Differential Distribution of Genes Encoding the Virulence Factor Trans-Sialidase along Trypanosoma cruzi Discrete Typing Units
Juan M Burgos, Marikena G Risso, Simone Brenière, Christian Barnabé, Oscar Campetella, María Susana Leguizamón

To cite this version:
Juan M Burgos, Marikena G Risso, Simone Brenière, Christian Barnabé, Oscar Campetella, et al.. Differential Distribution of Genes Encoding the Virulence Factor Trans-Sialidase along Trypanosoma cruzi Discrete Typing Units. PLoS ONE, Public Library of Science, 2013, 8 (3), pp.e58967. 10.1371/journal.pone.0058967. hal-03126901

HAL Id: hal-03126901
https://hal.umontpellier.fr/hal-03126901
Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Differential Distribution of Genes Encoding the Virulence Factor Trans-Sialidase along Trypanosoma cruzi Discrete Typing Units

Juan M. Burgos1,3, Marikena G. Risso1,3, Simone Frédérique Brenière2, Christian Barnabé2, Oscar Campetella3, María Susana Leguizamón1,3*

1 Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 2 Unité de Recherche MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Représentation de l’IRD en Bolivie, La Paz, Bolivia, 3 Instituto de Investigaciones Biocientíficas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina

Abstract

Trypanosoma cruzi, the agent of Chagas disease is a monophyletic but heterogeneous group conformed by several Discrete Typing Units (DTUs) named TcI to TcVI characterized by genetic markers. The trans-sialidase (TS) is a virulence factor involved in cell invasion and pathogenesis that is differentially expressed in aggressive and less virulent parasite stocks. Genes encoding TS-related proteins are included in a large family divided in several groups but only one of them contains TS genes. Two closely related genes differing in a T/C transition encode the enzymatically active TS (aTS) and a lectin-like TS (iTS). We quantified the aTS/iTS genes from TcI and TcVI aggressive and TcI low virulent strains and found variable aTS number (1–32) per haploid genome. In spite of being low TS enzyme-expressers, TcI strains carry 28–32 aTS gene copies. The intriguing absence of iTS genes in TcI strains together with the presence of aTS/iTS in TcI and TcVI strains (virulent) were observed. Moreover, after sequencing aTS/iTS from 38 isolates collected along the Americas encompassing all DTUs, the persistent absence of the iTS gene in TcI, TcII and TcIV was found. In addition, the sequence clustering together with T/C transition analysis correlated to DTUs of T. cruzi. The consistence of TS results with both evolutionary genome models proposed for T. cruzi, namely the “Two Hybridization” and the “Three Ancestor” was discussed and reviewed to fit present findings. Parasite stocks to attempt genetic KO or to assay the involvement of iTS in parasite biology and virulence are finally available.

Editor: Luzia Helena Carvalho, Centro de Pesquisa Rene Rachou/Fundação Oswaldo Cruz (Fiocruz-Minas), Brazil

Received December 11, 2012; Accepted February 8, 2013; Published March 11, 2013

Copyright: © 2013 Burgos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) from Argentina, and National Institutes of Health (NIH) [Grant R01AI075589 to OC]. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. JMB, MGR, OC and MSL are Researchers from CONICET, Argentina.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sleguiza@fmed.uba.ar
† These authors contributed equally to this work.

Introduction

Chagas disease is a chronic disabling disease caused by the protozoon Trypanosoma cruzi. With an estimated 8–10 million people already infected, and about 40,000 new cases/year, Chagas disease represents a major public health, social and economic problem in Latin America where about 100 million people are at risk [1]. Besides the vectorial spread, blood transfusion, organ transplants and congenital transmission increase the worldwide dissemination risk due to migratory processes as in the USA where it has been estimated that 300,000 people are infected [2].

T. cruzi constitutes a monophyletic but genetically heterogeneous group. Based on various genetic markers and evolutionary and population genetics interpretations of data, T. cruzi populations have been classified into six Discrete Typing Units (DTU) namely TcI to TcVI. Recently a seventh group sampled in bats and named TcBat has been added [3,4]. Because of the predominantly clonal evolution of the parasite, these DTUs are rather stable in space and time, constituting a useful framework for epidemiological and evolutionary analysis [5]. This genetic diversity seems to be correlated with a geographical distribution [3,6,7] and with biological characteristics of the parasite such as culture growth, pathogenicity in mice, evolution in the insect vector, susceptibility to antichagasic drugs and tissue tropism in animal and human infections. Human infection displays different clinical evolutions ranging from asymptomatic to cardiomyopathy, megaviscera or even death. Different outcome incidences are also determined by host genetics, the presence of mixed infections, cultural factors, etc. [8]. Within the endemic area, heterogeneous geographical distribution of DTUs has been extensively described suggesting that the genetic composition of the parasite could be partly responsible for the different manifestations of Chagas disease. Broadly, TcI is found from the south of the USA in the sylvatic environment to northern South America where it seems to be responsible for chagasic cardiomyopathy [7,9–11]. In Southern Cone countries, TcI is usually associated to the sylvatic cycle whereas TcII, TcV, and TcVI are relatively more abundant than...
Trypanosoma cruzi in the domestic cycle [3,12,13]. In this region, human infections present higher rates of severe heart affection [7,14–18] and digestive abnormalities, which are exceptional in northern South America and Central America [19,20]. TcIII which is usually isolated from vectors and sylvatic reservoirs has a low prevalence in human infections [11,21,22] whereas TcIV shows a similar geographical distribution but higher incidence in human infection [15,23–25].

Although sialic acid is crucial for the life cycle of T. cruzi, being involved in host cell adhesion/invasion processes and escape from the complement, the parasite is unable to synthesize this sugar de novo. To circumvent this gap, the parasite expresses the trans-sialidase (TS), that transfers α2,3-linked sialyl residues among glycoproteins or glycolipids. Circulating TS activity alters the sialylation pattern of the cellular glycoconjugates leading to glycoproteins or glycolipids. Circulating TS activity alters the sialylation pattern of the cellular glycoconjugates leading to

Gene encoding TS are included in a large family composed of at least 1439 members [29], a figure certainly underestimated due to the expected collapse when assembling closely similar sequences of each other. Although several different groups of genes can be discerned, only one of them includes those that code for the TS proteins [30,31]. It has been estimated that as many as 150 genes of this group are included in the genome [32] where two TS isoforms, the active enzyme (aTS) and an enzymatically inactive TS (iTS) are encoded. Comparison of the aTS vs. iTS deduced amino acid sequences shows variations in 20 residues, although the inactivation is entirely due to the single crucial Tyr34His replacement as a consequence of a T/C transition [33]. The replacement by histidin renders the protein enzymatically inactive but allows retaining the substrate binding ability conferring therefore a lectin-like activity [32,34]. This strongly suggests a physiologic role for iTS in parasite attachment to substrates or cell surface receptors that might explain its conservation. Crystallographic analyses and enzyme kinetic assays [35] have recently shown that iTS retains residual hydrolytic activity. By using the recombinant iTS, a co-stimulating host T-cells effect have been adscribed [36].

Previous efforts to associate parasite genetic classification and biological features have allowed us to determine the expression of each TS in parasite isolates belonging to different lineages [37]. In this study our aim was to analyze the distribution of genes encoding the virulence factor TS among DTU-representative isolates collected along the Americas spanning all the endemic area from Argentina to the USA.

Trans-Sialidase Genes in T. cruzi Populations

Materials and Methods

Trypanosoma cruzi isolates

The study was carried out in a panel of 38 parasite isolates encompassing all DTUs (nine TcI stocks, seven TcII, two TcIII, five TcIV, six TcV, and nine TcVI) obtained from various ecological origins (vectors, animal reservoirs and human infections) spanning all the endemic area from Argentina to the USA.

Trypanosoma cruzi genomic DNA purification

DNA from Ac, Hc, K-98, SN, Br, CMA, ChVal, HE, HT, RA, Q501/3, Tulahuen, ML, Alf, FAL and Cvd parasite strains was obtained from peripheral blood trypomastigotes. DNA from Silvio X10, Tu18, M5631, Can III, CL, Brener, CID, H1, QUE, CBBcl2, ESMcl1Z2, IVVcl4, MAScl1, MVBed, X109/2, 3.1, 92121102R, STC10R, STC16R1, MNcl2, SC43cl1, CA15, P63cl1 strains was obtained from epimastigotes. The Blood and Cell Culture DNA Purification Kit (Quagen) or conventional phenol-chloroform DNA extraction methods were used.

DTU characterization

All T. cruzi DNA samples were genotyped using polymerase chain reaction (PCR) strategies following Burgos et al. [17] algorithm of classification. Some T. cruzi stocks (CID, H1, QUE, CBBcl2, ESMcl1Z2, IVVcl4, MAScl1, MVBed, X109/2, 3.1, 92121102R, STC10R, STC16R1, MNcl2, SC43cl1, CA15, P63cl1) were also characterized by MLEE [38–40] for DTU assignment.

For PCR characterization, five reactions targeted to the intergenic region of split leader genes (SL-IR), 24s rDNA and the A10 fragment were carried out on each DNA sample to determine the parasite DTU. The PCR amplicon size for each DTU was: Tc I: SL-IRac (150 bp), SL-IR-I (475 bp), and 24s HnPCR (140 bp); TcII: SL-IRac (157 bp), SL-IR-II (425 bp), 24s HnPCR (140 bp) and A10-PCR (690 bp); TcIII: SL-IRac (200 bp), 24s HnPCR (125 bp), and A10-PCR (630 bp); TcIV: SL-IRac (200 bp) and 24s HnPCR (140/145 bp); TcV: SL-IRac (157 bp), SL-IR-II (425 bp), 24s HnPCR (125 or 125+140 bp), and A10-PCR (630 bp); TcVI: SL-IRac (157 bp), SL-IR-II (425 bp), 24s HnPCR (140 bp), and A10-PCR (630 bp).

Quantification of aTS and iTS genes

To assess the number of genes per haploid genome coding for aTS and iTS in each parasite isolate, a real-time PCR-based strategy was applied. These assays were performed at the facilities of Eurofins Medigenomix GmbH (Germany) on an ABI 7900 HT Sequence Detection System (Applied Biosystems) using the universal mix of ABI TaqMan reagents (Applied Biosystems). Briefly, the region containing the mutation was amplified with the following flanking oligonucleotides: 5′-TGGGCAAGTATCATCAG-3′ and 5′-TGATCTCATGCAAACAGTAGTACAGTT-3′. In the same reaction, a pair of fluorescent-labeled probes specific for the two possible sequences at the mutation position 5′-AATTCCGGCTTACAGCT-3′ coupled to FAM to detect aTS and 5′-AAAAATTCCGGCCCATCAGCT-3′ coupled to VIC which binds to iTS allowed the quantification of both genes. The analysis was normalized by quantification of the T. cruzi pyruvate dehydrogenase gene (PVDH)-encoding gene present as a single copy per haploid genome [41]. This reaction included a set of primers (5′-CGGCGTACCAGCATGCCT-3′) and a labeled probe (5′-CACAGCTT-3′) allowed the detection of both genes. The analysis was normalized by quantification of the T. cruzi pyruvate dehydrogenase (PVDH)-encoding gene present as a single copy per haploid genome [41]. This reaction included a set of primers (5′-CGGCGTACCAGCATGCCT-3′) and a labeled probe (5′-CACAGCTT-3′) allowed the detection of both genes.

Plasmids containing the aTS or iTS genes were used as control and during test standardization. In the data analysis, the intensity of each signal was a definite value (Ct, cycle of threshold), which is inversely related to the amount of complementary DNA. The proportion of both genes was calculated for each T. cruzi isolate as the average of two independent determinations.

Amplification and sequencing of TS genes

Two upstream and two downstream primers to the region containing the T/C transition of TS-encoding genes were designed (5′ primers: TS-31, 5′-GGAGGCTGTCGCCGCTCTGC-3′ and TS-5, 5′-GCTTCTACTGGGCTTGACATCGG-3′; 5′ primers: TS-31, 5′-TCACCGAGGCTGACATTCCAGCTC-3′ and TS-5, 5′-ACCTTGAAGGCGCCGGAATTG-3′) and a labeled probe (5′-CACAGCTT-3′) that hybridizes the pvdh gene.

Plasmids containing the aTS or iTS genes were used as control and during test standardization. In the data analysis, the intensity of each signal was a definite value (Ct, cycle of threshold), which is inversely related to the amount of complementary DNA. The proportion of both genes was calculated for each T. cruzi isolate as the average of two independent determinations.
Amplification was carried out with 0.4 μM of each primer, 5 U of Pfu polymerase enzyme (Promega), 2.5 mM of dNTPs, and 100 ng of genomic T. cruzi DNA as template in 50 μl final reaction volume. The PCR cycle consisted of 30 rounds of 94°C for 45 s, 65°C for 45 s, and 72°C for 45 s, with a first step of 2 min at 94°C and one last step of 5 min at 72°C. PCR products were analyzed by electrophoresis in 2% agarose gel. Amplicons were purified and both strands sequenced with the primers used for amplification.

Chromatograms were visually examined to determine the presence of C and/or T in the first position of the codon 342. Firstly TS-51/TS-31 primer set was used and those genomes rendering only the Tyr342 codon were then subjected to the other three PCR reactions. The IUPAC nomenclature for the genetic code was used to define single nucleotide polymorphism (SNP) positions with mixed base identification set to 15% of the highest peak. Sequences were deposited in the GenBank with the accession numbers KC286514, KC286515, KC286516, KC286517, KC286518, KC286519, KC286520, KC286521, KC286522, KC286523, KC286524, KC286525, KC286526, KC286527, KC286528, KC286529, KC286530, KC286531, KC286532, KC286533, KC286534, KC286535, KC286536, KC286537, KC286538, KC286539, KC286540, KC286541, KC286542, KC286543, KC286544, KC286545, KC286546, KC286547, KC286548, KC286549, KC294586 and KC294587.

Sequence comparison of the region around the codon 342
A 455-bp consensus sequence of each T. cruzi stock was obtained by comparison of forward and reverse sequences of the TS-51/TS-31 PCR reactions. Sequences from the different stocks were aligned and compared by using ClustalW2 program [42]. A clustering tree was built by using SplitsTree4 [43] with the following options: i) the “UncorrectedP” method which computes the proportion of positions at which two sequences differ was used; ii) the ambiguous state codes (such as W, M, V …) were handled with the option ‘Average’ meaning that the contribution at a site is averaged over all possible resolutions of the ambiguous codes, with the exception that sites having the same ambiguous code contribute zero; iii) the distance-based method used was UPGMA because we considered that evolution rate must be the same upon both branches; the bootstrap was conducted with 1,000 iterations.

Table 1. Quantification of aTS and iTS in parasites representing high and low TS activity producers.

<table>
<thead>
<tr>
<th>T. cruzi</th>
<th>pvdh</th>
<th>aTS</th>
<th>iTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTU</td>
<td>Isolate</td>
<td>Cts</td>
<td>Cts</td>
</tr>
<tr>
<td>TcI</td>
<td>Ac</td>
<td>39.004 ± 0.606</td>
<td>23.907 ± 0.146</td>
</tr>
<tr>
<td></td>
<td>Hc</td>
<td>34.172 ± 0.098</td>
<td>18.473 ± 0.001</td>
</tr>
<tr>
<td>TcII</td>
<td>K-98</td>
<td>36.529 ± 0.186</td>
<td>22.679 ± 0.102</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>18.269 ± 0.022</td>
<td>16.912 ± 0.032</td>
</tr>
<tr>
<td>TcVI</td>
<td>RA</td>
<td>28.925 ± 0.018</td>
<td>14.767 ± 0.065</td>
</tr>
<tr>
<td></td>
<td>Q501/3</td>
<td>20.465 ± 0.135</td>
<td>17.717 ± 0.066</td>
</tr>
<tr>
<td></td>
<td>Cvd</td>
<td>17.791 ± 0.094</td>
<td>17.074 ± 0.378</td>
</tr>
<tr>
<td></td>
<td>CL Brener</td>
<td>29.132 ± 0.161</td>
<td>14.719 ± 0.032</td>
</tr>
</tbody>
</table>

a) Parasites correspond to low (TcI) and high (TcII and TcVI) TS activity producer stocks as described by Risso et al [37].
Parasite DNA was subjected to quantitative real time PCR and aTS/iTS presence was determined by using probes labeled with reporter dyes. Gene number per haploid genome was determined by Ct comparison with that obtained for the pvdh single copy gene. Ct: cycle of threshold; ND: not detectable.
Table 1. Tested depicted only T (corresponding to chromatograms, see Figure 1), TcI, TcIII and TcIV parasites first position encoding codon 342 observed as a mixed peak in the

T. cruzi isolate	Source	Country/Area	DTU	TS
Ac	Human	Ar/Chaco	I	atTS
Hc	Human	Ar/unknown	I	atTS
SN	Human	Ar/Misiones	I	atTS
K-98	Human	Ar/San Luis	I	atTS
FAL	Human	Ar/Chaco	I	atTS
Silvio X10	Human	Br/Para	I	atTS
CID	Human	Me/Oaxaca	I	atTS
H1	Human	Me/Yucatan	I	atTS
QUE	Vector	Me/Queretaro	I	atTS
Br	Human	Ar/unknown	II	atTS/iTS
Tu18	Vector	Bo/Tupiza	II	atTS/iTS
CBcI2	Human	Ch/Region IV	II	atTS/iTS
IVcI4	Human	Ch/Region IV	II	atTS/iTS
MVcI8	Human	Ch/Region IV	II	atTS/iTS
ESMcI3	Human	Br/Bahia	II	atTS/iTS
MA51cI	Human	Br/Fed. District	II	atTS/iTS
M5631	Armadillo	Br/I. Marajo	III	atTS
X10b/2	Dog	Pa/Pte. Hayes	III	atTS
Can III	Human	Br/Belem	IV	atTS
3.1	Vector	Pe/Arequipa	IV	atTS
92122102R	Raccoon	USA/Georgia	IV	atTS
STcI0R	Raccoon	USA/Georgia	IV	atTS
STcI6RcI1	Raccoon	USA/Georgia	IV	atTS
CMA	Human	Ar/Chaco	V	atTS/iTS
ChVAL	Human	Ar/unknown	V	atTS/iTS
HE	Human	Ar/Chaco	V	atTS/iTS
HT	Human	Ar/Chaco	V	atTS/iTS
MNC2	Human	Ch/Region IV	V	atTS/iTS
SC45cI	Vector	Bo/Chuquisaca	V	atTS/iTS
RA	Human	Ar/Chaco	VI	atTS/iTS
QS01/3	Human	Ch/Region IV	VI	atTS/iTS
Cvd	Human	Ar/Mendoza	VI	atTS/iTS
ALF	Human	Ar/Chaco	VI	atTS/iTS
ML	Human	Ar/unknown	VI	atTS/iTS
Tulahuén	Human	Ch/Region IV	VI	atTS/iTS
CL Brener	Vector	Br/Gu do Sul	VI	atTS/iTS
CA15	Vector	Bo/Santa Cruz	VI	atTS/iTS
P63cI1	Vector	Pa/Pte. Hayes	VI	atTS/iTS

a) Ar: Argentina; Br: Brasil; Me: Mexico; Bo: Bolivia; Ch: Chile; Pe: Peru; Pa: Paraguay. b) TS isoforms predicted presence. atTS: active trans-sialidase; iTS inactive trans-sialidase. c) unidentified blood- sucking vector; d) Triatoma infestans (vector bug). e) Dasypus novemcinctus. doi:10.1371/journal.pone.0058967.t002

Sequence comparison of TSs amplicons

To further analyze the region in search for other SNPs that might be useful to classify parasites, we compared the 455 bp TS gene region sequenced from the 38 T. cruzi stocks belonging to the six DTUs. Besides the nucleotide position corresponding to the T/C transition (Figure 1), sequences also include the TGG codon for Trp312, one of the two aromatic residues that participate in substrate binding [35]. Interestingly, all stocks from every DTU encoded the Trp312 codon sequence in that position (see Figure S1). On the other hand, sequences revealed several differences among the six DTUs as other SNPs beyond the T/C transition. Nine SNPs were synapomorphs of DTUs or groups of DTUs. Based on these SNPs and other less conserved polymorphisms (asterisks in Figure S1), the sequence clustering analysis as an UPGMA tree (Figure 2) showed that parasite strains were differentiated into six groups that coincide with the previous DTU assignment, TcI, TcII, TcIII, TcIV, TcV and TcVI with only two exceptions (CANIII and 3.1 strains which are classified as TcIV but here clustered with TcIII). However, bootstrap values were remarkably significant for TcI, TcIII and TcIV and lower (<50) for the other DTUs.

Discussion

The T. cruzi current classification into six principal DTUs, mainly based on genetic characteristics, proved to be a valid framework to study the biological variability of T. cruzi that is widely recognized [3]. Indeed genetic diversity of the parasite is undoubtedly an important factor influencing many biological parameters [reviewed in [3]], and it has been suggested that it could be partly responsible for the different clinical outcomes of Chagas disease [8]. No strong correlation has yet been observed between the development of pathology and parasite’s DTUs. However, most clinical and epidemiological studies in human infections associate TcI with infections in patients living from Colombia northwards, whereas TcII, TcV and TcVI have been detected as the most prevalent etiological agents at the south of South America, where Chagas disease presents high rates of severe heart affection [15–18]. In particular, digestive syndromes, also observed in southern countries, appear to be associated only to TcII, TcV and TcVI parasites [19,20]. Although T. cruzi populations display differential virulence and pathogenic characteristics, genetic markers linked with the evolution of the infection and their outcomes have not been identified to date. Different efforts have been made to find virulence factors that correlate with the current parasite classification [37,44–46]. A recent study [47] has shown differential expression of 29 out of 261 proteins that are overexpressed in T. cruzi stocks belonging to a given DTU. We have previously shown [26,37] that virulent parasites currently studied that belong to TcII, TcV and TcVI expressing more TS activity than the less aggressive TcI stocks. In addition, increased circulating TS activity correlates with several abnormalities observed early during the infection [26,28]. The involvement of shed aTS in the alterations of the histoarchitecture of the spleen, thymus and ganglia, as well as in the induction of thrombocytopenia has been evaluated by both the administration of recombinant aTS to naive mice and the neutralization of the enzymatic activity during the acute infection [26,28,48]. Here the fine quantitative SNP mapping allowed us to identify aTS/iTS differences that remain hidden in genomic analyses [49] because iTS genes are not included in databases taken as reference. The present quantification of TcI genes in parasite stocks exposed the absence of iTS genes together with the presence of similar copy number of aTS in all TcI parasite stocks tested (28 to 32 copies/
haploid genome). On the other hand, variable aTS and iTS copy number (from 1 to 29 and 1 to 19 copies/haploid genome, respectively) were found in TcII and TcVI. These DTUs showed an aTS/iTS ratio that ranged from 1 to 3 (Table 1). These current observations allow us to conclude that the actual protein expression is independent of the number of aTS genes because genomes from high aTS producer parasites contain similar or even lower aTS gene copy numbers than those from TcI parasites with little production of aTS [37]. Moreover, the absence of iTS genes in this group raises the possibility of a correlation between this gap and the lower virulence previously observed for the TcI parasites assayed [37]. Considering that the aggressive strains [37] contain genes encoding iTS isoform, a role for this protein in the virulent behavior could be inferred. The analysis of iTS/aTS genes was then extended to representative parasite stocks encompassing the six DTUs, isolated from several sources (insect vectors, animal reservoirs and human infections) in different geographical areas (from the USA to Argentina). We found that aTS genes were present in all 38 parasite populations, emphasizing the central role of this enzyme in parasite biology. It is worth noting that iTS was observed exclusively in stocks from DTUs TcII, TcV and TcVI but intriguingly absent in all TcI, TcIII and TcIV stocks analyzed. The absence of cumulated mutations or stop codons in iTS sequences, together with the fact that we have always found the same T/C transition that encodes the Tyr342His amino acid replacement as the enzyme inactivation mechanism, indicate that the same iTS genes, conserved among all the TcII, TcV and TcVI parasite populations, are probably expressed. The Trp312 and Tyr119 codons that are crucial in creating the two-aromatic residue-stacking site for the galactosyl portion of the substrate [50] are also conserved in aTS and iTS proteins from all DTUs. In support, a residual enzyme activity has been recently found for iTS protein [35] emphasizing that it has similar properties to aTS in sequence and folding. Furthermore, in vitro assays have demonstrated the co-stimulatory properties of iTS proteins on the immune system [36]. The strong sequence conservation in all iTS genes supports that
iTS plays an evolutionary selectable role, instead of representing just a collection of pseudogenes. Therefore, an involvement in parasite attachment/invasion to host cells can be postulated because iTS acts as a lectin, able to bind not only small oligosaccharides but also sialylated glycoproteins [32,34], a relevant feature in the physiological scenario of parasite infection.

Interestingly, our findings also reveal the existence of parasites with highly reduced TS genes content that provide models to develop genomic KO, a largely expected tool to extend the study of the biological relevance of TS whose generation has been hampered by the high gene copy numbers always reported for TS. Moreover, the ongoing transfection assays with the iTS gene might provide with a nice opportunity to test the actual relevance of iTS in parasite biology and pathogenesis.

In 2009, an expert committee revised the information available about T. cruzi evolution and clustering. They remember that the partition of T. cruzi in six principal DTUs could be explained by two alternative models for their origin: the ‘Two Hybridization’ model giving rise to TcIII and then to TcV and TcVI through hybridization of two ancestors (TcI and TcII) [51] and the ‘Three Ancestor’ where the ancestors TcI, TcII and TcIII gave rise to the hybrids TcV and TcVI [52]. The current distribution of aTS/iTS suggests a closer relationship of TcI with TcIII-TcIV than with the other DTUs as well as a related evolution of TcII, TcV and TcVI. Indeed, the sequence analysis that reflect the variability of a set of genes coding for the same virulence factor (TS) fits with the six DTUs clustering, although TcI, TcV and TcVI DTU were not supported by significant bootstrap values because the hybrid nature of TcV and TcVI, reduces the bootstrap values, and if these strains are removed from the analysis (see Figure S2), TcI and TcII DTUs are everyone very well supported by high bootstrap value (93.0 and 90.3 respectively), and TcIII and TcIV are grouped together with a lower bootstrap value (60.9). However, this group is further divided into two clusters, one including CanIII, M5631, X109/2 and 3.1 strains (bootstrap value of 95.6) and the other comprising STC16Rc11, STC10R and 92122102R strains (bootstrap value of 71.4). Although several scenarios can explain the current variability of the TS genes within DTUs, considering that TcI and TcII are ancestors [51,52] and that iTS may have originated from aTS genes through a single mutation event, the common ancestor of TcI and TcII should not have had iTS. After iTS consolidation in TcII, its delivery during subsequent hybridization events could explain its presence in TcV and TcVI parasites (newest hybrid groups [51,52]). Further, considering the “Two Hybridization” model, the absence of iTS in TcIII and TcIV could be explained by an inequitable ancient recombination, gene conversion or by loss of iTS corresponding genes. In the “Three Ancestor” model [52] TcIII-TcIV could have early diverged from TcI and propagated without iTS genes. The close relationship between TcIII and IV with TcI is also supported by findings with cruzipain and TSSA antigens [45,53]. As shown in Figure 3, an alternative picture of T. cruzi evolution might be drawn that fits the previously obtained data plus that reported here. Ancestor parasites lack iTS, then TcII acquired iTS and both TcI and TcII became ancestors of all the other DTUs. A single hybridization event is postulated between TcII and TcIII that rendered TcV and VI, TcIII and IV seem to have evolved from TcII instead from hybridization of TcI with TcII because this hypothesis requires two events, the hybridization itself followed by the lost of the iTS genes contributed by TcII genome.

Finding an association between clinical manifestations and parasite genotype is a difficult task. The multiclonal nature of most natural infections and the histotropic behavior of different parasites lead to partial characterizations when bloodstream and/or other infected tissue samples are analyzed [54,55]. The regional diversity of Chagas disease outcomes has been attributed to a set of complex interactions where the parasite genetic makeup, as well as the environmental and the host immunogenetic background are some of the factors involved (reviewed by [56]). In the challenge to identify links between the infecting DTUs and the pathogenesis induced by T. cruzi we presented for the first time the differential distribution among parasite populations of aTS/iTS, a virulence factor-related gene that is well correlated with the evolutionary history of the parasite. The expression of this complex (aTSa/iTS) of virulent genes may be a key to better understand the mechanism of virulence and its relationship with T. cruzi evolution.

Supporting Information

Figure S1 Consensus sequence of TS gene internal region. Sequence alignment of T. cruzi stocks encompassing the 6 DTUs (TcI to TcVI). (**): conserved sites; (▲): SNPs that identify a group of parasites (inter-DTU polymorphism). In those positions, depicted nucleotide for each DTU was present in all sequences obtained from all parasites of each DTU (named as IUPAC code); (*): other polymorphic positions not shared by all stocks within a DTU (intra-DTU polymorphisms); TGG; TTP1122 codon conserved in all stocks from all DTUs; Box: Tyr141His codon where Thymidine (encoding Tyr) and Cytosine (encoding His) are present in all stocks belonging to TcII, TcV and TcVI whereas only Thymidine was found in TcI, TcIII and TcIV genomes. No other mutations were found in this codon.

Figure S2 UPGMA tree based on TS genes sequence alignment (with ambiguous states) not including hybrid DTUs. To avoid deviations induced by the hybrid nature of T. cruzi TcV and TcVI DTUs, UPGMA tree was built excluding these DTUs.

