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Opinion

Holobiont–Holobiont Interactions: Redefining Host–
Parasite Interactions
Nolwenn Marie Dheilly*

MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), Montpellier, France

The term holobiont (Greek, from holos,

whole; bios, life; -ont, to be; whole unit of

life) describes a long-term physical associ-

ation between different living organisms

[1]. Theoretically, this definition encom-

passes all symbiotic associations (along the

mutualism–parasitism continuum) span-

ning all taxa. However, in most cases,

the term holobiont is restricted to the host

and its associated mutualistic symbionts.

The hologenome theory of evolution

considers that the holobiont is the unit

under natural selection in evolution [2,3].

I argue that this opens new perspectives on

the study of host–parasite interactions.

Evidence suggests that all of the diverse

microorganisms associated with the host

and parasite play a part in the coevolution.

This new paradigm has the potential to

impact our comprehension of the devel-

opment and evolution of disease.

It has been established in different

model species that immune system matu-

ration requires the presence of mutualistic

bacteria [4–6]. The tsetse fly Glossina

moritans carries an obligate mutualist, the

bacteria Wigglesworthia glossinidia, which is

necessary for maturation of the immune

system during development [6,7]. In

vertebrates, species-specific gut bacteria

are necessary for the maturation and the

maintenance of a healthy immune system

[4,8–13]. Organisms are associated with a

great variety of microorganisms, including

viruses and unicellular eukaryotes, and we

are starting to realize that they also play an

important role in shaping a healthy

immune system [14–16].

Thus, symbionts indirectly protect the

host against various pathogens via im-

mune activation (Figure 1A, 1B). In some

cases, even parasites improve the fitness of

their host; this process is called conditional

mutualism [17]. For example, the hepatitis

G virus limits the progression of HIV to

AIDS [18,19], the hepatitis A virus

suppresses infection by the hepatitis C

virus [20], and the murine cytomegalovi-

rus protects mice against infection by

Listeria monocytgenes and Yersinia pestis [21].

Host-associated microorganisms also

contribute directly to the defense against

pathogens (Figure 1C). The bacteriophage

carried by the bacteria Halmitonella defensa,

Acyrthosiphon pisum secondary endosymbi-

ont (APSE) is a conditional mutualist of

the pea aphid A. pisum [22–24]. It encodes

toxins targeting the developing larva of the

parasitic wasp Aphidius ervi [25,26]. Human

gut bacteria directly antagonize bacterial

pathogens by producing antibacterial fac-

tors, by competing for elements necessary

for pathogen growth (competitive exclu-

sion), and by limiting their adhesion to

host cells [9]. In addition, mucus-associat-

ed bacteriophages participate in the first

line of defense against bacteria in various

species, from cnidarians to mammals [27].

Thus, the ‘‘holo-immunome’’ must be

studied for a comprehensive understand-

ing of host resistance to infections.

Host-associated microorganisms are al-

so affected by parasitosis (Figure 1D). In

the coral Oculina patagonica, infection by

Vibrio shiloi induces coral bleaching by

directly attacking the photosynthetic mi-

croalgal endosymbionts [28,29]. Symbiot-

ic bacterial communities associated with

the lichen Solorina crocea are also affected by

the fungal parasite Rhagadostoma lichenicola

[30]. HIV and SIV infections are fre-

quently associated with gastrointestinal

disorders that can be explained by an

alteration of the gut microbial community

[31–33]. As discussed above, such disrup-

tions of host–symbiont interactions favor

pathogenesis, therefore indirectly partici-

pating in the disease.

Finally, parasites are also associated

with microorganisms that will directly

benefit from an improved fitness of their

parasitic host. These symbionts can direct-

ly participate in the disease caused by the

parasite (Figure 1E). For instance, parasit-

oid wasps of the Ichneumonidae and

Braconidae families have independently

evolved mutual associations with DNA or

RNA viruses (unpublished work) and play

an essential role in the parasite’s success

and evolution [34–35]. Entomopathogenic

nematodes are associated with bacteria

that produce toxins that help degrade

tissues for the nematode to feed on

[36,37]. Similarly, the plant-pathogenic

fungi Rhizopus sp. has an endosymbiotic

bacteria that produces toxins that have a

key role in the disease [38].

Until recently, the role of parasite-

associated microorganisms in human dis-

eases had been underestimated, but ex-

amples are now starting to emerge. The

Leishmania RNA virus promotes the

persistence of Leishmania vienna parasites

by inducing a TLR3-mediated inflamma-

tory response that renders the host more

susceptible to infection [39]. Similarly,

Trichomonasvirus, an endosymbiotic of the

protozoan parasite Trichomonas vaginalis is

responsible for the strong proinflamma-

tory response that causes preterm birth

[40]. Microorganisms associated with such

medically important parasites can now be

targeted to limit the impact or develop-

ment of the disease.

The theoretical framework provided by

considering not only the host but also the

parasite as a holobiont revealed that some

interactions have been underestimated

and others have not yet been explored.

For example, can microorganisms associ-

ated with the host directly interact with

microorganisms associated with the para-

site? Can the host defend itself against
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infection by recognizing the microorgan-

isms associated with the parasite? Can

parasite-associated microorganisms indi-

rectly promote the disease (by increasing

its fecundity, for example)? Parasitologists,

microbiologists, and immunologists have

the monumental task of revealing the

myriad interactions occurring between

holobiont hosts and holobiont parasites.

This knowledge promises to greatly impact

our ability to develop new treatments and

therapies.

These interactions within interactions

have major implications for ecologists

and evolutionary biologists, because any

host–parasite interaction will be depen-

dent on all other interactions in the system

[41,42]. The short generation time of

microorganisms, along with the genetic

diversity and novelty they provide [43,44],

can play an important role in the adapta-

tion and evolution of hosts and parasites in

their evolutionary arms race [45]. This

coevolution may also be driven by fluctu-

ating selection [46], in which hosts and

parasites interact with different microor-

ganisms over thousands of years, constant-

ly evolving to favor the most advantageous

symbiont at the time. In addition, associ-

ated microorganisms may be pathogenic

to non-adapted individuals and drive

speciation [35,47,48]. Thus, the study

of microorganisms associated with hosts

and parasites is no longer optional; it is,

rather, an obligatory path that must be

taken for a comprehensive understand-

ing of the ecology and evolution of hosts

and parasites. It is a necessary step for

the prevention and prediction of disease

outbreaks.
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