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Abstract
1.	 Building reliable species distribution models (SDMs) from presence-only informa-

tion requires a good understanding of the spatial variation in the sampling ef-
fort. However, in most cases, the sampling effort is unknown, leading to biases in 
SDMs. This study proposes a method to jointly estimate the parameters of sam-
pling effort and species densities to avoid such biases. The method is particularly 
suited to the analysis of massive but highly heterogeneous presence-only data.

2.	 The proposed method is based on estimating the variation in sampling effort over 
units of a spatial mesh in parallel with the environmental density of multiple spe-
cies using a marked Poisson process model. Based on simulations with realistic 
settings, we examined the performance and robustness of parameter estimations. 
We also analysed a large-scale citizen science dataset with highly heterogeneous 
sampling (Pl@ntNet), including around 300,000 occurrences of 150 plant species.

3.	 We found that sampling effort was correctly estimated when the true sampling ef-
fort was constant within the cells of a spatial mesh. Estimation bias arose when sam-
pling effort and environmental drivers strongly covaried within cells. Otherwise, 
the inference was correct and robust to sampling variation within cells. Running 
the model on real occurrences of 150 plant species provided an estimated map of 
relative sampling effort for 15% of French territory. We also found that the density 
estimated for an exotic invasive plant was consistent with prior data.

4.	 This is the first method jointly estimating species densities depending on environ-
ment, and sampling effort as an explicit spatial function, from occurrence data of 
multiple species. An asset of the method is that a few frequently observed species 
greatly contribute to correctly estimate sampling effort, thereby improving density 
estimation of all other species. This approach can thus provide reliable SDM for 
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1  | INTRODUC TION

Understanding biodiversity dynamics and designing conservation 
strategies require characterizing and analysing the distribution of 
species in space and time. Today, international citizen science proj-
ects and naturalist networks provide massive geolocated occurrence 
data for multiple species around the world. Yet, the observed distri-
bution of species occurrences depends not only on the actual species 
abundance but also on the sampling effort of observers. To correctly 
estimate environmental effects in species distribution models (SDMs, 
Elith & Leathwick, 2009), it is crucial to design a statistical approach 
that can separate these two intertwined signals in the data.

Until recently, digitized geolocated presence of species, or species 
occurrences, were extracted from expert collections, mainly natural-
ist field surveys and natural history museums (Soberón & Peterson, 
2004). Today, species occurrence data have become widely available 
from worldwide citizen science programmes or naturalist community 
platforms (e.g. iNaturalist, e-Bird, Pl@ntNet, Naturgucker; see 
Chandler et al., 2017), in part thanks to new digital tools and smart-
phone applications (Teacher et al., 2013). For example, eBird has col-
lected around 500 million valid geolocated occurrences of bird species 
worldwide, which are accessible online on the GBIF website.1 
Moreover, automatic identification of images or sound (Joly et al., 
2018) and the collaborative review of observations have enhanced 
the quality of species identification by non-professional observers. 
However, contributors do not follow a planned sampling protocol and 
submit observations of specimens that are remarkable, atypical or 
new to them. Such 'opportunistic' sampling (Kery et al., 2010) reflects 
the specific behaviour and reporting choices of contributors. The 
sampling effort is then neither spatially uniform nor balanced be-
tween species. The objective of the present study is to propose a joint 
estimation of spatial sampling effort and species ecological niches, to 
alleviate biases in SDMs due to heterogeneous sampling.

Sampling effort, or ‘observation effort’ (Calenge et al., 2015), 
is defined as an intensity function measuring the number of visits 
during which observers can report a specimen occurrence at a given 
point. Here, we assume that sampling effort does not depend on spe-
cies detectability or reporting interest (Fithian et al., 2015; Giraud 
et al., 2016) so that sampling effort represents a common function 
influencing in the same way the observation of multiple species.

Estimating spatial variation in sampling effort in a set of spe-
cies occurrences is crucial for several purposes. An unknown spatial 
variation in sampling effort can be correlated to an environmental 

factor and result in bias in SDM results (Beck et al., 2014; Boakes 
et al., 2010; Botella et al., 2020; Bystriakova et al., 2012; Costa et al., 
2010). Therefore, it is crucial to take sampling effort into account in 
SDMs. Several approaches have been proposed to tackle this problem. 
Sampling effort can be approximated from external information about 
the sampling protocol when available. Calenge et al. (2015) used the 
number of driven kilometres reported by agents as an approximation 
of the relative sampling effort when reporting the occurrence of dead 
animals on roadsides. Solan et al. (2019) provided another approach to 
estimate sampling effort from multi-species occurrence based on an a 
priori model of sampling effort. Alternatively, when no external knowl-
edge is available, the background points used for inference of the envi-
ronmental density of a species (Warton et al., 2010) can approximate 
the heterogeneous sampling effort. Phillips et al. (2009) proposed 
the target-group background (TGB) procedure, in which sites with at 
least one observation of a target group of species are integrated as 
background points to provide a proxy of sampling effort. Bradter et al. 
(2018) proposed using information about the prospecting behaviour 
and detection skills of very active reporters to infer the true absence 
of a species, and then integrating it into a presence–absence model-
ling framework. Finally, Warton et al. (2013) proposed to jointly model 
sampling effort and species density, under the assumption that sam-
pling effort depends on specific variables. Those variables reflect prior 
knowledge on what influences observers behaviour. Yet, the bias cor-
rection efficiency of the existing approaches is conditional on external 
information or specific assumptions about sampling effort.

In this study, we propose a new SDM method for multi-species 
presence-only data, which requires less prior knowledge about 
the sampling process. It models sampling effort as a common 
component across multiple species, and as a step function with 
constant values within cells of a spatial mesh. Therefore, our sam-
pling effort model only assumption concerns its spatial scale of 
variation. This model is related to those spatial statistics models, 
where bases of spatially smooth functions, called smoothers, are 
often used to estimate response surfaces in a computationally ef-
ficient way when the number of samples is large (Johannesson & 
Cressie,  2004). The response surface typically represents unob-
served spatially smooth predictors. Using realistic simulated data, 
we show that the method can alleviate bias in sampling effort and 
species niche estimates while allowing computational efficiency 
for large occurrence datasets. We further examined the method's 
robustness to the approximation of constant sampling within cells 
by varying the amplitude of spatial variation and the curvature of 
the sampling effort within cells. We also analysed a real dataset 
including opportunistic occurrence data of plant species stemming  1https://www.gbif.org/

large opportunistic presence-only datasets, with broad spatial variation in sampling 
effort but also many species, such as datasets from citizen science programmes.

K E Y W O R D S

citizen science, marked Poisson point process, multi-species data, presence-only data, 
sampling effort, species distribution model, unbiased estimation

https://www.gbif.org/
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from automatic identification and sourced from the citizen science 
observatory Pl@ntNet. We present the results obtained for an ex-
otic invasive plant species in France.

2  | MATERIAL S AND METHODS

2.1 | A spatial model for sampling effort

We jointly modelled the occurrence of multiple species as independ-
ent marked Poisson point processes. In this model, the density of 
each species occurrence process is the product of the sampling ef-
fort and of the given species density. Species density represents a 
spatial variation in relative abundance in function of environmental 
variables. Figure 1 illustrates the principle and the components of 
the statistical model.

2.1.1 | Species occurrence processes and 
density functions

Let D be a two-dimensional geographical domain where occur-
rences were collected for N species. We assume that individu-
als of any species i are distributed over D according to a Poisson 
process depending on an intensity function �i. �i is assumed to be 
a log-linear function of environmental variables defined across D. 

xi (z ) =
(
xi
1
(z ) , …, xi

pi
(z )

)
 denote the environmental features of spe-

cies i at point z, where pi is the number of features. A feature can 
be any function of an environmental variable. Different features 
can be derived from the same variable: for instance, if we include 
the identity and quadratic features, we model a Gaussian density 
response to the environmental variable. � i =

(
� i
1
, …, � i

pi

)
 denote the 

parameters associated with the features so that species intensity is 
calculated as �i (z ) = exp

�
�i +

∑pi
k=1

� i
k
xi
k
(z )

�
. The model can only 

estimate species density across space, not its absolute intensity, so 
we assume that �1 = 0 by convention. In addition, the model does 
not estimate the overall intensity of one species relative to others, 
as this cannot be differentiated from the probability of detection/
reporting in presence-only data. This species density model be-
longs to the family of species distribution models based on point 
processes (Chakraborty et al., 2011; Dorazio, 2014; Fithian et al., 
2015; Koshkina et al., 2017; Phillips et al., 2006; Renner et al., 2015; 
Warton et al., 2013).

2.1.2 | Assumption on the sampling effort process

The model defines the sampling effort as a spatial function repre-
senting a cumulated number of visits of all observers at a particu-
lar point over a time period. This function is likely to vary at a high 
spatial resolution, but it makes sense to model it by a random func-
tion with some smooth spatial intensity. In addition, we assume that 
reporting probability for a given species is constant in space, time 

and across observers. The sampling effort at point z ∈ D, noted s (z), 
represents the probability of observing a spatial point z. If a speci-
men is present at z, it is then detected and reported with probabil-
ity Ri, which implies that the specimen is sampled with probability 
Ri s (z ) ∈

[
0, 1

]
. Although the probability of sampling species i  varies 

proportionally to s across space, it can be more or less detected than 
other species overall. The distribution of observed species occur-
rence follows a thinned Poisson process, that is, a Poisson process 
of intensity z → Ris (z )�i (z ) (Chiu et al., 2013). A discussion of the as-
sumptions about the observation process is provided in Appendix G.

2.1.3 | Spatial variation in sampling effort

We model s as a cell-wise constant function in a spatial mesh de-
fined over D. This assumption makes sense if the sampling ef-
fort is known to vary reasonably slowly across space, at the scale 
of mesh cells. In subsequent analyses, we chose a mesh with rec-
tangular cells for simplicity, but any other form of partition of D 
could be considered. The sampling effort is a factor in the intensity 
function as shown in Equation 2 of Figure 1. We set, at any point 

z ∈ D, s (z ) = exp
�∑

j∈[�1,C�]� j1z∈cj

�
, where (cj)j∈[|1.C|] are the cells of the 

mesh verifying ∪j∈[|1,C|]cj = D, and ∩j∈[|1,C|]cj = ∅, and � =
(
�1, … �C

)
 

are the unknown sampling effort parameters. A parameter is defined 
in ℝ for each unit of the spatial mesh. In other words, the sampling 
effort model associates a parameter to each cell indicator function, 
which equals 1 in the cell and 0 elsewhere. We can only estimate 
the relative sampling effort across space, and thus we assume by 
convention that �1 = 0.

2.1.4 | Related methods

Our method can be seen as a multi-species extension of the model 
of Warton et al. (2013), apart from the sampling effort design. It is 
also a particular case of the model in Fithian et al. (2015), in which 
we removed the presence–absence term (equation 10 in Fithian 
et al., 2015) from the joint log-likelihood. Although we focus here on 
presence-only data, data integration (Miller et al., 2019) is probably 
the best strategy to correct sampling bias when more standardized 
data are also available (see Dorazio, 2014; Fithian et al., 2015; Giraud 
et al., 2016; Koshkina et al., 2017). A recent integrated data model es-
pecially used a related random spatial surface model for the sampling 
effort based on a log-Gaussian Cox process (Simmonds et al., 2020).

2.2 | Model identifiability and estimability

2.2.1 | Intensity is estimated up to an 
unknown factor

It is impossible to identify absolute values of Ri, the sampling ef-
fort s and the species density �i from presence-only data. We can 
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only estimate sampling effort and species density up to a factor 
that is constant across space (see Fithian & Hastie, 2013; Hastie 
& Fithian, 2013). For this reason, our approach allows estimating 
density variation across space, or relative intensity, but not abso-
lute intensity.

2.2.2 | Disentangling sampling effort and species 
intensity parameters

Our method separates two spatial densities from a single distribu-
tion of points, and it is important to ensure that the parameters 

F I G U R E  1   Method workflow summary and statistical model
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of these densities are in fact estimable (Jacquez & Greif,  1985). 
Estimability relies on the orthogonality of the spatial covariates on 
which the density components depend. As shown in Appendix B, if 
the basis of spatial functions composed of environmental features 
and sampling cell indicator functions is close to multicollinearity, 
the true sampling effort and species density will be mixed together 
in the estimates. Such potential issue can be detected by assess-
ing multicollinearity with the condition number, that is, the ratio of 
the highest over the lowest eigenvalues of the observed variance–
covariance matrix of all model parameters. It is a common measure 
for this purpose (see e.g. Dorazio, 2014). If the condition number 
is high, the variance–covariance matrix exhibits multicollinear-
ity and high covariance between the parameter estimates. More 
precisely, given that there is no collinearity between the chosen 
environmental features, and given that, by design, sampling cell 
indicators have no multicollinearity, a high condition number nec-
essarily means that there is collinearity between environmental 
features and sampling cell indicators. This can be solved by in-
creasing the size of sampling cells until the condition number (al-
ways ≥ 1) becomes reasonably small. In our experience, a condition 
number inferior to 106 was still reasonable for fitting the model. 
For a more detailed discussion of the issue, see Appendix B. The 
observed Fisher information matrix is provided in Appendix A to 
compute the condition number. An implementation in R language is 
provided in file Variance _ Script.R of the R package accompanying 
this article (Botella, 2020).

2.3 | Parameter inference

We summarize here the procedure for inferring parameter values 
from multi-species occurrence data. Appendix D further includes 
more explicit and detailed description of the procedure. A log-linear 
Poisson process is fitted over multiple species with a shared term in 
their linear predictor, that is, the log-sampling effort. The procedure 
minimizes the global negative log-likelihood in Equation 3, with re-
spect to the parameters. It is the sum of negative log-likelihoods over 
species Poisson processes.

This objective function is similar to the one in Fithian et al. 
(2015), yet without a presence–absence term (see Equation 14). To 
approximate the integrals, we sum over uniformly distributed back-
ground points (Warton et al., 2010), and use the re-expression as a 
Poisson regression likelihood (Berman & Turner, 1992) to optimize it 
with standard generalized linear model software. Our implementa-
tion is based on the glmnet library, in R language. It is similar to the 
implementation in Renner et al. (2015), except that it is extended 
to a multi-species case and with a cell-wise constant sampling ef-
fort. glmnet handles sparse matrices and is very efficient in terms 

of memory and computational load, given the structure of the 
model design matrix. The R code for reproducing the results and fit-
ting the model is provided in a publicly available Github repository 
(Botella, 2020).

2.4 | Simulation study

We simulated occurrence data and tested the reliability of inferences 
with our method. The R code to reproduce this simulation study, that 
is, to generate sampling effort rasters, to simulate species occurrences, 
to fit the model and to run the analysis over all scenarios, is provided in 
the article code repository (Botella, 2020).

2.4.1 | Geographical area

The French Mediterranean region was used as a reference spatial 
domain D for simulation of species occurrences (over the longitude/
latitude extent [1.5, 8] × [41,45]).

2.4.2 | Simulated species density

We simulated no = (n1, …, n50 ) occurrences of 50 virtual species 
over D. The nis were chosen from real occurrence data (i.e. the 
50 most represented plant species in the Pl@ntNet queries data-
set; Botella et al., 2019). This resulted in the following statistics: 
min(no ) = 1502, max(no ) = 5002 and 

∑
ini∕50 ≈ 2206. All the virtual 

species densities (�i for species i  in our model) were defined as 
Gaussian functions of the same single environmental variable (two 
cases considered: elevation/alti or annual precipitation/chbio_12, 
see Appendix E). The expectation of the Gaussian density was 
drawn uniformly inside the quantiles 0.1 and 0.9 of the environ-
mental variable range of values while the standard deviation was 
drawn according to a gamma distribution of shape parameter 3 
and scale parameter 50. The two environmental variables were 
selected because they are both strongly linked to the simulated 
sampling effort, and thus could challenge joint estimation of sam-
pling effort and species densities. In addition, the resolution of the 
alti variable (around 90 m) was much finer than that of chbio_12 
(around 1  km), and alti varied more within sampling cells of our 
model. Therefore, estimation bias was more likely to arise with alti 
than with chbio_12.

2.4.3 | Sampling effort

The spatial density of sampling effort, sH was parameterized 
by a bandwidth parameter H > 0, which controlled the level of 
spatial smoothness. It was a continuous approximation of the 
density of real occurrences, obtained by filtering the Pl@ntNet 
dataset (Botella et  al.,  2019) over D. More precisely, sH was an 

(3)

log(p(Z1, …, ZN|�))

=

N∑

i=1

[
ni∑

k=1

log
(
s
(
zi
k

)
�i
(
zi
k

))
−∫Ds(z)�i(z)dz

]
.
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exponential quadratic kernel density estimator (KDE) func-
tion applied to the counts of those occurrences per very small  
square cells (resolution = 0.002 in longitude and latitude) over D. 
The test case included four values for the bandwidth parameter 
H = {20, 50, 80, 100} in cell units, which corresponded to 3.2, 8, 
12.8, 16 km in longitude, or 4.4, 11, 17.6, 22 km in latitude. The 
value of sH at point z ∈ D was a weighted average of the occur-
rence counts of surrounding cells. The weight of a count of a cell at 
Euclidean distance d was proportional to exp(−n2/H). For instance, 
for H = 20, the weight decreased by 80% at 3.8 km in longitude. 
For the highest bandwidth H = 100, only large-scale demographic 
and coastline effects were visible in the simulated sampling ef-
fort. For the lowest bandwidth H = 20, fine-grain effects such as 
the influence of rivers or roads connecting cities were visible. In 
addition to these KDE-based sampling efforts, we also considered 
a simulated sampling effort assumed to be constant within the 
cells of the mesh. This profile, called H=+Inf, was used as a refer-
ence and enabled an evaluation of the performance of the method 
under the best model specification to characterize the error due 
to estimation variance. The sampling effort sharply decreased, 
on average, when the values of alti and chbio_12 increased. This 
strong covariation in sampling effort and environmental variables 
would lead to bias in a naive SDM model (Ref?), which argues for 
the use of sampling bias correction. For computational details, the 
reader can refer to the script virtual_species_and_bias_final. R in 
the article repository (Botella, 2020).

2.4.4 | Simulated species occurrences

For a given species i  with spatial intensity �i ◦x, and for a given sam-
pling effort surface s, we independently simulated ni occurrences ac-
cording to the conditional Poisson process of intensity s�i ◦x:D → ℝ

+

, using an acceptation–rejection algorithm (Devroye,  1986). To do 
this, the maximum M of s�i ◦x over D was determined. Then, it was 
iterated until ni points were obtained: uniformly drawing a point 
z ∈ D, drawing a random variable X ∼ U ( [0, M ] ), accepting z if 
X ≤ s (z )�i ◦x (z ) or rejecting it otherwise. This procedure was con-
sistent with our distribution and observation model as described in 
Figure 1.

2.4.5 | Model fitting

We fitted the model for the 50 species with a spatial mesh of rec-
tangular cells with (0.1, 0.1) dimensions in (longitude, latitude), 
or approximately (8, 11) in kilometres. Thus, except for the case 
where the simulated sampling effort was constant cell-wise, the 
fitted model was deliberately misspecified. Indeed, the simulated 
sampling effort varied strongly within cells for the lowest band-
width H = 20, and much more weakly for the highest H = 100. 
After defining the mesh, only cells with at least 50 occurrences 
were used to fit the model. We drew background points uniformly 

across cells as explained in Appendix D. We drew these points 
until there were at least 10 points per sampling cell. We fitted the 
model on data with different combinations of the environmental 
variables (elevation or precipitation) and sampling effort profiles 
(4 based on KDE with varying smoothness and the one constant 
by cell).

2.4.6 | Performance evaluation

We used two metrics to evaluate the estimation performance of the 
sampling effort:

1.	 The coefficient of determination between the simulated sam-
pling effort and its estimation over the points of a fine regular 
spatial grid across D (approximately 200-m resolution).

2.	 The coefficient of determination between the simulated sampling 
effort averaged per sampling cell and its estimation over the same 
points. In other words, this metric computes the correlation with 
the best possible approximation of the true sampling effort and is 
necessarily superior to the first.

We also evaluated the estimation performance of species i  den-
sity parameters as the coefficient of determination between �i and 
its estimate �̂i across uniformly distributed values of x in the range 
[
min

{
x (z ) , z ∈ D

}
, max

{
x (z ) , z ∈ D

}]
. We computed the metric 

over the environmental gradient x rather than over the geographi-
cal space D, to avoid biasing the evaluation towards the most repre-
sented environmental values.

2.5 | Application to a real dataset

We also fitted the model to real occurrences recorded in the Pl@
ntNet query dataset (Botella et  al.  2019). The occurrences in this 
dataset were collected by citizens using the Pl@ntNet mobile ap-
plication (Joly et al., 2016). They were automatically identified by 
the Pl@ntNet AI engine. Details on the identification system and the 
database infrastructure of Pl@ntNet are provided in Affouard et al. 
(2017). The dataset is publicly available on the open-access reposi-
tory Zenodo (http://doi.org/10.5281/zenodo.2634137). The code 
for extracting occurrence and environmental data and fitting the 
model is provided in the code repository accompanying this article 
(Botella, 2020).

2.5.1 | Species occurrences

We selected species occurrence records in France from the be-
ginning of 2017 to October 2018. The process involved a user of 
the Pl@ntNet mobile application taking one or several pictures of 
parts of a plant specimen (e.g. leaf, flower, fruit, bark, etc.). The pic-
tures were then sent to the Pl@ntNet server to carry out automatic 

http://doi.org/10.5281/zenodo.2634137
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identification of the species and produce a probability distribution 
across species. The highest of these probabilities was then the iden-
tification confidence score. We only kept species occurrences whose 
confidence score (field FirstResPLv2Score) was above 0.85. We also 
removed all occurrences with missing values for the selected envi-
ronmental variables (described below). In the last step, we kept only 
the 150 species with the highest number of occurrences. The list of 
species is provided in the table speciesTable.csv on the article code 
repository (Botella, 2020). The mesh used for our model was defined 
as a regular spatial grid of 8-km-wide squares over France, including 
Corsica, which we restricted to squares whose centre was inside the 
territory or closer than 4 km to the border or coast. Only squares 
with more than 30 occurrences were used to fit the model: occur-
rences within other squares were excluded. This resulted in a set of 
302,961 occurrences, distributed over 2,869 spatial squares cover-
ing around 15% of the French territory. These squares are coloured 
on the map in Figure 3. To illustrate the method output for species 
density, we compared the fitted density of Phytolacca americana L., 
an exotic invasive plant species in France, to externally available dis-
tribution data. For this comparison, we referred to the occurrences 
recorded by the Federation of National Botanical Conservatories 
(FCBN), geographically summarized at http://siflo​re.fcbn.fr/?cd_
ref=&r=metro, and to occurrences listed in Dumas (2011) and  
Pl@ntNet.

2.5.2 | Environmental data

A set of nine environmental variables was used to model the envi-
ronmental density of species. These were selected carefully to 
model the macroecological niche of plant species, following the rec-
ommendations in Mod et al. (2016). The set included mean and an-
nual temperature variation, annual precipitation, potential 
evapotranspiration, available soil water capacity and a soil pH proxy. 
The variables are presented in Table 1 of Appendix E. We got the 
environmental data from multiple sources (Karger et al., 2016; 
Panagos, 2006; Panagos et  al., 2012; Van Liedekerke et  al., 2006; 
Zomer et  al., 2007, 2008). We extracted the values at occurrence 
points from the geographical rasters described and downloadable at 
Botella (2019).2

2.5.3 | Species density model

We modelled the distribution of species along continuous en-
vironmental gradients with a Gaussian density function. We 
combined annual rainfall chbio_12 and potential evapotranspira-
tion etp into chbio_12-etp, known as the water balance, which 
is commonly used in plant SDM (Mod et al., 2016). We included 
pedologic variables representing categories of physicochemi-
cal properties. To summarize, Equation (4) shows the R formula 

of the linear predictor of any species density, with 12 feature 
terms computed from the environmental variables of Table 1 of 
Appendix E. This resulted in 13 parameters for each species den-
sity, including the intercept, plus 2, 869 − 1 observation param-
eters in sampling cells, resulting in 4, 817 parameters in total, for 
302, 961 occurrences.

2.5.4 | Background points

We uniformly drew a fixed number of points per sampling cell as 
described in Appendix D. This avoided the problems of total uni-
form sampling, that is, cells with no background points. We drew 15 
points per sampling cell to account for environmental heterogeneity 
within cells, which resulted in around 43,000 background points du-
plicated for each species, or 6,450,000 background points in total. 
The dimensions of the model design matrix were then (6,752,961; 
4,817). A standard R numerical matrix with these dimensions would 
require around 231 GBytes of RAM memory. However, as our design 
matrix is sparse, with only 2 ∗ (pi + 1) + 1 = 27 non-null values per 
row, its storage cost was divided by a factor of around 180 with the 
R sparse matrix format (see library Matrix). Consequently, we could 
fit this model on a laptop with R-glmnet (it requires about 20 Gbytes 
of RAM overall).

3  | RESULTS

The simulation study allowed us to evaluate the reliability of our joint 
model estimation method (see Section 2.4). The two performance 
metrics obtained for the 10 simulation scenarios (2 environmental 
variables and 5 sampling effort profiles) are summarized in Figure 2. 
We were also able to illustrate the effectiveness of the method on 
the Pl@ntNet queries dataset as described in Section 2.5. The esti-
mated sampling effort is displayed in Figure 3. The estimation results 
for an exotic invasive plant, Phytolacca americana L, are provided in 
Figure 4.

3.1 | Simulation: Very good fit when the simulated 
sampling effort was cell-wise constant

The estimated sampling effort had an R2 of 0.97 (for both alti and 
chbio_12) compared to the simulated sampling effort when the lat-
ter was constant within cells (columns x:alti H=+Inf and x:chbio12 
H=+Inf of Figure 2a). This means that the estimate was almost col-
linear with the true sampling effort. Regarding species density esti-
mates, the average R2 over all species was 0.95 for alti and 0.88 for 
chbio_12 (columns x:alti H=+Inf and x:chbio12 H=+Inf of Figure 2b). 
This shows that the method recovers unbiased niches and sampling  2http://doi.org/10.5281/zenodo.2635501

(4)

∼1+etp+ I(etp2)+ I(chbio_12−etp)+ I((chbio_12−etp)2)

+chbio_1+ I(chbio_12)+chbio_5+ I(chbio_52)+awc_top

+I(awc_top2)+bs_top+ I(bs_top2).

http://siflore.fcbn.fr/?cd_ref=&r=metro
http://siflore.fcbn.fr/?cd_ref=&r=metro
http://doi.org/10.5281/zenodo.2635501
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effort estimates under good model specifications (sampling effort 
constant within cells) and that it is almost unaffected by estimation 
variance with this realistic simulated sample size and parameterization. 

However, in reality, sampling effort is not constant within cells, so the 
effect of violating this assumption also needed to be assessed, as 
shown below.

F I G U R E  2  R
2 between generative 

and estimated model components in the 
10 simulation scenarios for the sampling 
effort (a) and the species environmental 
density (b). In (a), the R2 was computed 
between the simulated sampling 
effort density (raw in red or averaged 
per estimation cell in black) and the 
estimated density over the geographical 
space. Regarding the evaluation of the 
species density estimates, the same 
metric was computed between the true 
and the estimated density across the 
environmental gradient and for the 50 
species, for each scenario. In (b), the 50 
species metrics values are summarized 
through boxplots overlaid on a density 
plot

F I G U R E  3   Relative sampling effort 
estimated from occurrences recorded 
in Pl@ntNet in France. The model was 
fitted on 302,961 occurrences of 150 
plant species in France reported between 
2017 and 2018 using the Pl@ntNet 
application. We represent the estimated 
sampling effort in the logarithm with base 
10 to more clearly shows the orders of 
variation. The white cells are those with 
too few occurrences to be integrated in 
the model
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3.2 | Simulation: Smoother is better

The red and black curves of Figure 2a show that the approximation 
of the sampling effort was better when the sampling effort was 
smoother, for both environmental variables. While the red curve 
represents the fit of the raw sampling effort, the black curve rep-
resents the fit of the sampling effort averaged per cell (i.e. the 
best cell-wise constant approximation (BCCA) of the true sampling 
effort that can be estimated by the model in the ideal case) and is 
always above the red curve. As H increased, the sampling effort 
variation within cells became smoother, that is, the curvature of 
the spatial function decreased, and was thus closer to constant 
within cells. This tended to reduce the gap between the red and 
black curves when H increased and the model converged towards 
the BCCA. However, it is surprising that for x:alti H:20 the gap 
between the red and the black curve was much smaller than for 
x:alti H:50 (R2 = 0.0044 for the true sampling effort and R2 = 0.01 
for the BCCA).

3.3 | Bias under joint variation in sampling 
effort and environmental variables within cells

The high error of x:alti H:20 cannot be due to estimation variance, 
as the fit was almost perfect for the cell-wise constant effort. The 
error was most likely due to an estimation bias when the model 
of sampling effort cannot fit the variation in occurrence density 
within cells. To explain it in the simplified context of a single spe-
cies case, the model is optimized so that variation in occurrence 
intensity s� (z )�� ◦x (z ) (product of the sampling effort and the 
species density estimates) fits the variation in observed occur-
rence density s (z )�◦x (z ) across space. However, the best approx-
imation of this product of densities is not necessarily the product 
of the best approximations per density, namely the BCCA of s 
and �◦x itself. More precisely, bias may appear if sampling effort 
strongly and monotonically varies with the environmental feature 
x within cells. We visualize and describe such bias in sampling 
effort profile (3) in the complementary simulation experiment 

F I G U R E  4   Raw occurrence and 
estimated density of Phytolacca americana 
L. from Pl@ntNet data. (a) 4,640 
occurrences of Phytolacca americana 
L. recorded by Pl@ntNet users with 
automatic identification over the 2017–
2018 period. (b) Decimal logarithm of 
predicted relative density of Phytolacca 
americana L. across France estimated  
from the occurrences with the proposed 
study method. The discrete gradient 
of colours represents quantile interval 
ranges
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in Appendix F, with a joint visualization of species and sampling 
effort density estimates. The examination of a re-expression of 
the asymptotic model likelihood (Equation 3, second subsection 
of Appendix B) suggested that, if bias happens, the N species 
density parameters �1, …, �N controlling the log-linear response 
of the species densities �1, …, �N to x are all likely to be biased. 
Their errors should have the same sign, to compensate for the 
increase or decrease in sampling effort along the environmental 
feature within cells. This bias is related to the problem of spatial 
confounding in spatial statistics (Hodges & Reich, 2010).

3.4 | Simulation: Estimation of species density 
improved with smoother sampling effort

Figure 2b shows that species responses using the model were, on 
average, well estimated in most scenarios, even when sampling ef-
fort estimation was worst. In the scenario x:alti H:20, the average 
R2 of the 50 species densities was around 0.85. In fact, as shown by 
the asymmetry of density plots in all scenarios, most species had 
a good fit with similar performance while a few had a significantly 
worse fit. As for the estimation of sampling effort, quality nota-
bly increased with H. This indicates that the robustness issue with 
sampling effort variation within cells translated into bias in spe-
cies estimates. In addition, some species were consistently badly 
estimated, with R2 below 0.50 even for H = + Inf. This could be 
the consequence of a simulated niche optimum being in a scarcely 
sampled area and/or a lack of occurrences. Species density esti-
mation was, overall, worse for chbio_12 than alti, even with good 
model specification (0.88 for x:chbio_12 H:+Inf on average com-
pared to 0.95 for x:alti H:+Inf on average, see Figure 2b), whereas 
the estimation of sampling effort density was almost perfect. This 
implies that lower performance was not due to estimation bias, 
but to estimation variance, due to responses that were harder to 
estimate given the sampling effort and occurrences. The lower 
estimation quality with chbio_12 was thus not intrinsically due 
to the variable itself, but a consequence of species niches (which 
were randomly defined) that are harder to estimate. It also high-
lights that even when species estimation is unbiased, its precision 
necessarily depends on the overall intensity of sampling, that is, a 
sufficient number of points are required everywhere (all species 
included) in environmental space to ensure homogeneity in the 
estimation quality across species, as highlighted in section model 
design guidelines.

3.5 | Application: Phytolacca americana L. 
distribution

Using the Pl@ntNet queries dataset, we fit the model to provide spe-
cies density estimates for 150 plant species. Figure 4b displays the 
decimal logarithm density estimation of Phytolacca americana L. The 
estimation provided by the model is consistent with the knowledge 

of the Phytolacca habitat as described in Dumas (2011). This spe-
cies is cultivated as an ornamental shrub all over France—one of 
the reasons for its introduction—and often becomes established on 
disturbed soils in surrounding areas. In rural areas, it prefers man-
aged forests with acidic, sandy soils. It is also found along rivers 
bordered with trees, as predicted by the model along the Rhone and 
the Garonne. Northern France is not favourable to this species. The 
model identified true hotspots even in scarcely sampled areas. It 
also predicted that the species is abundant in several relatively un-
sampled departments, such as the Indre, Aude, Charente and Gers. 
Indeed, Figure  3, representing the fitted log-relative sampling ef-
fort, shows that most cells in those regions had too few occurrences 
to be included in the model, and the ones that were included had a 
relatively low sampling effort. The FCBN records from 2000, which 
can be seen at http://siflo​re.fcbn.fr/?cd_ref=113418 r = metro, con-
firm that the species is indeed widely present in Indre. Conversely, 
there are very few reports in the National Inventory of Natural 
Assets (INPN) data for Aude, Charente or Gers, although presence-
only records exist (Dumas, 2011 and Pl@ntNet). Those regions have 
been undersurveyed by conservatory experts in the last 20 years. 
Thus, the current estimated abundance of Phytolacca americana has 
either stayed undetected by sampling or is the result of a recent 
invasion.

4  | DISCUSSION

We found that our method to jointly estimate densities of multiple 
species, with a spatial function representing a common sampling 
effort, provides unbiased estimation of species relative density and 
sampling effort if the latter is constant within the cells of a spa-
tial mesh. This allows the flexible estimation of the sampling effort, 
with no other prior knowledge than the grain of its spatial variation. 
Although the condition of constant sampling effort within cells is 
crucial to disentangle species and sampling densities, the method 
is robust for reasonable variation of sampling effort within cells, 
and even to stronger variation unrelated to environmental drivers 
of species density. We also found that the information gain on sam-
pling effort from the most observed species helps to better esti-
mate the niche of less observed species (Appendix C). Our method 
is devised for analysing large volumes of occurrences. Nevertheless, 
the simulation experiments and complementary results (Appendix 
F) showed that the artefactual influence of an environmental fea-
ture on species density can bias estimates when the sampling effort 
model is misspecified. More precisely, such bias appears along an 
environmental feature gradient if the true sampling effort strongly 
and monotonically covaries with this feature within cells (Appendix 
B). Removing this variable from the model of a species known to not 
respond to it should eliminate this bias for all species.

In the context of the model's application to Pl@ntNet data, we fit 
the model on a total of 302,961 citizen science occurrences of 150 
plant species, covering 15% of France partitioned into 2,869 sam-
pling cells. The estimated density of Phytolacca americana L. suggests 

http://siflore.fcbn.fr/?cd_ref=113418
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potential invaded areas yet undetected in published data, especially 
in scarcely sampled regions. Nevertheless, predictions out of the 
training area must be carefully examined, as they may present differ-
ent environmental conditions and be subject to extrapolation errors.

4.1 | Method use guidelines

This method should be useful for large datasets of opportunistic oc-
currences in which some species are highly observed: for instance, 
with data from large citizen science or naturalist programmes. The 
recommendations on model design and sample size below indicate 
the conditions under which the method is most potentially useful:

1.	 Include at least several tens of occurrences (all species included) 
per sampling cell. Otherwise discard the cells and their occur-
rences, and do not include any background points over these cells. 
Alternatively, the user can increase the size of cells or include 
more species, widely distributed and with many occurrences, 
to meet the condition. Indeed, the information gain on the 
sampling effort parameter in a cell is equal to the total number 
of occurrences in this cell (see Appendix A). Scarce cells are a 
useless computational burden, as they need background points, 
and a potential source of variance. As the sampling effort in 
those cells is very uncertain, they consume degrees of liberty 
but do not contribute to reducing the variance in the species 
parameters. The method is not suited to contexts where the 
concentration of occurrences per sampling cell is too low: for 
example, herbarium datasets with few samples collected over 
large areas with very heterogeneous sampling effort. In such 
cases, the FactorBiasOut/TGB method (Phillips et al., 2009) should 
be more reliable because it does not require many degrees of 
freedom to model sampling effort. For example, our test case 
had an average of 105 occurrences per cell.

2.	 There should be at least several tens of occurrences for each en-
vironmental feature for each species. This is because the informa-
tion gained on the parameters of a species comes only from its 
intensity of occurrence s�i ◦x as can be seen in the expression of 
I (� i ) given in Appendix A, because � (ni ) = ∫

D
.

3.	 For each environmental feature, the standard deviation of this 
feature over all occurrences divided by the standard deviation 
over background points should not be too small (at least 1/3 in 
practice). This is a proxy of the spread of the overall occurrence 
intensity along the feature gradient. The estimation of this param-
eter with a certain confidence will require more occurrences if 
this indicator is low. Indeed, I (� i

k
) = ∫

D
s (z )xk (z )

2�i (x (z ) )dz thus, 
if x is centred, the information on the species parameter is pro-
portional to a (spatially weighted) variance in the corresponding 
environmental feature across space.

4.	 Regarding the choice of cell size, an optimal compromise should 
exist, but we have no definite procedure to reach it yet. Three 
main limitations can prevent good estimation when the sam-
pling mesh reaches a resolution that is too high: the estimation 

variance (see the first point above), the identifiability (discussed 
in Section 2.2) and the memory limitation (number of background 
points required). Conversely, designing cells that are too large re-
sults in more variation in sampling effort within cells, which tends 
to favour estimation bias (see Section  3 and Appendix B, para-
graph 2). In practice, a cross-validation scheme should be run for 
each tested cell area. Decreasing the size of cells can very quickly 
increase the estimation variance in the species parameters, as 
shown for a simulation example in paragraph 4 of Appendix C.

5.	 It is important to include some species with many occurrences 
in the model if available, especially if they are generalist respec-
tive to the environmental features. As shown in Appendix C, an 
increase in the number of occurrences of a single species reduces 
the estimation variance in sampling effort, which, in turn, reduces 
estimation variance in all other species parameters. Moreover, 
species with many occurrences contribute more to estimation 
variance as they are widely distributed in the environmental 
space.

6.	 An environmental variable should be removed from the model of 
a species if the species is known to be generalist along this gra-
dient. This (a) reduces the estimation variance for all other spe-
cies density parameters associated with this gradient, as shown in 
paragraphs 2 and 3 of Appendix C and (b) drastically reduces the 
estimation bias. Indeed, generalist species clarified in this way in 
the model provide a reference for sampling effort along the envi-
ronmental gradient for the model.

4.2 | Scalability

This method can handle datasets that include a massive number 
of total occurrences over large geographical areas with many sam-
pling cells, as shown by our test case with the Pl@ntNet data across 
France. This is favoured by the cell-wise constant sampling effort 
model and the use of a sparse design matrix. The memory load in-
creases sublinearly with the number of sampling cells, but is roughly 
proportional to the inverse cell area of the highest resolution envi-
ronmental raster. While there must be background points in all sam-
pling cells, their total number just needs to enable a good screening 
of the overall environmental variability. The number of species may 
also be limiting as this linearly increases the memory load, indepen-
dently of their number of occurrences. There is a room for improve-
ment in reducing the need for memory in the fitting procedure: for 
instance, by optimizing the selection of background points or using a 
batch gradient descent algorithm.

5  | CONCLUSIONS

Our results demonstrate that our method can estimate sampling ef-
fort from presence-only data in a geographical space with consider-
ably fewer prior assumptions than previous methods. The method 
can be extended to allow its use in a broad range of situations. It is 
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especially suited to analyse massive occurrences of multiple species 
at a large spatial scale, and should decrease bias in species distribu-
tion estimates. We thus think the approach will be useful to recover 
information about sampling effort from purely opportunistic oc-
currence data, enabling post-analysis of sampling effort variation in 
citizen science programmes and guiding strategies for further data 
collection. Insofar as citizen science data can provide time series over 
a long enough period, our method should allow monitoring of remark-
able or noxious species such as exotic invasive species and help to 
guide conservation and management strategies (Botella et al., 2018).
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