
HAL Id: hal-03166332
https://hal.umontpellier.fr/hal-03166332v1

Submitted on 30 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Mechanochemical Beckmann Rearrangement: An
Eco-efficient “Cut-and-Paste” Strategy to Design the

“Good Old Amide Bond”
Rita Mocci, Evelina Colacino, Lidia De Luca, Claudia Fattuoni, Andrea

Porcheddu, Francesco Delogu

To cite this version:
Rita Mocci, Evelina Colacino, Lidia De Luca, Claudia Fattuoni, Andrea Porcheddu, et al.. The
Mechanochemical Beckmann Rearrangement: An Eco-efficient “Cut-and-Paste” Strategy to Design
the “Good Old Amide Bond”. ACS Sustainable Chemistry & Engineering, 2021, 9 (5), pp.2100-2114.
�10.1021/acssuschemeng.0c07254�. �hal-03166332�

https://hal.umontpellier.fr/hal-03166332v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Mechanochemical Beckmann Rearrangement: An Eco-efficient
“Cut-and-Paste” Strategy to Design the “Good Old Amide Bond”
Rita Mocci, Evelina Colacino, Lidia De Luca, Claudia Fattuoni, Andrea Porcheddu,*
and Francesco Delogu

Cite This: ACS Sustainable Chem. Eng. 2021, 9, 2100−2114 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Discovered over a century ago, Beckmann rearrangement is
still today fully compliant with all the green chemistry principles and
consistent with the key aspects of sustainable development. Herein, we
report on a sustainable mechanochemical procedure allowing the design of
new amide frameworks via an eco-efficient “cut-and-paste” process of C−C
and C−N bonds on the oxime backbone. We combined inexpensive and
readily available reagents, such as p-tosyl imidazole (p-Ts-Im) and oxalic
acid, to prepare smoothly and in good to high yields a library of structurally
different amides, including value-added marketed compounds such as ε-
caprolactam and the active pharmaceutical ingredient (API) paracetamol.
This solvent-free mechanochemical procedure has also been optimized and
successfully extended to several ketones serving as oxime precursors.

KEYWORDS: Mechanochemistry, Beckmann rearrangement, Active pharmaceutical ingredients (APIs), p-Tosyl imidazole (p-Ts-Im),
Amide, Oxime, Green metrics

■ INTRODUCTION

Over the past few decades, organic synthesis has made great
strides, revolutionizing many concepts often taken for
granted.1−3 Such advances are deeply rooted in classical
reactions that are part of the cultural background learned by
contemporary chemists in academia. Facilitated and supported
in the daily work aiming at designing and developing new
synthetic protocols by modern tools and resources, the chemist
keeps drafting new strategies gaining inspiration from what is
commonly referred to as “name organic reactions.”4

In 1886, the German chemist Ernst Otto Beckmann
described the acid-induced conversion of an oxime into an
amide (Scheme 1).5 This reaction is presently known as the
Beckmann rearrangement (BKR)6−10 and even today plays a
key role to obtain secondary amides in both industry and
academia.11 Several (sustainable) approaches have been
reported to access the amide bond,12 and its importance is
witnessed by its presence in several marketed drugs and
polymeric materials (Scheme 1).13,14

The industrial preparations of paracetamol15−18 and ε-
caprolactam19 (intermediate in the synthesis of nylon-6,6)20

clearly prove how BKR is topical and crucial in many
productive areas of modern society. Along this line, it is
worth mentioning that secondary amides attract special
interest because of their occurrence as the main structural
component in many natural products, agrochemicals and
pharmaceuticals,21,22 detergents and lubricants,23,24 and func-
tional materials25 (Scheme 1).

In addition, the wide availability of structurally different and
inexpensive ketones enables easy access to the corresponding
ketoximes as the starting materials of BKR, making it very
attractive even from an atom-economy point of view (Scheme
2).26

In BKR, the initial protonation at the ketoxime oxygen gives
a suitable leaving oxonium cation triggering the departure of
the hydroxy group and the concomitant migration of a
substituent (alkyl or aryl fragment, anti to the leaving group)
from the sp2 carbon atom to the nitrogen cation (Scheme
2).27−32 The simultaneous cleavage of the C−C bond and
formation of a new C−N bond provides the most
straightforward and reliable approach to insert the nitrogen
atom in linear, branched, and cyclic ketones, leading to amide
bond. In its classical form, BKR involves the reaction of an
oxime with strong acids and often requires harsh reaction
conditions and hazardous reagents, restricting its general
applicability.33

More recent advances have already addressed, at least in
part, these limitations via catalysis with transition metals34−43
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or by employing a wide diversity of organic, often toxic,
compounds serving as promoters,44−49 such as cyanuric
chloride,50,51 propylphosphonic anhydride (T3P),52 triphos-
phazene,53 BOPCl,54 CDI,55−57 cyclopropenium salts,58

calcium complexes,59 sulfonic acid derivatives,60−66 inorganic
Lewis acids,67,68 and boronic acids,67−69 among others.70−74

However effective and efficient they may be, most of these
synthetic protocols require high temperatures and expensive,
volatile, and toxic solvents (2,2,2-trifluoroethanol, hexafluor-
oisopropanol, CH3CN, and DMF) and/or excess of reagents
to promote the activation of oximes. All of these concerns pose
a serious threat to the application of these methodologies in
industrial processes.75,76

For these reasons, the development of a simple, eco-efficient,
cost-effective, and environmentally friendly BKR is highly
desirable. It remains a significant challenge in this field,
especially for the straightforward conversion from ketones to
amides. Carrying out the process at room temperature, using
eco-friendly reagents whenever possible and solvent-free

conditions, opens up new avenues for high-performance,
scalable, sustainable, and economic BKRs. These solutions
would also have huge implications and direct benefits for
industry, making a plethora of value-added compounds
accessible.
The most important challenge arises in connection with

solvent elimination. The solvent is, indeed, the major
component of a process in solution and therefore significantly
affects the production costs, especially if highly pollut-
ing.25,77−83 As trivial as it may seem, developing a reaction
without a solvent is not a simple algebraic operation in which
one component, the solvent, is removed.84−88 Rather, it
involves exploiting the entire arsenal of expertise, methods, and
resources available to modern chemists.
Within this context, mechanochemistry can effectively

provide a more reliable and robust solution, allowing many
classical processes to take place in the absence of solvent and
making them more feasible/attractive for chemical indus-
try.84−96 In contrast to neat procedures, kinetic studies on

Scheme 1. BKR with Some Examples of Molecules Containing Secondary Amide Fragments

Scheme 2. Commonly Accepted Mechanism for BKR of Ketoximes156
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mechanochemical processes have highlighted that only a small
fraction of reagents is involved in individual impacts.97−100

Overall, the process works similarly to a highly diluted reaction
(dispersion), while maintaining all the advantages of neat
processes in solution. Since most oximes are solid and many of
them also have high melting points,101 mechanochemistry
matches well with the BKR, thus paving the way to the
preparation of amides along alternative reaction pathways,
often foreclosed in a homogeneous phase.102−104 Nowadays,
the reaction between HCl NH2OH and a ketone is the most
common, efficient, and inexpensive synthetic strategy for
preparing ketoximes. In this procedure, the hydroxylamine
hydrochloride salt requires a basic treatment, as sodium
acetate, before use, to free NH2OH for reaction with
ketones.105 Unfortunately, HCl NH2OH is almost insoluble
in most organic solvents, which is one of the significant
drawbacks in using this readily available, inexpensive starting
material. Furthermore, the oxime formation, especially those
derived from more complex substrates, needs to be carried out
under high temperature, and the resulting product has to be
further purified by crystallization. Also, solvents and exper-
imental conditions used to prepare oximes are often not
consistent with BKR and should therefore be prepared before
use. In mechanochemical processes, all challenges related to
the reagent solubility and, in general, the solvent’s choice are
overcome. This fact has relevant implications in green
chemistry since it allows the design of multistep one-pot
reactions, cuts energy costs, and minimizes the operator’s
exposure to chemicals, making the process more cost-effective,
and therefore more attractive for industry. Many of these issues
have recently been well highlighted in a remarkable paper by
Tobiszewsk.83 Mechanochemistry could offer exhaustive
answers to all these requirements and find new breaches into
the walls that were difficult to overcome, breathing new life on
organic synthesis. In this regard, this study aims to design and
implement a sustainable and generally applicable mechano-
chemical BKR, using where possible, eco-friendly reagents and
milder experimental conditions than those reported so far in
the literature.

■ RESULTS AND DISCUSSION
Drawing on decades of experience using 1,3,5-trichlorotriazine
(TCT)106−119 as activating agent, we attempted to demon-
strate that a similar rearrangement could take place upon a
mechanochemical approach. With this aim, preliminary tests
were performed by milling acetophenone oxime (1.0 mmol)
and TCT (1.0 mmol) in a stainless-steel jar (15 mL) in the
presence of one ball ( f = 8 mm) of the same material.
However, a black tar was obtained that was difficult to handle
during workup. To overcome this problem, 300 mg of silica gel
was added during the milling step. Indeed, the complete
conversion of oxime 1o to amide 1a made acetanilide recovery
(from the crude reaction) more straightforward (Scheme 3).
Upon completion (99 min), the resulting solid was extracted
with ethyl acetate for compound isolation. The residue was
subjected to silica gel chromatography to remove any TCT
byproducts to afford amide 1a in an overall 66% yield.
To simplify this procedure further, the solid was scratched

out of the jar, loaded on a short silica gel pad (short plug), and
then eluted with AcOEt to give a final amide yield of 73%.
Unfortunately, we were unable to reduce the amount of TCT
or to use only catalytic amounts (10 mol %), even in the
presence of ZnCl2 (10 mol %). The result was the incomplete

conversion of the acetophenone oxime to amide 1a. The
procedure developed using an equimolecular amount of TCT,
although efficient and effective, turned out to be difficult to
adopt for industrial scale-up applications. In addition, from the
environmental point of view, the reaction suffers from poor
atom economy, but the need for workup procedures based on
a liquid−liquid extraction followed by a chromatographic
purification heavily impacts on the sustainability of the process.
Taking inspiration from some recently published pa-

pers,120,121 we directed our attention to p-toluenesulfonyl
chloride (p-TsCl), a low-value byproduct of the saccharine
industrial production (and other food additives) by the
Remsen−Fahlberg process,122,123 and recently used for a less
environmentally wasteful preparation of isocyanides.124 p-TsCl
is an inexpensive solid reagent that is much easier to handle
and less toxic than other established activating agents for
BKRs. On the basis of the above considerations, p-TsCl
appeared to be suitable for scaling up to an industrial process.
To achieve this goal, the acetophenone oxime (1.0 mmol)

and p-TsCl (1.1 mmol) were milled in zirconia milling jars (15
mL) with a grinding ball of the same material ( f = 8 mm) for
30, 60, and 99 min at 30 Hz. Unfortunately, BKR of the
referral oxime failed to go to completion after prolonged
reaction periods (99 min). On a further increase in reaction
time up to 2 h, we observed a significant rise in side products,
mainly derived from the decomposition of oxime 1o.125

Keeping constant all other experimental conditions, we added
into the jar a stoichiometric amount of imidazole, which
promoted the complete conversion of oxime 1o into
acetanilide and reduced the reaction time of the BKR to 60
min (Scheme 4).
The pivotal BKR was subsequently monitored ex situ by

withdrawing aliquots at different time intervals (15 min) and
analyzing them using GC-MS126,127 and thin-layer chromatog-
raphy (TLC) until the peak/spot corresponding to the oxime
disappeared (60 min). The analyses were performed by re-
preparing the sample from scratch (ex novo) and prolonging
the overall reaction time between one analysis and the next
(15, 30, and 45 min, etc.). Noteworthy, GC-MS analysis
showed the rapid formation, after only 15 min, of a significant
amount of 1-(p-toluenesulfonyl)imidazole (p-Ts-Im), which is
consumed in the course of the reaction with kinetics
comparable to those of amide product formation.
Intrigued by these findings, a stoichiometric amount of

acetophenone oxime (1.0 mmol) and p-Ts-Im (1.1 mmol,
commercially available) were milled in a zirconia grinding jar

Scheme 3. Mechanochemical-Assisted Synthesis of
Acetanilide 1a by Using TCT
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(15 mL) with a zirconia grinding ball ( f = 8 mm) for 99 min,
during which we observed negligible conversion (<15%) of
oxime 1o to amide 1a (Scheme 5). This suggests that the
hydrochloric acid developed during the reaction using p-TsCl
(Scheme 4) plays a key role both in promoting the initial
activation of p-Ts-Im generated in situ and the subsequent
BKR, as highlighted in Scheme 5.
Hence, the model reaction was repeated once again using

the same conditions, but in the presence of an equimolecular
amount of p-toluensulfonic acid (PTSA, 1.1 mmol) to ensure
complete conversion of the substrates. To our great pleasure,
BKR was completed in less than 75 min (GC-MS and TLC
analyses), confirming our initial hypothesis (Scheme 5, entry
1). Additionally, we characterized the experimental conversion
curve (GC-MS data). The relative amounts of initial oxime 1o

and final amide 1a, α, are shown in Figure 1 as a function of
the milling time, t. It can be seen that the conversion curves
have a sigmoidal shape. The mechanochemical transformation
is quite fast, with the conversion degree of the oxime in amide
as high as 0.87 after 30 min.
We carried out a preliminary kinetic analysis to provide

additional information on the transformation rate. To this aim,
we used a kinetic model that properly accounts for the
statistical nature of the mechanical processing of solids by ball
milling.98−100 Specifically, in a first approximation, we assumed
that the product forms abruptly in a fraction of the solid
mixture that has undergone at least three impacts. While the
assumption is seemingly rough, it allows deriving the relatively
simple kinetic equations (eqs 1a and 1b):

Scheme 4. Screening of the Reaction Parameters for the Maximization of the Degree of Conversion of Ketoxime 1o to Amide
1a

Scheme 5. Influence of an Acid Reagent in the BKR Promoted by 1-(p-Toluenesulfonyl)imidazole (p-Ts-Im, CAS No. 2232-
08-8)
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α = [ + + + ] −kt kt kt kt1 ( ) /2 ( ) /6 exp( )oxime
2 3

(1a)

α = − [ + + + ] −kt kt kt kt1 1 ( ) /2 ( ) /6 exp( )amide
2 3

(1b)

where α is the mass fraction of initial oxime or final amide, k is
the apparent rate constant of the mechanochemical trans-
formation, and t is the milling time. Despite the rough
assumptions, eq 1a satisfactorily best fits the experimental data.
Therefore, we can infer that it captures the fundamental
features of the transformation kinetics. The best-fitting
equation yields a k value approximately equal to 0.18 min−1.
On the basis of previous work,98−100 the apparent rate constant

measures the mass fraction of reactants involved in the product
formation per time unit. Thus, we can suppose that
approximately 24 mg of oxime is effectively converted into
amide per time unit.
The milling experiments have been carried out using a single

zirconia ball. If we assume that its collisions with the jar are
partially inelastic, then we can reasonably expect that the
impact frequency is approximate twice the milling frequency.
Since we performed milling at 30 Hz, we can expect that
impacts occur at a frequency of 60 Hz. It follows that, in 1 min,
the zirconia ball undergoes about 3600 impacts. In turn, we
can surmise that approximately 6.6 μg of oxime is effectively
processed during each individual impact.
This value is not far from those typically observed in

mechanochemical transformations.98−100 We recognize that
this is an interesting issue, but further discussion is out of the
present work scope. We will deepen our insight into this
interesting issue in a future study.
We then carried out additional experiments, reacting oxime

1o (1.0 mmol), imidazole (1.1 mmol), and p-toluenesulfonic
acid (1.1 mmol) to clearly rule out the role of the acid in this
mechanochemical 1,2-rearrangement. In the absence of the
activating agent p-Ts-Im, we only observed the formation of
negligible amount (7%, GC-MS analysis) of amide 1a, even
after prolonged grinding (99 min).

Figure 1. Relative amounts of initial oxime and final amide, α, as a
function of the milling time, t. Best-fitted curves are shown.

Scheme 6. Combination of p-Ts-Im and Oxalic Acid Promotes a Rapid Conversion of Oxime 1o

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://dx.doi.org/10.1021/acssuschemeng.0c07254
ACS Sustainable Chem. Eng. 2021, 9, 2100−2114

2104

https://pubs.acs.org/doi/10.1021/acssuschemeng.0c07254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c07254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c07254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c07254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c07254?fig=sch6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c07254?fig=sch6&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://dx.doi.org/10.1021/acssuschemeng.0c07254?ref=pdf


Although p-Ts-Im is cheap and commercially available, the
use of freshly prepared reagent gave better results in our
hands.128 It can be directly prepared from p-toluensulfonic acid
by reaction with 1,1′-carbonyldiimidazole (CDI).128−135 The
latter synthesis is particularly effective and avoids the use of
harmful chlorinating agents reducing hazardous waste
collection. Compared to other reagents widely used in the
BKR, p-Ts-Im combines at best the need for a reagent with
easy-handle properties, effective, and inexpensive to use in
macroscale applications.
Starting from these findings, we screened other green acids

instead of PTSA to tailor a more eco-efficient procedure, and
the results are summarized in Scheme 5. The scenario changes
again, for the better, using oxalic acid: The whole experiment
was completed in approximately 15 min (as assessed by GC-
MS and TLC analyses). IR and NMR analyses on reaction
crude further confirmed these results showing that the GC-MS
was sensitive, precise, and accurate for the quantitative
determination of oxime to amide conversion. We assumed
that during the milling process, a proton was transferred from
oxalic acid to the imidazole ring of p-Ts-Im, promoting the
formation of tosyl ester (1o-Ts) on the oxime (Scheme 6).136

The activation of the oxime with p-Ts-Im in an acidic
environment triggered the subsequent BKR, as shown in

Scheme 6. Besides, the combination of p-Ts-Im and oxalic acid
not only promotes a rapid conversion of oxime 1o but also
facilitates the purification steps of the target amide from the
resulting crude reaction. Trituration of the postreaction solid
with water, 10% citric acid solution, and 10% K2CO3 solution
provided the acetanilide in high yields (96%) and with a good
degree of purity (Scheme 6). Most byproducts are present in
the reaction crude as salts. A similar pathway where imidazole
acts as a “proton carrier” in mechanochemical activated
reactions has been previously described for CDI-based
transformations.137

To validate these findings, other oximes were used as
substrates. The mechanochemical BKR of cyclohexanone
oxime (1.0 mmol) with p-Ts-Im (1.1 mmol) and oxalic acid
(1.1 mmol) in the same processing conditions as above
(zirconia jar 15 mL, a zirconia ball f = 8 mm) at 30 Hz was
complete in 30 min (Scheme 7). It provided ε-caprolactam 2a
in high yields (93%), opening promising prospects for future
industrial applications to the sustainable production of nylon-
6,6. The good experimental results on structurally more
complex substrates, such as (1R)-camphor oxime 3o and 2-
adamantanone oxime 4o, also confirmed the robustness of the
proposed method also on sterically hindered substrates
(Scheme 7).138

Scheme 7. Assessment of Robustness of the Mechanochemical BKR

Scheme 8. Optimization of the Process Parameters for the BKR of Oxime 1o Generated In Situ from Acetophenone 1k
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With these results in hand, we planned to go further starting
directly from ketones, which are even cheaper and widely
available than the corresponding oximes. Unfortunately, and
despite several attempts, the preparation of ketoxime 1o by
milling equimolar amounts of acetophenone (1.0 mmol) and
hydroxylamine hydrochloride (1.1 mmol) failed to go to
completion, even after prolonged reaction periods (>99 min).
Subsequent investigations revealed that the addition of
imidazole (1.1 mmol) favors the complete conversion of
acetophenone (1k) into its corresponding oxime (1o) in just
30 min. In this optimized procedure, imidazole works both as a
base and grinding agent (Scheme 8).137

Finally, the addition of fresh p-Ts-Im (1.1 mmol) promotes
in ca. 30 min a rapid rearrangement of the oxime previously
generated in situ to give the target amide 1a in high yield
(91%) and purity. In this one-pot/two-step reaction, the
presence of imidazole hydrochloride (Im-H·HCl, generated in
the first step) was sufficient to trigger the Beckmann
rearrangement (Scheme 8). Further control testing highlighted
that Im-H·HCl (1.1 mmol), ground together with acetophe-
none oxime (1.0 mmol), is not able to induce a BKR response
(<10%) even after prolonged grinding (99 min).
Pleasingly, the reaction worked well with acetophenone

derivatives bearing substituents of different nature on the
aromatic ring and at different positions, albeit to a less degree
with electron-poor groups (amides 5a−17a in Scheme 9). The
reactions of substrates 7a−10a containing chlorine, bromine,
or fluorine on the benzene moiety gave different yields of the
corresponding BKR products, depending on the halide’s nature
(Scheme 9).139 Under optimal ball-milling conditions, 4-
phenylacetophenone and 2-acetonaphthone were also compat-

ible with this 1,2-rearrangement providing amides 12a and 13a
in good yields (92 and 90%, respectively, Scheme 9).
The rearrangement of oxime 14o, prepared in situ by 2-

hydroxyacetophenone 14k, led to target amide 14a together
with minor amounts of benzoxazole 14bz. The formation of
the benzoxazole ring with o-hydroxyacetophenone is a
consecutive reaction, resulting from the attack of the hydroxyl
group in 2-position on the intermediate nitrilium cation. The
in situ generation of the benzoxazole ring confirms the reaction
pathway running through a nitrilium cation intermediate,
according to previous reports for BKR in solution (Scheme 3,
bottom).140

Even more interestingly, we envisioned that the mechano-
chemical strategy could also be applied to 4′-hydroxyacetho-
phenone 15k, which is a key intermediate of paramount
importance in the synthesis of paracetamol (Scheme 9, amide
15a).141 The reaction proceeded smoothly and provided
desired rearrangement product 15a in an overall yield of 84%.
This protocol opened a novel route for paracetamol
mechanochemical synthesis and pointed out the robustness
and great potential for future industrial applications.142 In this
regard, the preparation of active pharmaceutical ingredients
(APIs) by mechanochemistry is a recent area of investigation
referred to as “medicinal mechanochemistry”,143−147 which
paves the way for a sustainable pharmaceutical development.
Since the pioneering mechanochemical preparation of Pepto-
Bismol metallo-drug,148 other APIs were prepared at both
laboratory and large scale.149−153

Notably, this procedure tolerated the presence of ester and
amide moieties on the molecular structure, and the rearrange-
ment of oximes 16o and 17o, generated in situ from methyl 4-

Scheme 9. Reaction Scope of Mechanochemical BKR

aIsolated yields
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acetylbenzoate (16k) and 4′-acetylacetanilide (17k) have also
been successful under the same reaction conditions.
Benzophenone (Scheme 9) also worked well and gave good

yields (86%) of diarylated amide product 18a, although BKR
took longer to complete (99 min). Concerning this last
reaction, there have been substantial improvements compared
to what is already known in the literature for solution-based
procedures. Although several published mechanochemical
protocols provide practical and straightforward access to
aldoximes and nitrones,154 ketoxime synthesis is always a
challenging process requiring the use of a special heated
jar.101,155 In this regard, the ball milling of benzophenone,
HCl·NH2OH, and K2CO3 provides good conversions into
benzophenone oxime only if grinding occurs at 140 °C for 90

min.103 On the contrary, using imidazole instead of K2CO3, the
reaction proceeds smoothly and efficiently at room temper-
ature, making the present process even more energetically
efficient both from an economic and sustainable point of view.
Next, we turned our attention to aliphatic ketones to validate

the scope and limitation of the optimized mechanochemical
BKR methodology (Scheme 9, amides 19a−23a). Under the
optimized reaction conditions, 5- and 6-membered-cyclic
ketones oxime (prepared in situ) reacted undergoing ring
expansion to corresponding lactams 20a and 21a in good to
excellent yields. Generally speaking, the BKR of cyclic ketones
proceeded smoothly, giving the corresponding lactams in good
yields, although the 1,2-migration process was susceptible to
ring strain, easily overcome by mechanochemical activation.155

Scheme 10. Reaction Scope of Mechanochemical BKR by Using Unsymmetrical Ketones

aIsolated yields.
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As expected, and in accordance with many other studies in
solution reported in the literature,156,157 the reaction of
ketones 22k and 23k failed to provide the rearrangement of
corresponding amides 22a and 23a (Scheme 9).
The application of this mechanochemical protocol to

unsymmetrical ketones bearing different ligands (R1COR2)
could lead to the formation of two amides (R1NHCOR2 and
R1CONHR2, Scheme 10). Generally speaking, the migration
selectivity of BKR depends on the configuration (cis or trans
with respect to the −OH) and type of the substitutes R1 and
R2, attached to the carbonyl carbon on ketoxime. As shown in
Scheme 10, we observed that the aryl moieties underwent 1,2-
migration comparatively faster than aliphatic residues.
Contrary to what is generally reported in the literature for
similar reactions in solutions,33,34 the 1,2-migratory aptitude of
the aryl ring (on the oxime) containing electron-donating
groups appears to be slightly poorer than that of the phenyl
ring (Scheme 10, 24a1 and 24a2).

158 BKR of phenylisopropyl
ketone 25k provided a mixture (around 1:1) of the two
corresponding amides, 25a1 and 25a2, while the rearrangement
of propiophenone gave amide 26a1 as the main compound.
Similar results were also obtained with the cyclopropyl phenyl
ketone, which afforded amide 27a1 in good overall yield and in
high selectivity.
GC-MS and NMR analyses of the crude reaction mixture

highlighted that the structure of the amide formed, and as
results, the ratio of the two compounds, was not significantly
affected by the stereochemical identity (E/Z) of the ketoxime.
Presumably, one isomer interconverts in the other under the
acid reaction condition. The ratio of the two amides is strictly
related both to the kinetic profiles of BKR and oxime (E/Z)-
isomerization during the milling. Whenever the BKR of E-
oxime to the corresponding amide was slower than the E- to Z-
oxime conversion, the other isomer (Z-oxime) underwent
geometric isomerization later, resulting in a mixture of amide
compounds.102

Next, we applied the developed mechanochemical procedure
to other nonsymmetrical ketones bearing both linear and
branched aliphatic residues (Scheme 10). In general, the
longest alkyl chain moves toward the nitrogen atom of the in
situ generated oxime, providing the corresponding amide in
good yields and excellent selectivity (Scheme 10, amides 30a1
and 30a2). The presence of a bulky alkyl group on the ketone
significantly promotes the reaction chemoselectivity in

preparing oxime 31k1, with the isomer bearing the −OH
group, in the anti-position to the branched/longer chain, as the
major product (>95%). Amide 31a1 was isolated as the sole
product (Scheme 10). Conversely, an ester group in
unsymmetrical ketone framework 32k stabilizes the syn-
oxime, promoting the selective migration of the methyl
fragment in the subsequent BKR. Along the same lines, BKR
of 2-phenyl- and 2-methyl- cyclohexanone (Scheme 10,
ketones 33 and 34) led to the 1,2-migration of the more
highly substituted linker (R1 or R2) on the oxime derivative,
giving the corresponding phenyl or methyl-migrated product
with excellent chemoselectivity.
The developed synthetic protocol could easily be scaled-up

to 1 g, laying the foundations for potential industrial-scale
applications. The methodology was tested and validated on
acetophenone and acetophenone oxime (1 g) without any loss
of reaction efficiency.
To gain a better understanding of the effectiveness of this

mechanochemical protocol, the proposed procedure was
subsequently validated against an array of aldehydes 1ald−
3ald (Scheme 11). 4-Chlorobenzaldehyde (1.0 mmol), HCl·
NH2OH (1.1 mmol), and imidazole (1.1 mmol) were milled
together in a zirconia jar (15 mL) with one ball ( f = 8 mm) of
the same material until the aldehyde was completely consumed
(30 min). The subsequent addition of p-Ts-Im (1.1 mmol),
which activates the aldoxime (Scheme 11), was followed 30
min later by the further addition of imidazole (1.1 mmol). The
base significantly sped up the subsequent elimination reaction,
promoting the conversion of the O-tosyl-oxime into desired
nitrile 1n (89%, Scheme 11). Solid nitriles (1n and 3n, Scheme
11) were purified by treating the resulting crude reaction with
10% aqueous solution of citric acid and K2CO3. The
purification of liquid nitriles required extraction of reaction
crude with AcOEt, followed by an aqueous work up (10%
citric acid and 10% K2CO3).
Interestingly, 4-chlorobenzonitrile 1n was subsequently

hydrolyzed with solid NaOH (2 equiv) to provide correspond-
ing primary amide 1am in overall good yields over three steps,
paving the way for a practical synthesis of amides starting from
aldehydes.159 As a general trend, this optimized mechano-
chemical methodology opens up the possibility for a wider
range of structurally different primary and secondary amides,
starting from various inexpensive and commercially available
substrates (aldehydes and ketones).

Scheme 11. Preparation of an Array of Nitriles

aIsolated yields.
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The development of solvent-free processes also makes the
design of multistep one-pot mechanochemical reactions
possible, thus reducing the need for tedious purifications that
often characterize traditional organic procedures. In this
context, we have investigated the BKR by using more eco-
friendly alcohols, which often derived from biobased sources,
as substitutes for ketones serving as key precursors to prepare
oximes. We first prepared the copper-based catalyst by
grinding together [Cu(MeCN)4]OTf (3 mol %), 2,2′-bipyridyl
(3 mol %), and 1-methylimidazole (NMI, 7 mol %) in a
zirconia milling jar (15 mL) equipped with one ball
( f = 8 mm)of the same material for 2 min, adapting oxidation
procedure previously reported by us (Scheme 12).160

Next, 1-phenylethanol (1.0 mmol) and the co-oxidant agent
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO, 3 mol %)
adsorbed on NaCl (300 mg)161 were added to the previously
prepared metal catalyst, and the jar was shaken at 30 Hz for 10
min. To increase the surface area exposed to air, the resulting
solid material was peeled off the jar walls with a spatula,
continuously turned upside down and left open to the air for
about 5 min (open-jar).162 Finally, the reaction mixture was
ground until the complete conversion of the starting material
(monitored by TLC and GC-MS analysis), running open-jar
grinding cycles. The resulting acetophenone was first
converted into corresponding oxime 1o by treatment with
HCl NH2OH and imidazole, followed by grinding with p-Ts-
Im to give acetanilide 1a in satisfactory overall yields (71%)
over three synthetic steps according to the method previously
described (Scheme 12).163

Finally, we turned our attention to green chemistry metrics,
aware that many advantages of this mechanochemical process
(compared to its analog in solution) cannot be summarized in
simple numerical calculations, although these are useful. These
include high energy savings, short reaction times, rapid and
efficient access to complex molecules via one-pot multistep
reactions (including BKR) from renewable raw materials
(alcohols), and finally, the use of p-Ts-Im in mechanochem-
istry reactions under not anhydrous conditions. In any case,
the green chemistry calculation highlights that the E-factor (E
= 101 and 3, with and without aqueous crude trituration,
respectively) for the pivotal BKR of 1k into 1a, performed
under ball-mill conditions, is far better (reducing waste more
than half) than those of similar processes performed in
solution120 (E ≫ 243 and 12,164 Figure 2). These good results
are further confirmed by comparing ball-milling/solution eco-
scales where the data are all broadly in support of
mechanochemical processes (eco-scale score: 73 milled and
32 solution, Figure 2).

■ CONCLUSION
In summary, BKR discovered over a century ago, has, still
today, all the hallmarks of any other modern reaction. BKR is
fully compliant with all the requirements of green chemistry
and is consistent with the principles of sustainable develop-
ment. Despite its ubiquity in the literature, Beckmann
rearrangement still remains the subject of an ongoing challenge
to prepare amides from easily available and affordable building
blocks: alcohols and ketones. This reaction allowed us to draw
new amide frameworks through an eco-efficient process of
“cut-and-paste” of C−C and C−N bonds in the backbone of
an oxime. Herein, we developed an eco-sustainable mecha-
nochemical procedure that allows us to rearrange, like a
Rubik’s cube, the broken bonds in mild conditions, avoiding
and/or reducing solvents, and potentially toxic reagents. The
combination of inexpensive and eco-friendly reagents such as
p-Ts-Im and oxalic acid was successful to smoothly prepare in
good to high yields a structurally different amide library,
including caprolactam and paracetamol. This solvent-free
mechanochemical procedure has also been optimized and
successfully extended to several ketones serving as oxime
precursors. The absence of solvents during the synthesis of the
target amides allowed us to validate the BKR via a one-pot/
multistep process starting directly from eco-friendly secondary
alcohols. Finally, the mechanochemically activated Beckmann
rearrangement expands the toolbox of organic chemistry
rearrangements already performed by milling.152,165,166
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Figure 2. Comparative graphical plot of green chemistry metrics
calculated for the preparation of acetanilide 1a from acetophenone 1k.
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