,Ac) = |A−A|. This distance can be viewed as the effort needed to turn bA,Ac
into bA,Ac.

Theorem 1. (K(R), dH) is a complete metric space.

Proof. Assume that (An = bAn, Anc)n is a Cauchy sequence. Then (An)n and (An)n are Cauchy
sequences in R and so converge, say to A and A respectively. In fact dH(Ap, Aq) = max(|Aq −
Ap|, |Aq − Ap|) goes to 0 as p, q go to infinity implies that |Aq − Ap| and |Aq − Ap|) goes to 0

as p, q go to infinity. Finally, (An)n converges to A = bA,Ac since dH(An, A) = max(|An −
A|, |An −A|).

We endow K(R) with the topology induced by the Hausdorff distance dH . We extend multi-
plication (2) on extended intervals in such a way that multiplication of an increasing extended
interval by a negative number gives a decreasing extended interval and vice versa. This ensure
the consistency of the extensions on K(R) of the internal composition laws (1)-(2):

λ×A = bλA, λAc, A−B = bA−B,A−Bc, ∀λ ∈ R. (5)
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The operator − can be seen as an extension the difference of Hukuhara defines for standard
intervals by A − B = [min(A − B,A − B),max(A − B,A − B)]. It is nothing to see that
(K(R),+, ·) is a vector space and 0 := [0, 0] is the zero vector.

For extended closed intervals A and B the support function reads

sA(u) =

{
sup{ux; x ∈ A} if A ≤ A
inf{ux; x ∈ A} if A < A

. (6)

For instance, sA(−1) = −A and sA(1) = A. Hence the support function from the vector space of
extended closed intervals to the vector space R{−1,1} of maps from {−1, 1} to R, is linear. That
is for all extended closed intervals A,B,

sA+B = sA + sB

sλA = λsA, ∀λ ∈ R
sA−B = sA − sB.

For any extended interval A, we call vector of sA the column vector SA = (−sA(−1), sA(1))′.

3 Extended interval-valued random variables

Let (Ω,A , P ) be a probability space. For any A ∈ K(R), we set

hits(A) = {B ∈ K(R);A ∩B 6= ∅}

the set of extended closed intervals that hit A. We endow the set K(R) of extended closed
intervals with the σ−algebra B(K(R)) generated by {hits(A); A ∈ K(R)}. For simplicity, we
denote X−1(hits(A)) := {ω ∈ Ω; X(ω) ∩ A 6= ∅} by X−1(A) and call it the inverse image of A
by X. This inverse image X−1(A) is the collection of ω ∈ Ω such that X(ω) hits A.

Definition 3.1. A random extended interval on a probability space (Ω,A , P ) is a map X : Ω→
K(R) such that for any A ∈ K(R), X−1(A) ∈ A .

So, a random extended interval is a measurable map X : Ω → K(R) from the underlying
probability space to K(R) endowed with the σ−algebra B(K(R)). We denote by U [Ω,K(R)] the
set of random extended intervals. U [Ω,K(R)] inherit from the vector space structure of K(R).
The distribution of X ∈ U [Ω,K(R)] is the map PX : B(K(R))→ [0, 1] defined on O ∈ B(K(R))
by

PX(O) := P (X ∈ O).

Definition 3.2. A map f : Ω → R is called a selection map for a random extended interval
X when f(ω) ∈ X(ω) for almost every ω ∈ Ω.

Selection maps for X = bX,Xc are then maps leaving between X and X. For instance, X
and X are selection maps for X. The expectation of X is the set of expectations of measurable
selection maps for X. More precisely,

Definition 3.3. The expectation of a random extended interval X on a probability space
(Ω,A , P ) is the extended interval

E[X] = bE[X], E[X]c. (7)

The expectation ofX is the classical interval {E[f ]; f ∈ L1(Ω) and f is a selection map for X}
together with the running direction coming from X.

Proposition 3.1. For any X,Y ∈ U [Ω,K(R)] and λ ∈ R, E[X + λY ] = E[X] + λE[Y ].

We denote by SX = {f ∈ L1(Ω) and f is a selection map for X} the set of integrable se-
lection maps for X and SX(A0) = {f ∈ L1(Ω,A0) and f is a selection map for X} the set of
(Ω,A0)−integrable selection maps for X, being A0 a sub−σ−field of A .
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3.1 A new adapted distance Dγ

To quantify the variability of X, that is the dispersion of X around its expectation, we need a
suitable distance measure on random extended intervals. The first distance that could come to
mind is the Hausdorff distance. But, a disadvantage of the Hausdorff distance is for instance
that dH([0, 2], [5, 6]) = 5 = dH([0, 2], [5, 7]), while intuitively the distance between [0, 2] and [5, 6]
should be less than the distance between [0, 2] and [5, 7].

In Bertoluzza et al. (1995) the authors defined the squared distance d2
γ(A,B) between two

standard intervals as follow. For any interval A = [A,A], we consider the one-to-one map
∇A : [0, 1]→ A, t 7→ tA+ (1− t)A. Then the squared distance d2

γ(A,B) is given by

d2
γ(A,B) =

∫ 1

0
(∇A(t)−∇B(t))2 γ(t)dt =

∫ 1

0

(
t(A−B) + (1− t)(A−B)

)2
γ(t)dt, (8)

where γ(t)dt is a Borel measure on [0, 1] such that:

γ(t) ≥ 0 for every t ∈ [0, 1]; (9a)∫ 1

0
γ(t)dt = 1; (9b)

γ(t) = γ(1− t); (9c)
γ(0) > 0 (9d)

We extend dγ on extended intervals with the same formula (8) and assumptions (9a)-(9d).
If d2

γ(A,B) = 0 then ∇A(t) = ∇B(t) for almost every t ∈ [0, 1], which implies that A = B and
A = B; thus A = B. For triangular inequality, we first write

(∇A(t)−∇C(t))2 = (∇A(t)−∇B(t))2 + (∇B(t)−∇C(t)) + 2(∇A(t)−∇B(t))(∇B(t)−∇C(t)).

Hence,

d2
γ(A,C) = d2

γ(A,B) + d2
γ(B,C) + 2

∫ 1

0
(∇A(t)−∇B(t))(∇B(t)−∇C(t))γ(t)dt. (10)

From here, using Hölder’s inequality, one gets the triangular inequality. Thus, dγ is a distance
on the set K(R) of extended intervals. The two extended intervals A = bA,Ac and Ã = bA,Ac
represent the same standard interval but are different in K(R), and dγ(A, Ã) = |A−A|cst (with

cst =
(∫ 1

0 (2t− 1)2γ(t)dt
)1/2

6= 0) vanishes if and only if A = A. This distance can be seen as

the effort needs to turn Ã into A.
Conditions (9a)-(9b) are required if we want the distance dγ on degenerate intervals [a, a]

and [b, b] gives the usual distance |b− a|. In other hand, the distance dγ is suitable for intervals
since it doesn’t share some disadvantages of the Hausdorff distance, see Bertoluzza et al. (1995)
for more details.

The norm of an interval A is the distance between A and 0: ‖A‖ = dγ(A, 0). Condition
(9c) means that there is no preferable position between left and right bounds. More precisely,

this condition implies that ‖ba, 0c‖ = ‖b0, ac‖ = |a|
(∫ 1

0 t
2γ(t)dt

)1/2
. The previous observation

justifies the following definition.

Definition 3.4. We say that γ(t)dt is an adapted measure if in addition of conditions (9a)-(9d)
one has ∫ 1

0
t2γ(t)dt = 1 (9f)
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Example 3. One can check that with

γ(t) = t(1− t)
(

480− 10240

3π

√
t(1− t)

)
+ 1,

γ(t)dt is an adapted measure. We will refer to this as the standard adapted measure. It has been
used in the software R to check Lemma 3.1.

Generally for any c ∈ (0,∞),

γc(t) = t(1− t)
(
a+ b

√
t(1− t)

)
+ c,

defined an adapted measure for a = −30c+ 510 and b = 512(c−21)
3π .

The dγ distance can be written again as

d2
γ(A,B) = (sA(−1)− sB(−1))2K(−1,−1) + (sA(1)− sB(1))2K(1, 1)

− 2(sA(−1)− sB(−1))(sA(1)− sB(1))K(−1, 1)

=

(
−sA(−1) + sB(−1)
sA(1)− sB(1)

)′(
K(−1,−1) K(−1, 1)
K(1,−1) K(1, 1)

)(
−sA(−1) + sB(−1)
sA(1)− sB(1)

)
d2
γ(A,B) = S′A−BKγSA−B (11)

where Kγ = (K(i, j))i,j=−1,1 is the symmetric matrix given by
K(−1,−1) =

∫ 1
0 t

2γ(t)dt

K(1, 1) =
∫ 1

0 (1− t)2γ(t)dt

K(−1, 1) = K(1,−1) =
∫ 1

0 t(1− t)γ(t)dt

. (12)

We will often denote 〈SA−B, SA−B〉γ := d2
γ(A,B). Since Kγ is symmetric and positive definite,

it induced a scalar product on R2. We use some properties of this inner product in order to
perform the proofs of Lemma 3.2 and Theorem 2. The following lemma shows that there exists
a unique distance dγ with γ(t)dt an adapted measure. This lemma is also useful for numerical
simulations.

Lemma 3.1. All adapted measure induce the same metric given by

Kγ =

(
1 −1/2
−1/2 1

)
and d2

γ(A,B) = (A−B)2 + (A−B)2 − (A−B)(A−B).

Proof. If γ(t)dt is an adapted measure then K(1, 1) = K(−1,−1) =
∫ 1

0 t
2γ(t)dt = 1. Using

conditions (9a)-(9d) one shows that K(−1, 1) = K(1,−1) = −1/2.

Let X and Y be two random intervals. For any ω ∈ Ω, X(ω) and Y (ω) are two extended in-
tervals and one can compute the distance dγ(X(ω), Y (ω)). We defined a new distance on random
extended intervals by taking the squared root of the mean of squared distance d2

γ(X(ω), Y (ω))
in (Ω,A , P ).

Definition 3.5. The Dγ distance is defined for two random extended intervals X,Y by

Dγ(X,Y ) =
(
E[d2

γ(X,Y )]
)1/2

=

√∫
Ω

∫ 1

0

(
∇X(ω)(t)−∇Y (ω)(t)

)2
γ(t)dt dP (ω),

provided the integral converges.
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We denote by L2[Ω,K(R)] the set of random extended intervals X such that E‖X‖2γ :=
E(d2

γ(X, 0)) = D2
γ(X, 0) <∞.

Lemma 3.2. L2[Ω,K(R)] is a vector space under laws (1)-(2).

Proof. It is enough to show that L2[Ω,K(R)] is a sub-vector space of U [Ω,K(R)]. Let X,Y ∈
L2[Ω,K(R)] and λ ∈ R. then Dγ(λX, 0) = |λ|Dγ(X, 0) and

D2
γ(X + Y,0) = E

[
S′X+YKγSX+Y

]
= E

[
(SX + SY )′Kγ(SX + SY )

]
= D2

γ(X, 0) +D2
γ(Y, 0) + 2E

[
S′XKγSY

]
≤ 2D2

γ(X, 0) + 2D2
γ(Y, 0).

Last inequality come from the fact that using Cauchy-Schwarz inequality,

2S′XKγSY = 2〈SX , SY 〉γ ≤ 2
√
〈SX , SX〉γ

√
〈SY , SY 〉γ ≤ 〈SX , SX〉γ + 〈SY , SY 〉γ

It is nothing to see that for any X,Y ∈ L2[Ω,K(R)], 0 ≤ Dγ(X,Y ) <∞ and the triangular
inequality for Dγ follows from the one of dγ. However, Dγ is not a metric on L2[Ω,K(R)] since
Dγ(X,Y ) = 0 does not implies the strict equality X = Y ; but that there are equal almost
everywhere. We denote by L2[Ω,K(R)] the quotient set of L2[Ω,K(R)] under the equivalent
relation "being equal almost everywhere". Then, Dγ is a metric on L2[Ω,K(R)]. We will keep
denoting any class in L2[Ω,K(R)] by a representative X ∈ L2[Ω,K(R)].

Theorem 2. (K(R), dγ) and
(
L2[Ω,K(R)], Dγ

)
are complete metric spaces.

Proof. Assume that (An = bAn, Anc)n is a dγ−Cauchy sequence in K(R). Then (An, An)′n is a
Cauchy sequence in R2 and so converges, say to (A,A)′. In fact dγ(Ap, Aq) = S′Ap−Aq

KγSAp−Aq

goes to 0 as p, q go to infinity implies that SAp−Aq = (−Ap + Aq, Ap − Aq)′ goes to 0 as p, q
go to infinity. Also, (An)n converges to A = bA,Ac since dγ(An, A) = S′An−AKγSAn−A. Hence
(K(R), dγ) is a Complete metric space. Now, assume that (Xn = bXn, Xnc)n is a Dγ−Cauchy
sequence in L2[Ω,K(R)]. Then from Fatou’s Lemma and Definition 3.5,

E[lim inf
p,q→∞

d2
γ(Xp(ω), Xq(ω))] ≤ lim inf

p,q→∞
E[d2

γ(Xp(ω), Xq(ω))] = 0.

HenceE[lim inf
p,q→∞

d2
γ(Xp(ω), Xq(ω))] = 0, which implies that for almost every ω ∈ Ω, lim inf

p,q→∞
d2
γ(Xp(ω), Xq(ω)) =

0. Hence there exists a subsequence (Xnk
(ω)) which is a Cauchy sequence in the complete met-

ric space (K(R), dγ). So, for almost every ω, (Xnk
(ω))k dγ-converges to X(ω) = bX(ω), X(ω)c,

say; setting X(ω) to be 0 for the remaining ω, one obtains an random extended interval X. As
lim
k→∞

d2
γ(Xnk

, X) = 0, we also have that lim
k→∞

d2
γ(Xn, Xnk

) = d2
γ(Xn, X) for any n. Using Fatou’s

lemma again,

lim
n→∞

E[d2
γ(Xn, X)] = lim

n→∞
E[lim inf

k→∞
d2
γ(Xn, Xnk

)] ≤ lim
n→∞

lim inf
k→∞

E[d2
γ(Xn, Xnk

)] = 0,

since lim
p,q→∞

E[d2
γ(Xp(ω), Xq(ω))] = 0 implies that lim

n,k→∞
E[d2

γ(Xn, Xnk
)] = 0.

Definition 3.6. We say that a sequence (Xn) of random extended intervals converges to X in
probability under the metric dγ when (d2

γ(Xn, X)) converges to 0 in probability, that is

∀ε > 0, lim
n→∞

P (d2
γ(Xn, X) ≥ ε) = 0.

8



Theorem 3. A sequence (Xn) such that sup
n
E‖Xn‖ <∞, converges to X in (L2[Ω,K(R)], Dγ)

if and only if (Xn) converges to X in probability under the metric dγ.

Proof. Let’s assume that (Xn) converges to X, that is (D2
γ(Xn, X) = E[d2

γ(Xn, X)]) converges
to 0. That means that (dγ(Xn, X)) converges to 0 in norm L2 in (Ω,A , P ), which implies that
(d2
γ(Xn, X)) converges to 0 in probability. Conversely, assume that (Xn) converges to X in

probability under the metric dγ . So, the inequality |dγ(Xn, 0) − dγ(X, 0)| ≤ dγ(Xn, X) implies
that (‖Xn‖) converges to ‖X‖ in probability. By Fatou’s Lemma,

E‖X‖ ≤ lim inf
n→∞

E‖Xn‖ ≤ sup
n
E‖Xn‖ <∞.

The inequality
d2
γ(Xn, X) ≤ 2‖Xn‖2 + 2‖X‖2

implies that (dγ(Xn, X)) is uniformly integrable. Finally, the dominated convergence theorem
implies that (Dγ(Xn, X)) converges to 0.

Corollary 3.1. Let (Xn) be a sequence of random extended intervals such that sup
n
E‖Xn‖ <∞

and (λn) a family of nonnegative real numbers such that
∑
λ2
n < ∞. Then (Sn =

∑n
i=0 λiXi)

converges in probability under the metric dγ.

Definition 3.7. The covariance of two random extended intervals X, Y is the real

Cov(X,Y ) = E〈SX−E[X], SY−E[Y ]〉γ =

∫
Ω

∫ 1

0

(
∇X(ω)(t)−∇E[X](t)

) (
∇Y (ω)(t)−∇E[Y ](t)

)
γ(t)dt dP (ω).

(13)
The variance of X is the real

V ar(X) = Cov(X,X) = E〈SX−E[X], SX−E[X]〉γ = D2
γ(X,E[X]). (14)

The next proposition is the extended interval version of Theorem 4.1 in Yang and Li (2005).

Proposition 3.2. For all random extended intervals X,Y, Z the following hold:

À V ar(C) = 0, for every constant interval C;

Á V ar(X + Y ) = V ar(X) + 2Cov(X,Y ) + V ar(Y );

Â Cov(X,Y ) = Cov(Y,X);

Ã Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z);

Ä Cov(λX, Y ) = λCov(X,Y );

Å V ar(λX) = λ2V ar(X), for every λ ∈ R;

Æ P (dγ(X,E[X]) ≥ ε) ≤ V ar(X)/ε2 for every ε > 0 (Chebyshev inequality).

Proof. For any constant extended interval C one has E[C] = C and V ar(C) = 0 follows. Using
the linearity of S and the form (11) of the metric dγ one proves items Á-Å. Chebyshev inequality
follows from the fact that P (dγ(X,E[X]) ≥ ε) ≤ E[dγ(X,E[X])2]/ε2.

In the particular case of adapted measures, we have the following results, which are very
useful in numerical simulations.

Proposition 3.3. If γ(t)dt is an adapted measure, a, b are random variables and X and random
extended interval then

9



À V ar(ba, 0c) = V ar(b0, ac) = V ar(a);

Á V ar(ba, ac) = V ar(a);

Â Cov(ba, 0c, b0, bc) = −1
2Cov(a, b);

Ã V ar(X) = V ar(X)− Cov(X,X) + V ar(X);

Ä Cov(X,Y ) = Cov(X,Y ) + Cov(X,Y )− 1
2Cov(X,Y )− 1

2Cov(Y ,X);

Å E‖X‖2 = E[X2] + E[X
2
]− E[XX].

The item Ä of above proposition is similar to the one obtain for classical intervals in Example
4.1 in Yang and Li (2005), but the two last terms −1

2Cov(X,Y )− 1
2Cov(Y ,X) are not present in

the formula of Yang. This difference can be explained by the fact that for our distance dγ , there
is no preference between the left and the right bound, which is not the case for the distance dp
used in Yang and Li (2005). From the formula of Yang, if the left bounds of X,Y are independent
and their right bounds are also independent then Cov(X,Y ) = 0, which is not the case for our
formula Ä above.

Let L2[Ω,K(R)]0 = {X ∈ U [Ω,K(R)];E[X] = 0 and E[‖X‖2γ ] < ∞}, that is the sub-vector
space of L2[Ω,K(R)] made by random extended interval with mean zero. For an random extended
interval X ∈ L2[Ω,K(R)]0, Cov(X,X) = 0 means that X = E[X] = 0 almost everywhere. Hence
formula (13) cannot define a scalar product on L2[Ω,K(R)]0. We denote by L2[Ω,K(R)]0 the
set of classes of zero mean random extended interval equals almost everywhere. We will keep
denoting any class in L2[Ω,K(R)]0 by a representative X ∈ L2[Ω,K(R)]0. L2[Ω,K(R)]0 inherits
from the structure of vector space of L2[Ω,K(R)]0 and for X,Y ∈ L2[Ω,K(R)]0, the formula (13)
reads

Cov(X,Y ) = E〈SX , SY 〉γ =

∫
Ω

∫ 1

0
∇X(ω)∇Y (ω)γ(t)dtdP (ω) (15)

and is a scalar product on L2[Ω,K(R)]0.

Theorem 4. (L2[Ω,K(R)]0, Cov) is a Hilbert space.

Proof. From what is written above, Cov is a scalar product on L2[Ω,K(R)]0. For the complete-
ness, use fact that 〈, 〉γ defined a scalar product on R2.

Example 4. Let N and E be the normal dis-
tribution of parameter (0, 1) and the exponential
distribution of parameter 0.3 respectively. The
probability densities of N and E are respectively
given by

f(ω) = (1/
√

2π) exp(−0.5ω2)

g(ω) = 0.3 exp(−0.3ω).

Let’s consider the random extended interval

X = bf(ω), g(ω)c. (16)

We may write X  NE(0, 1, 0.3) to say that
the left bound of X follows the standard nor-
mal distribution and its right bound follows the
exponential distribution with parameter 0.3.

Figure 1: We represent extended intervals with arrows.
Arrow point up for increasing extended intervals and down
for decreasing extended intervals.
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4 Stationary extended interval time series

Let (Xt)t∈Z be an extended interval time series; that is for any integer t, Xt is an random
extended interval. We denote by At the expectation of Xt and by Ct(j) = Cov(Xt, Xt−j) the
auto-covariance function.

Definition 4.1. We say that an extended interval time series (Xt) is stationary when neither
At nor Ct(j) depends on t. In this case, we just denote them A and C(j) respectively.

For any n ∈ Z+, the auto-covariance matrix is given by

Cn = (C(i− j))1≤i,j≤n =


C(0) C(1) · · · C(n− 1)
C(1) C(0) · · · C(n− 2)
...

...
...

...
C(n− 1) C(n− 2) · · · C(0)

 . (17)

The proof of the following theorem is similar to the one of Theorem 4 in Wang et al. (2016).

Theorem 5. The auto-covariance function of any stationary process satisfies:

À C(k) = C(−k) for all k ∈ Z;

Á |C(k)| ≤ C(0) for all k ∈ Z;

Â the auto-covariance matrix Cn is positive semi-definite;

Ã if C(0) > 0 and (C(k)) converges to to 0 then Cn is positives definite.

LetX1, . . . , XT be a sample of a stationary extended interval time series (Xt) with expectation
A. An unbiased estimator of A is given by

mX =
X1 + · · ·+XT

T
(18)

and the sample-covariance is given by

Ĉ(k) =
1

T

T−|k|∑
i=1

∫ 1

0
(∇Xi+|k|(t)−∇mX(t))(∇Xi+|k|(t)−∇mX(t))γ(t)dt. (19)

Theorem 6. Let (Xt) be a stationary extended interval-valued time series with expectation A
and auto-covariance function C(k) such that (C(k)) converges to 0. Then mX is a consistent
estimator of A; that is for any ε > 0, lim

T→∞
P (dγ(mX,A) ≥ ε) = 0.

Proof. One has

V ar(mX) = D2
γ(mX,A) = E〈SmX−A, SmX−A〉γ =

1

T 2

T∑
i,j=1

E〈SXi−A, SXj−A〉γ

=
1

T 2

T∑
i,j=1

C(i− j) =
1

T 2

T∑
i−j=−T

(n− |i− j|)C(i− j) =
1

T

T∑
k=−T

(
1− k

n

)
C(k).

So, V ar(mX) goes to 0 as T goes to infinity since (C(k)) converges to 0. By Chebyshev inequality,
∀ε > 0, P (dγ(m,A) ≥ ε) ≤ V ar(mX)/ε2 goes to 0 as T goes to infinity.

As usually, Ĉ(k) is not an unbiased estimator of C(k) (unless mX = A) but,

11



Theorem 7. If (C(k)) converges to 0 as k goes to infinity, then for any k, Ĉ(k) is an asymp-
totically unbiased estimator of C(k), that is lim

T→∞
E[Ĉ(k)] = C(k).

Proof.

Ĉ(k) =
1

T

T−|k|∑
i=1

∫ 1

0
(∇Xi+|k|(t)−∇mX(t))(∇Xi(t)−∇mX(t))γ(t)dt

=
1

T

T−|k|∑
i=1

∫ 1

0
(∇Xi+|k|(t)−∇A(t))(∇Xi(t)−∇A(t))γ(t)dt+

1

T

T−|k|∑
i=1

∫ 1

0
(∇mX(t)−∇A(t))2γ(t)dt

− 1

T

T−|k|∑
i=1

∫ 1

0
(∇mX(t)−∇A(t))(∇Xi+|k|(t) +∇Xi(t)− 2∇A(t))γ(t)dt

Hence,

lim
T→∞

E[Ĉ(k)] = lim
T→∞

1

T

T−|k|∑
i=1

E[C(k)] + lim
T→∞

1

T

T−|k|∑
i=1

V ar(mX)

− lim
T→∞

1

T

T−|k|∑
i=1

(
Cov(mX,Xi+|k|) + Cov(mX,Xi)

)
= C(k)− lim

T→∞

1

T 2

T−|k|∑
i=1

T∑
j=1

(
Cov(Xj , Xi+|k|) + Cov(Xj , Xi)

)
= C(k)− lim

T→∞

1

T 2

T∑
j−i=−T

(T − |j − i|) (C(j − i− |k|) + C(j − i))

= C(k)− lim
T→∞

1

T

T∑
l=−T

(
1− |l|

T

)
(C(l − |k|) + C(l)) = C(k)

4.1 Extended Interval-valued AutoRegressive Moving-Average process

Let (Xt) be an extended interval-valued stationary time series with expectation A and auto-
covariance function C(k). We say that (Xt) is an interval autoregressive moving-average
(I-ARMA) process of order (p, q) when

Xt = K +

p∑
i=1

θiXt−i + εt +

q∑
i=1

φiεt−i, (20)

being K a constant extended interval, φi and θi are the parameters of the model, (εt)  
IID({0}, σ2) and for each t, εt is uncorrelated with the past of Xt. By taking expectation
at the both sides of (20) one finds

λA = K, (21)

where λ = 1 − θ1 − · · · − θp. So, as in the case of real random variables, the expectation µt
of Xt doesn’t depend on t and the new series X ′t = Xt − 1

λK is a zero-mean I-ARMA process,
ie Equation (20) with K = 0. In what follows, till numerical study section, we assume that
K = 0, that is (Xt) is a zero-mean stationary process. When p = 0, the process (Xt) is called
an extended interval-valued moving-average time series process of order q, I-MA(q), and when

12



q = 0, one obtains an extended interval-valued autoregressive time series process of order p,
I-AR(p). Let L be the delay operator, thus LXt = Xt−1. Setting Θ(L) = 1 − θ1L − · · · − θpLp
and Φ(L) = 1 + φ1L+ · · ·+ φqL

q , equation (20) can be written as

Θ(L)Xt = Φ(L)εt. (22)

The functions Θ and Φ are called autoregressive and moving-average polynomials respectively.

4.2 Extended interval-valued Moving-Average process of order q

If the autoregressive polynomial Θ = 1 then (22) leads to

Xt = εt +

q∑
i=1

φiεt−i, (23)

which is a extended interval-valued moving-average process of order q, I-MA(q). It is clear that
the latter has a unique solution (Xt) and moreover this solution is always a stationary process.
In fact,

E[Xt] =

q∑
i=1

φiE[εt−i] = 0,

and

C(k) = Cov(Xt−k, Xt) =



(1 + (
q∑
i=1

φ2
i )σ

2) if k = 0

(φk +
q∑

i=k+1

φiφi−k)σ
2 if 1 ≤ k ≤ q − 1

φkσ
2 if k = q

0 otherwise

.

In particular, if (Xt) is an I-MA(1) process: Xt = εt + φεt−1; then

C(1) = φσ2. (24)

In section 5 we show that any non-deterministic zero-mean stationary random extended interval
process can be expressed as a MA(∞).

4.3 Extended interval-valued AutoRegressive process of order p

If the moving-average polynomial Φ = 1 then (22) leads to

Xt = (1−Θ(L))Xt + εt. (25)

which is an extended interval-valued autoregressive process of order p, I-AR(p). In this case,
the existence and the uniqueness of a stationary solution is not guaranteed. However when a
stationary solution exits, using Proposition 3.2 it is nothing to show that its auto-covariance
function satisfies

C(k)−
p∑
i=1

θiC(k − i) = 0, for any 1 ≤ k ≤ p. (26)

Hence the parameters of an I-AR(p) process satisfy the following Yule-Walker equation

CpΘ = cp, (27)

where cp = (C(1), . . . , C(p))T , Θ = (θ1, . . . , θp)
T and Cp is the auto-covariance matrix (17).
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Theorem 8. Any AR(1) process Xt = θXt−1 +εt, with 0 < θ < 1 and sup
t
E‖εt‖ <∞, possesses

a unique stationary solution given by Xt =
∑∞

i=0 θ
iεt−i.

Proof. One has

Xt = θXt−1 + εt = θ2Xt−2 + θεt−1 + εt = θn+1Xt−n−1 +

n∑
i=0

θiεt−i.

As 0 < θ < 1 one has that
∑
θ2i < ∞. This together with suptE‖εt‖ < ∞ implies that

(Sn =
∑n

i=0 θ
iεt−i) converges in probability under the metric dγ by Corollary 3.1. Since (Xt) is

stationary V ar(Xt) = E‖Xt‖2 is constant and

E

∥∥∥∥∥Xt −
n∑
i=0

θiεt−i

∥∥∥∥∥
2

= E‖θn+1Xt−n−1‖2 = θ2(n+1)E‖Xt−n−1‖2

goes to 0 as n goes to infinity. Hence E
∥∥Xt −

∑∞
i=0 θ

iεt−i
∥∥2

= 0. This implies that Xt =∑∞
i=0 θ

iεt−i a.e. From this solution we have

Cov(Xt+k, Xt) = σ2
∞∑
i=k

θkθi−k = σ2 θk

1− θ2
.

Now, if (Xt) is an I-ARMA(1, 1) process: Xt = θXt−1 + εt + φεt−1. Then

C(2) = θC(1) and C(1) = θC(0) + φσ2. (28)

5 Wold decomposition for extended interval-valued time series

Let (Xt)t∈Z be a zero-mean extended interval-valued stationary process. The sets St = Span({Xk}tk=−∞)

and S−∞ =
∞⋂

t=−∞
St are Hilbert spaces of L2[Ω,K(R)]0. For any j ≥ 0, the projection PSt−jXt of

Xt on St−j is called the prediction of Xt on St−j . We shall say that an extended interval-valued
process (Xt)t∈Z is deterministic if for any t ∈ Z, Xt ∈ St−1. Xt − PSt−1Xt is called the error
in the projection of Xt on St−1 and when PSt−1Xt = Xt one says that (Xt)t∈Z is (perfectly) pre-
dictable. As (L2[Ω,K(R)]0, Cov) is a Hilbert space, we have the following Wold decomposition
for extended interval time series.

Theorem 9. Let (Xt)t∈Z be a non-deterministic extended interval-valued stationary time series
process with expectation {0} and auto-covariance function (C(k)). Then Xt can be expressed as

Xt =
∞∑
k=0

αkεt−k +Wt a.s (29)

where:

(i) αk = 1
σ2Cov(Xt, εt−k), α0 = 1 and

∞∑
k=0

α2
k <∞;

(ii) {εt} WN({0}, σ2), with σ2 = V ar(Xt − PSt−1Xt);

(iii) Cov(Wt, εs) = 0 for all t, s ∈ Z;

(iv) (Wt)t∈Z is zero-mean, stationary and deterministic.

14



Proof. For any t ∈ Z, application of the Theorem 4 in Bierens (2012) to the regular sequence
(Xt−k)

∞
k=0 gives that Xt can be expressed as

Xt =
∞∑
k=0

θket−k +Wt a.s (30)

where {et−k}∞k=0 is an uncorrelated process with Cov(ei, ej) = δij , θk = Cov(Xt, et−k),
∞∑
k=1

θ2
k <

∞, Wt ∈ U⊥t with Ut = Span({ek}tk=−∞) ⊂ St. Since the process (Xt)t∈Z is non-deterministic,
the residual εt = Xt − PSt−1Xt is different from 0 and εt = ‖εt‖et, hence (29) holds with
αk = θk/‖εt−k‖, and (εt) is also uncorrelated. As Wt, εt ∈ L2[Ω,K(R)]0, E[Wt] = 0 = E[εt].
Wt ∈ U⊥t implies that Cov(Wt, εs) = 0 for any s ≤ t. For s > t, taking scalar product of (30)
with εs one has Cov(Wt, εs) = Cov(Xt, εs) = 0 since εs ∈ S⊥s−1 and Xt ∈ St ⊂ Ss−1 for s > t.
This proves (iii). Let Xt,n be the projection of Xt on St,n = span({Xt−j}nj=1) and εt,n the
residual. Then Xt,n takes the form

Xt,n =
n∑
j=1

βj,nXt−j ,

where the scalars βk,n do not depend on t, since they are solutions of the system of equations

n∑
j=1

βj,nC(j − k) = C(k), k = 1, . . . , n.

Hence E[Xt,n] = 0, E[εt,n] = 0. Moreover,

V ar(εt,n) = ‖Xt −Xt,n‖2 =

∥∥∥∥∥∥Xt −
n∑
j=1

βj,nXt−j

∥∥∥∥∥∥
2

= C(0) +

n∑
i,j=1

βi,nβj,nC(i− j)− 2

n∑
j=1

βj,nC(j).

Hence V ar(εt,n) = σn does not depend on t and so does for σ = ‖εt‖ = lim
n→∞

σn. Also,

Cov(Xt+k, εt,n) = C(k)−
n∑
j=1

βj,nC(k + j),

which does not depend on t. Using Cauchy-Schwarz inequality,

lim
n→∞

|Cov(Xt+k, εt,n − εt)| ≤
√
C(0) lim

n→∞
‖εt,n − εt‖ = 0,

which implies that Cov(Xt+k, εt) = lim
n→∞

Cov(Xt+k, εt,n) and does not depend on t. So,

αk =
1

‖εt‖
Cov(Xt+k, ek) =

1

‖εt‖2
Cov(Xt+k, εt)

does not depend on t. Moreover, α0 = Cov(Xt,εt)
‖εt‖2 = 1. All this completes the proof of (i) and
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(ii). For k ≥ 0,

Cov(Wt,Wt−k) = Cov

Xt−k −
∞∑
j=0

αjεt−k−j , Xt −
∞∑
j=0

αjεt−j


= C(k)−

∞∑
j=0

αjCov(Xt, εt−k−j)−
∞∑
j=k

αjCov(Xt−k, εt−j) + σ2
∞∑
j=0

αj+kαj

= C(k)− σ2
∞∑
j=0

αj+kαj ,

which does not depend on t. As Wt ∈ St, one can write Wt =
∑∞

k=0 akXt−k. Taking co-
variance with εt and using the fact that εt ⊥ Span(Xt−1, Xt−2, . . .) one gets Cov(Wt, εt) =
a0Cov(Xt, εt) = a0‖εt‖2. Since Cov(Wt, εt) = 0, one deduces that a0 = 0 hence Wt ∈ St−1, thus
(Wt) is deterministic from the past of (Xt). This completes the proof of (iv).

6 Numerical study

Let (Xt) is an AR(1) process:
Xt = K + θXt−1 + εt. (31)

Then from Yule-Walker equation, the parameter θ can be estimated by θ̂ = Ĉ(1)

Ĉ(0)
with

Ĉ(0) =
1

T

T∑
i=1

∫ 1

0
(∇Xi −∇mX)2γ(t)dt =

1

T

T∑
i=1

d2
γ(Xi,mX),

Ĉ(1) =
1

T

T−1∑
i=1

∫ 1

0
(∇Xi+1 −∇mX)(∇Xi −∇mX)γ(t)dt

=
1

2T

T−1∑
t=1

(
d2
γ(Xi+1,mX) + d2

γ(Xi,mX)− d2
γ(Xi+1, Xi)

)
,

where Ĉ(1) and Ĉ(0) are the sample-covariance.
More generally, if we assume that the I-AR(p) process (25) is stationary then from Theorem

5, when C(0) > 0 and (C(k)) converges to 0, Yule-Walker equation (27) is well-posed and from
a large sample X1, . . . , XT , the coefficients of the I-AR(p) process can be estimated by

Θ̂ = Ĉpĉp.

Using (10) and (19) the sample-covariance can be written as

Ĉ(k) =
1

2T

T−|k|∑
i=1

(
d2
γ(Xi+k,mX) + d2

γ(Xi,mX)− d2
γ(Xi+k, Xi)

)
. (32)

It is natural to assume that γ(t)dt is an adapted measure and in this case, the distance dγ is
given by Lemma 3.1 and it easy to numerically compute.

6.1 Simulations

Now, we plot the model (31) with θ = 0.2, K = [13.31, 14.2], εt and εt following independent
standard normal distributions. Figure 2(a) shows a sample for this model for T = 100, when
the interval standard normal distribution used is the one plotted on Figure 2(b). One sees that

16



14

16

18

20

0 25 50 75 100
Time

Ex
te

nd
ed

 In
te

rv
al

(a)

-2

-1

0

1

2

0 25 50 75 100
Time

Er
ro

r

Interval Standard Normal Distribution used

(b)
Figure 2: Simulation for the model (31) with T = 100

most of the outputs of this sample are standard intervals (indeed 71 standard intervals versus
29 decreasing ones) while for the error (interval standard normal distribution), they seem to
be the same number (indeed 41 standard intervals versus 59 decreasing). Figure 3 displays the
estimated auto-covariance function C(k) and shows that it goes to 0 as k becomes large. Also,
K is estimated using the formula K̂ = (1− θ̂)mX.
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Figure 3: Auto-Covariance estimated for the model (31) for T = 100

T K̂ C(T − 2) θ̂ Error
100 [13.31, 14.2] −0.02807759 0.1747072 0.02529285

500 [13.51569, 14.41001] 0.01240641 0.1892873 0.01071265

Table 1: Some estimations using simulation with R

6.2 Empirical studies

Figure 4 displays systolic (in blue) and diastolic (in red) blood pressure of a person recorded in
the morning (left bounds) and in the afternoon (right bounds), over 4 days in 2004. One sees
that on the 11.03.04, blood pressure recorded in the morning is higher than the one recorded in
the afternoon, both for systolic and diastolic.

In Figure 5, we have plotted as standard min-max intervals (in blue) and extended intervals
(in red), CAC 40 Stock Index from the 2nd January to the 31st May 2019 (105 trading days).
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Figure 4: Systolic blood pressure in blue and diastolic blood pressure in red, of a person, recorded over 4 days in 2004.
Left bounds are the morning records and right bounds are the afternoon records.
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Figure 5: CAC 40 Stock Index from 2nd January to 31st May 2019. Red arrows represent the extended intervals
with left bounds the opening values (in EUR) and right bounds the closing values. The blue line segments represent the
interval-valued prices composed of the lowest and highest prices of each day.

Extended intervals are formed by the opening values (left bounds) and the closing values (right
bounds). This figure shows that most often, neither opening nor closing values are the lowest or
the highest value of the index for the day. Notice that in such an index, what is important most
often is not just opening and closing values, but also to know how it has been fluctuating along
the day. For instance, the plot shows many days where opening value and closing value are the
same with a fluctuation along the day. Now, we wish to find the I-ARMA model which best fits
)this data. The first step is to induce stationarity. Augmented Dickey–Fuller Test shows that
neither the data nor its first-order differential are stationaries but its second-order differential is
stationary. So, we differentiate data twice and use AIC to determine the optimal order (p, q).
We define the AIC of the random interval to be the summation of the AIC of the bounds, and we
assume that p, q = 1, 2, 3, 4. Figure 6 shows that the optimal order is p = q = 1. Finally, using
equation (28) we estimated the coefficients of the I-ARMA model by θ̂ = Ĉ(2)

Ĉ(1)
, φ̂ = Ĉ(1)− θ̂Ĉ(0)

and we found
θ̂ = −0.2519991 and φ̂ = −0.5326387. (33)
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Figure 6: AIC as function of q for p = 1, 2, 3, 4.

Figure 7 shows the forecast of the differentiated CAC 40 for the next 40 trading days.
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Figure 7: Forecast values from the 1st June to 26 July 2019 (red) and real values from the 2nd January to 26 July.

7 Conclusion

In this work, we have defined extended intervals and justified that they are relevant to study a
variable that keep more or less one direction of variation each period T . To give a definition of
extended random intervals which restricted on classical intervals coincide with the definition of
random intervals, we had to introduce the set R� := (−∞,∞) ∪ (∞,−∞) of real numbers for
which intervals can be taken in the decreasing running direction. We further define intersection,
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inclusion, and union on R� in such a way that they extend the definitions of these operators
on R. Those operators have been used to extend the topology of R on R�. A suitable distance
has been defined on extended intervals and used to define variance and covariance on random
extended intervals, in a natural way. We have studied ARMA processes with extended interval-
valued both theoretically and numerically. In the numerical part, we have made forecasting on
CAC 40 stock index from the 2nd January to 26 July 2019.

It could be relevant to apply on extended interval time series nonlinear models such as
GARCH and its extensions, as further research.
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