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Abstract 

This review aims to present the methods allowing the metal-catalyzed hydrofunctionalization of allenes. 

Following a strong regain of interest over the past 20 years in the chemistry of allenes, this “forgotten” 

family of unsaturated molecules is undergoing a renaissance. 

In this context, the metal-catalyzed hydrofunctionalization of allenes is nowadays one of the most 

studied transformations. The latter is of great interest because it opens a way to produce selectively 

functionalized allylic structures. These motifs are particularly important in synthesis, particularly for the 

formation of asymmetric centers. 

Hydrofunctionalization of allenes is also a totally atom economical strategy, avoiding generation of any 

waste, to produce allylic functionalized structures. Compared to the main pathway to obtain the latter 

(aka Tsuji-Trost allylic substitution), metal-catalyzed hydrofunctionalization does not require the 

prefunctionalization of starting material with a leaving group. 

This review presents a state of the art on all existing metal-catalyzed methods allowing the selective 

intermolecular hydrofunctionalization of allenes with N-H, C-H and O-H nucleophiles or electrophiles. 
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1. Introduction 

 

Despite a first synthesis described 133 years ago,1,2 allenes are still the least studied all-carbon 

unsaturated functional group. The first efficient methodologies to obtain this structure were only 

described in the 60’s surely because the structural originality of allene with a linear 3-carbon skeleton 

built with 2 cumulative -bonds had lowered its development. Starting in the 60’s, a burgeoning interest 

in allene chemistry has triggered a multiplication of synthetic methods for accessing a wide variety of 

these unsaturated molecules, particularly in the last 20 years.3–9 Consequently, allene reactivity studies 

get more and more interest in organic community and beyond.10–15 

In this field, hydrofunctionalization has emerged as an atom efficient tool to exploit the reactivity 

of allenes, meanwhile avoiding the generation of any wastes. While this type of transformation has been 

accomplished with organocatalysis in some seminal works, the use of metal catalysts remains the most 

developed strategy for obtaining both selectivity and efficiency.16–20 

The aim of this review is to highlight the potential of hydrofunctionalization of allenes for the 

formation of C-N, C-C and C-O bonds and to give an exhaustive overview of the current knowledge in 

this field. The need of a comprehensive review is strengthened by the rate at which new catalytic systems 

and new conditions have been described in this area in the past few years. Note that the methods 

presented herein will be restricted to intermolecular reactions and will not cover reactions where allenes 

are considered as intermediate substrates generated in-situ. Moreover, only mono-

hydrofunctionalizations will be covered, also excluding dimerization or cyclization processes. Gathering 

all the known examples, this review will illustrate how, thanks to metal-catalyzed reactions, allenes 

became unavoidable and valuable synthetic building blocks to selectively afford both linear and 

branched allylic molecules. 

 

2. C-N Bond Formation  

 

Hydroamination of unsaturated molecules and related reactions catalyzed by transition metal 

complexes were extensively studied in the past few decades. Despite their high reactivity, allenes remain 

the less studied unsaturated compounds toward this kind of addition. However, this reaction could give 

an easy access to various allylic moieties of high interest for organic synthesis (Figure 1). Starting in the 

beginning of the 90's, the intermolecular catalytic addition of aliphatic and aromatic amines to allenes 

were performed especially with palladium, gold and rhodium catalysts. These metals have been also 

used to perform the hydroamination of allenes with amide nucleophiles, and currently gold-based 

catalysts remain unique in their ability to catalyze the addition of ammonia. Gold and iron catalysts were 
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able to perform hydroazidation. Hydrohydrazination of allenes was also described under rhodium and 

gold catalysis.  

 

 

Figure 1: transition-metal catalyzed hydrofunctionalization of allenes for C-N bond formation. 

 

2.1. Hydroamination with aliphatic amines 

 

The first hydroamination of an allene was observed in 1978 by Panunzi and Vitagliano.21 This group 

focused on the preparation of allene-platinum complexes and reported their reaction with the 

nucleophilic addition of aliphatic and aromatic amines. This process was not catalytic as it used an 

equimolar amount of platinum. Based on this work and their previous results on hydroamination of 

alkenes,22 Widenhoefer reported in 2010 the platinum(II)-silver co-catalyzed hydroamination of mono-

substituted terminal allenes with aliphatic cyclic and acyclic amines (Scheme 1).23 This method, 

currently the only example using a platinum system, afforded the corresponding E allylic amines with 

complete regioselectivity and excellent stereoselectivity. The Ag-based co-catalyst is proposed to 

generate the catalytically active cationic Pt(I) complex by extracting a chloride to the neutral (dppf)PtCl2 

complex. 
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Scheme 1: Pt/Ag co-catalyzed hydroamination of terminal allenes. 

In the middle of the 90’s, the group of Cazes described a Pd-catalyzed regio- and stereoselective 

hydroamination of terminal allenes with secondary aliphatic amines.24 The reaction was performed with 

Pd(dba)2/PPh3 and triethylammonium iodide, giving a hydropalladium iodide species able to form a -

allyl palladium key intermediate in presence of allenes. While allenes are known to telomerize in 

presence of a palladium catalyst, this reaction occurred with only traces of telomerization with the 

selective formation of (E)-allylic amines resulting from an addition of the amine on the terminal carbon 

of the allene (Scheme 2). 

 

Scheme 2: Pd-catalyzed regio- and stereoselective hydroamination of terminal allenes. 

 

A few year later, in 1997, Yamamoto and co-workers described a related method involving the 

formation of a hydropalladium(II) intermediate by oxidative addition of acetic acid to a Pd(0) complex.25 

With this catalyst in hand they performed the hydroamination of mono-substituted allenes with various 

amines such as diethyl iminoacetate or tosylamine. 

In 2011 Schmidt and co-workers reported the use of a palladium(II)-3-iminophosphine (3IP) 

complex to perform the hydroamination of mono- and 1,1-di-substituted allenes with secondary amines 

and anilines derivatives. The reaction with 1,1-dimethylallene and the [(3IPAr)Pd(allyl)]OTf catalyst 

gave access to linear allylic amines,26 while using [(3IPtBu)Pd(allyl)]OTf  gave access to branched or 

linear allylic amines from mono-substituted allenes (Scheme 3).27 In another study, they further explored 

the role of the 3-iminophoshine ligand and of the palladium complexes in the selectivity of the reaction.28  
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Scheme 3: Pd(iminophosphine) catalyzed addition of amines to terminal allenes. 

  

In 2019, the same group developed an original allylpalladium triflate catalyst able to completely 

inhibit the isomerization process leading to the linear allylic amine.29 This novel catalyst, composed by 

a bulky phosphine bearing mesitylene groups, allows the production and isolation of unprecedented 

branched allylamines without traces of the undesired linear allylamines starting from mono-substituted 

allenes (Scheme 4). The authors postulated that the greatly increased steric hindrance of the phosphine 

is responsible for the inhibition of product isomerization.  

 

Scheme 4: Selective branched allylamines synthesis by Pd(iminophosphine)-catalyzed hydroamination of mono-

substituted allenes. 
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hydroamination of the propadiene and alkynes with primary aliphatic amines, anilines or hydrazines to 

obtain the corresponding imine molecules.30 The complete observed regioselectivity of the addition of 
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Scheme 5: Proposed mechanism for the Ti-catalyzed hydroamination of propadiene. 

 

By using a bis(amidate)-bis(amido) titanium precatalyst, Schafer and co-workers performed the 

reaction of primary aliphatic or aromatic amines with mono-substituted allenes and obtained 

regioselectively the corresponding imines (Scheme 6).32 The latter were not stable, and hydrolyzed to 

the corresponding ketones during purification over silica gel.  

 

Scheme 6: Ti(imido) complexes as catalyst for hydroamination of terminal allenes. 
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aromatic amines (Scheme 7, eq. 2).35 For both systems, reactions occurred with total regio- and 

stereoselectivity, excepted for some substrates as tri-substituted allenes. 

 

 

Scheme 7: Au(I)/Ag co-catalyzed and Au(I)-catalyzed hydroamination of di- and tri-substituted allenes with aliphatic 

amines.  

In 2014, the group of Guo reported the functionalization of 9-allenyl-9H-purines with various 
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catalytic system (Scheme 8).36 The method was only described with purine nucleoside derivatives. 

 

Scheme 8: Ag(I)-catalyzed hydroamination of allenylpurines.  
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any additional ligand. Noteworthy, straightforward synthesis of two drugs, Cinnarizine and Flunarizine, 

were achieved with excellent yields under a total control of regio- and stereoselectivity. 

 

 

Scheme 9: Copper-catalyzed hydroamination of terminal allenes with cyclic secondary amines.  
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Scheme 10: Mechanism for the Cu-catalyzed hydroamination of allenamides with secondary amines. 
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Scheme 11: Cu-catalyzed hydroamination of N-allenylazoles and N-allenylsulfonamides with secondary amines. 
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was observed by Schafer in 2011 with catalytic amount of zirconium and titanium amido complexes 

(Scheme 13).45 Due to low stability of the formed imines, the latter were reduced with LiAlH4 to afford 

the corresponding amines. 

 

Scheme 13: Ti- and Zr-catalyzed hydroamination of terminal allenes with 2,6-dimethylaniline.  
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Scheme 15: Au-catalyzed hydroamination of allenamides with anilines. 

 

The same year, Widenhoefer and co-workers reported a gold(I)-NHC complex for the catalytic 

transformation of mono-, 1,1- and 1,3-disubsituted allenes with anilines and their alkylated derivatives.49  
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ylbenzene) was first described with a poor enantiomeric excess by Toste in 2016, employing a 

sophisticated chiral bis-NHC ligand with a BINAM scaffold (Scheme 16).50  

 

Scheme 16: Au/Ag co-catalyzed hydroamination of di-substituted allenes with anilines.  
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Scheme 17: Au- and Pt-catalyzed hydroamination of activated allenes. 

 

Palladium-based catalytic systems were also efficient for the addition of arylamines on allenes. 

Thus, a Pd(OAc)2/TFA complex was employed for the selective hydroamination of allenosugars with 

various anilines at room temperature and allowed the formation of the corresponding allylamines with 

low yields (Scheme 18).52  

 

Scheme 18: Pd-catalyzed hydroamination of allenosugars with anilines.  

  

As briefly mentioned previously, the palladium-catalyzed system developed by the group of 

Schmidt was efficient with arylamines.26–28 First developed with the 1,1-dimethylallene, this system 

allowed a complete addition on the more hindered carbon (Scheme 19).53 The study of the steric and 

electronic role of the ligand showed that electron-donating substituent placed on the phosphine or the 

imine function induced enhanced catalytic activities.54 

 

Scheme 19: Palladium catalyzed hydroamination of 1,1-dimethylallene with anilines. 

 

The groups of Rutjes and Gómez-Bengoa reported the palladium catalyzed hydroamination of 
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gave total inversion of the regioselectivity with a chiral control. This regiodivergence could be explained 

by the nature of the catalyst that allows a difference of reductive elimination process: Pd-based catalysis 

leads to the reductive elimination on the less hindered position to generate the linear product. The same 

regiodivergence phenomenon was also observed in the addition of purines derivates57 and 4-pyridones.58  

 

 

Scheme 20: Regiodivergent hydroamination of allenes with benzimidazoles with enantio-, stereo and regioselective 

Rhodium catalyst and with regio- and stereoselective Pd-catalyst. 

 

The exclusive rhodium catalyzed hydroamination of terminal allenes leading to the branched allylic 

amines with a chiral control was actually published by the same group since 2012, with anilines.59 The 

method was also successfully applied to a large scope of nitrogen containing heterocycles, including 

pyrazoles,60 2-pyridone,61 tetrazoles62 and pyridazinones.63 Notably, when using 1,1-di-substituted 

allenes and benzotriazoles as nitrogen-containing partner the selectivity of the reaction, occurrence on 

the N1 or N2 of the benzotriazole core was found to be ligand dependent (Scheme 21).64 The mechanism 

of this ligand-controlled regioselectivity has been studied by DFT calculations, pointing the crucial 

influence of electrostatic interaction during the rate-determining oxidative addition step.65 

 

 

Scheme 21: Rh-catalyzed regiodivergent hydroamination of di-substituted terminal allenes with benzotriazoles. 
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Dong and co-workers reported in 2015 the enantioselective rhodium catalyzed hydroamination of 

alkynes with indoline.66 During their study and based on the work of Breit, they suggested the formation 

of allene type intermediates resulting -hydride elimination from Rh-vinyl intermediate. To support this 

hypothesis, they showed that the reaction occurs identically starting from the corresponding allenes.  

In 2018, Breit and co-workers described the enantioselective hydroamination of terminal allenes 

with various triazoles, catalyzed by a rhodium/chiral ferrocene-diphosphine ligand based system 

(Scheme 22, eq. 1).67 One year later, a similar method was applied to anilines and derivatives, giving a 

straightforward access to (-)-Angustureine and (-)-Cuspareine, two natural molecules with 

antiplasmodial and cytotoxic activities (Scheme 22, eq. 2).68 

 

Scheme 22: Rh-catalyzed hyroamination of allenes with triazoles and anilines. 

 

The same group developed other efficient catalytic systems based on palladium or rhodium 

catalysts, for the hydroamination of di- or trisubstituted allenes with pyrazoles (Scheme 23).69 In both 

cases, the hydroamination occurred with the dynamic kinetic resolution of racemic internal allenes and 

allowed the addition of pyrazole on N1 for the selective formation of branched N-allylated pyrazoles.  

 

Scheme 23: Rh- and Pd-catalyzed hydroamination of internal allenes with pyrazoles. 
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The mechanism of the palladium-catalyzed dynamic kinetic resolution was later computationally 

studied by the group of Huang.70 They suggested the formation of a Pd(0) intermediate, catalytically 

active in the reaction and able to form a 3-allyl Pd(II) complex. The racemization was then explained 

by a plausible 3-1-3 allylic isomerization of this 3-allyl Pd(II) complex. 

 

2.3. Hydroamidation with amides, sulfonamides and carbamates 

 

Beyond amines, hydroamidation reactions involving amides, sulfonamides and carbamates have 

been also widely described in recent literature.  

Yamamoto in his seminal investigation in 1997 showed the efficiency of a palladium/dppf system 

for the addition of a tosylamine on aryl allenes.25 Later, the group of Rutjes performed hydroamidation 

on allenyl ethers with secondary sulfonamides catalyzed by a palladium-based system. They focused of 

the obtention of N,O-acetals, used for ring-closing metathesis or tin-catalyzed cyclization.71–74 This 

approach was also used by Donohoe et al. to generate aromatic heterocycles such as furans and 

pyrroles.75,76 Employing a chiral sulfonamide as starting material and a chiral ligand, Rhee and co-

workers published in 2012 the first synthesis of stereodefinded N,O-acetals thanks to a Pd/chiral PNNP 

ligand-catalyzed hydroamination of allenyl-ethers where the addition of the sulfonyl-protected 

homopropargylic amines occurred on the -carbon of the allene (Scheme 24).77 Worth noting that using 

the ent-L chiral ligand, the stereocontrol could be totally inverted. The enantiomeric control was also 

performed few month later with achiral nitrogen-containing partner, using the same catalytic system.78,79 

 

 

Scheme 24: Stereoselective hydroamidation of allenyl ethers with sulfonamides catalyzed by Pd. 
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Scheme 25: Hydroamidation of di- and trisubstituted allenes with sulfonamide co-catalyzed by Au/Ag. 

 

Using a gold-NHC complex, the group of Widenhoefer extended the method to primary carbamates, 

amides and lactams with 1,3-disubstituted and trisubstituted allenes (Scheme 26).81 The reaction took 

place with high stereoselectivity and in the case of 1,3-di-substituted allenes, on the more electro-rich 

carbon. 

 

Scheme 26: Au/Ag co-catalyzed hydroamidation of 1,3-di- and trisubsituted allenes with amides and lactams.  

 

A slight change of the catalytic system, using non-coordinating anion from AgBF4 and a chiral 
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disbustituted allenes.82 N-carbamates were also successfully tested by Toste with an enantioselective 

gold-based catalytic system hydroamination of 1,3-disbustituted allenes.50 

Noteworthy, the team of Breit reported in 2017 the rhodium catalyzed enantioselective 

hydroamidation of terminal allenes with quinazolones (Scheme 27).83 The addition of the nucleophile 

was observed on the-carbon of the allene in the presence of a rhodium/diphosphine system combined 

with (R)-camphorsulfonic acid.  
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Scheme 27: Enantioselective Rh-catalyzed hydroamination of terminal allenes with quinazolones. 

 

In 2018, thanks to the use of a rhodium/diphosphine-based catalytic system, Guo and co-workers 

reported the hydroamidation of terminal allenes with pyrimidines. The authors obtained exclusively the 

branched allylic amines in an enantioselective manner. In the same study they disclosed an efficient 

palladium/diphosphine catalytic system for the regioselective formation of the linear allylic molecules84 

(Scheme 28) and applied the method for the synthesis of acyclic phosphonate nucleoside analogs. 

 

Scheme 28: Regiodivergent Rh- or Pd-catalyzed hydroamination with pyrimidines. 
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Scheme 29: Au/Ag co-catalyzed hydroazidation of disubsituted allenes with TMSN3 

 

The enantioselective gold-catalyzed process for the hydroamination with anilines described by 

Toste50 (Scheme 16) was also applied for the hydroazidation of internal 1,3-disubstituted allenes using 

TMSN3 at -10 °C. In this case, the yield and enantiomeric excess of the obtained chiral allylic azides 

were very good and the addition was totally regioselective on the carbon bearing the methyl group 

(Scheme 30). 

 

Scheme 30: Hydroazidation of disubstituted allenes with azides derivatives catalyzed by Au.  
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Scheme 31: Fe-catalyzed hydroazidation of allenamides. 

 

2.5. Hydroamination with Ammonia 

 

Due to its abundance and low price, ammonia is an attractive source of nitrogen. However, 

hydroamination reaction using ammonia is particularly challenging due to a possible poisoning of the 

metal catalyst through the formation of inert Werner complexes. So far, only one example has been 

described with allenes. Using a cationic gold(I) complex with cyclic (alkyl)(amino)carbene ligand 

(CAAC), Bertrand and co-workers described the only example of a catalytic addition of ammonia to 

allenes.87 Starting from 1,2-propadiene, a mixture of mono-, di- and triallylamine was obtained, the 

proportion of which could be tuned by a variation of the ammonia/allene ratio or a modification of the 

catalytic charge (Scheme 32, eq. 1). The reaction was also applied to 1,1-disubstituted allenes (Scheme 

32, eq. 2) and to tetra-substituted allenes (Scheme 32, eq. 3) , with a selective mono-addition of the 

central carbon for this last case (Scheme 32). 

 

 

Scheme 32: Au(CAAC)-catalyzed hydroamination of 1,2-propandiene, di- and tetrasubsituted allenes with ammonia. 

 

To find an alternative to ammonia and its poisoning effect, the group of Breit showed that ammonia 

surrogates such as imines could undergo the hydroamination of allenes (Scheme 33). Notably 

benzophenone imine was found to be an ideal partner with a chiral rhodium-catalytic system, giving an 

. +
Cat (5 mol%)

C6D6, 175 °C, 44h

NH3

Ph

Ph

Ph

Ph Ph

Ph NH2

Ph

Ph

Cat :

N

Au

Dipp

NH3
B(C6F5)4

79%

. +
Cat (4.3 mol%)

C6D6, 175 °C, 16h

NH3
NH2

96% conversion

NH

2

+

6.2/1

. +
Cat (4.3 mol%)

C6D6, 155 °C, 22h

NH3

87% conversion

NH
3

+

47/18

Ph

Ph

Ph

Ph NH

2

Ph

Ph

(Eq. 1)

(Eq. 2)

(Eq. 3)



 22 

easy access to the chiral allylic ammonium salt after a simple deprotection of the imine moiety.88 A 

simple acylation could also be realized to give access to the chiral allylic amide. Interestingly, several 

bioactive molecules bearing an allene function have been successfully engaged under these conditions 

and afforded enantioselectively the hydroaminated product in good yields. 

 

 

Scheme 33 : Enantioselective Rh- catalyzed hydroamination of terminal allenes with benzophenonimine.  

 

2.6. By Hydrohydrazination/Hydrohydrazidation 

 

In 2010, Toste and co-workers reported the first addition of hydrazide to allenes using Ph3PAuNTf2 
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Scheme 34: Au-catalyzed hydrohydrazination of disubsituted 1,7-diphenylhepta-3,4-diene with methyl carbazate.  

 

Using a (CAAC)Au catalyst, the group of Bertrand successfully extended the hydroamination of 

alkynes and allenes with ammonia87 to the hydrohydrazination of alkynes, diynes and allenes.90 It was 

shown that the outcome of the reaction catalyzed by a CAAC-Au complex was highly dependent of the 

substrate, giving a mixture of hydrazone and allylhydrazine with 1,2-propadiene, whereas only 

hydrazone was obtained with tetraphenyl-1,2-propadiene. The mechanism of this reaction was later 

elucidated by Ujaque and Lledós.91 These authors emphasized that the regioselectivity of the reaction is 
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Scheme 35: Suggested mechanism for the Au-catalyzed hydrohydrazination. 

 

The catalytic system using dimer [Rh(cod)Cl]2 combined with chiral diphosphines developed by 

Breit and co-workers for the hydroamination of allenes with amines also allowed the efficient addition 

of arylhydrazines on mono-substituted allenes.92 This reaction proceed with good enantioselectivity, and 

regioselectively on the substituted -carbon of the allene. (Scheme 36). 
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2.7. Miscellaneous  

 

In 2019 the group of Breit expended the scope of nucleophiles compatible with rhodium/chiral 

diphosphine ligand system. Thus, the addition of oximes93 or aminothiazoles94 occurred on the  carbon 

of respectively terminal mono and disubstituted allenes with excellent enantioselectivities. (Scheme 37). 

In these studies, chiral bisphosphine-ferrocene type ligands appeared to be the most efficient one among 

various bis-phosphine-type ligands. 

 

Scheme 37: Enatioselective Rh-catalyzed addition of oximes and aminothiazoles on terminal allenes. 
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Figure 2 : Transition-metal catalyzed hydrofunctionalization of allenes for C-C bond formation. 

 

3.1. Hydroarylation with Arenes, Aryl Boronic Acids and Aryl Halides 

 

 C-H functionalization 

One of the most straightforward method to generate C-C bonds via hydroarylation of allenes is the 

metal-catalyzed C-H functionalization of aromatic compounds. Pioneered by the group of Panunzi in 

1983, performing C-H functionalization of 1,1-dimethylallene with electron enriched phenols, this 

reaction was performed using a platinum(II) catalyst.95 While the regioselective C-alkenylation on the 

terminal carbon of the allene was demonstrated, a side reaction leading to chroman derivatives resulting 

from the cyclization of the main product was observed (Scheme 38).  

 

 

Scheme 38: Pt-catalyzed hydroarylation of 1,1-dimethylallene with electron enriched phenol derivatives. 
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In 2008, the group of Li reported the gold-silver co-catalyzed regioselective hydroarylation of 

phenylallene with electron-donating substituted benzene reagents (Scheme 39).96 

 

 

Scheme 39: Au/Ag co-catalyzed hydroarylation of phenylallene with aryl electron enriched aryl derivatives. 

 

While rich heterocycles like indole did not react under the above described conditions, the group of 

Widenhoefer overcame this limitation with a similar Au/Ag co-catalytic system associated to NHC-

ligand.97 Their method allowed the C2-carbon addition of N-substituted indole on 1,3-disubtituted and 

tetra-substituted allenes with good yields. An enantioselective Au/Ag co-catalyzed hydroarylation of 

disubstituted allenes with N-methyl indoles was also reported by Che and co-workers but with poor 

enantiomeric excess (Scheme 40).98 A mechanistic study including DFT calculations, deuterium-

labelling experiments and NMR suggested that the activation of the allene by the gold catalyst was 

sufficient to induce a direct nucleophilic addition of the indole.  

 

Scheme 40: Au/Ag co-catalyzed hydroarylation of disubsituted allenes with indol derivatives. 
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system to cyclic allenamides, giving access to enamides at room temperature under mild conditions 

(Scheme 41).48  

 

 

Scheme 41: Au-catalyzed hydroarylation of cyclic allenamides with electron rich (hetero)aryl derivatives.  
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Scheme 42: Au-Ag co-catalyzed hydroarylation of allenamides via dearomatization of naphthol. 

 

In 2018, under gold-silver co-catalysis, Lee and co-workers extended the hydroarylation of 

enantioenriched 1,3 disubstituted allenes with indoles derivatives with high chirality transfer (Scheme 

43).105 High enantioselectivity was achieved and use of highly nucleophilic (hetero)aryl favoured 

hydroarylation rather than racemization, contributing to the efficient chirality transfer.  

 

Scheme 43: Au-Ag co-catalyzed hydroarylation of enantioenriched disubstiuted allenes with indoles derivatives. 
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Scheme 44: Sc-catalyzed hydroarylation of 1,2-allenic ketones with indoles. 

 

Ma et al. also published the first example involving a palladium catalyst, used for allylation of 

electron-rich aromatic compounds with 2,3-allenaotes,108 and the first method with a rhodium catalyst, 

for the allylation of N-methoxybenzamides with allenes.109 The use of rhodium was improved by Cramer 

in 2013 with the development of a specific class of a chiral cyclopentadienyl (Cp) type ligand, allowing 

the enantioselective hydroarylation of substituted allenes with N-methoxybenzamides, acting as 

directing group (Scheme 45).110 The enantioselective rhodium-based system was also reported in 2017 

by the group of Antonchick and Waldmann with a hydroxamate directing group and another original 

chiral Cp type ligand.111 

 

Scheme 45: Rh-catalyzed hydroarylation of allenes with benzamides. 
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The group of Krische reported the addition of 1,1-dimethylallene on aromatic and heteroaromatic 

carboxamides with an iridium catalyst (Scheme 46).112 Proceeding at high temperature, this reaction 

took place through an oxidative addition/allene hydrometallation mechanism, as supported by 

deuterated studies. 

 

Scheme 46: Ir-catalyzed hydroarylation of 1,1-dimethylallene with aromatic carboxamides. 

 

Ackermann and co-workers were the first to published the use of a cobalt-catalyzed system able to 

promote the reaction of various 1,1-disubstituted allenes with aromatic compounds.113 These latter are 

substituted with nitrogen containing heterocycles (het) which played the role of directing groups 

(Scheme 47). Worth noting that the position of the double bond () after completion of the 

hydroarylation is different than the one observed () if the catalytic system is based on iridium or 

rhodium. 

 

Scheme 47: Co/Ag co-catalyzed hydroarylation of 1,1-disubstituted allenes. 
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Scheme 48: Nickel-catalyzed allene hydroarylations via C-H allylation or C-H alkenylation. 

 

A mechanistic investigation of this C-H allylation or alkenylation was reported in 2020 by the group 

of Liu and Bi in order to understand its highly switchable selectivity.116 In presence of base, this study 

highlighted an original Ni/NaOtBu co-promoted mechanism and disclosed the crucial role of the base 

in the hydrogen abstraction but also in an isomerization step of the allylated product leading to the 

formation of the alkenylated one. 

In 2020, Ackermann et al. extended their studies of hydroarylation of allenes using directing groups 

with the publication of an iron-catalyzed process directed by a weak O-coordination.117 The addition 

occurred selectively on the ortho-position with high efficiency, using simple ketones as directing group 

(Scheme 49). During their investigations they were even able to isolate an intermediate ferracycle 

complex. 

 

Scheme 49: Fe-catalyzed hydroarylation of 1,1-disubstituted allenes. 
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Scheme 50: Mn-catalyzed hydroarylation of allenic ester with indoles derivatives. 

Few month later, a similar catalytic system was reported by Wang and co-workers for the allylation 

of indoles with various 1,1-disubstituted terminal allenes.120 

In 2020, the groups of Liu and Buchwald reported a C-H activation process involving a copper-

hydride catalyst for the hydroarylation of 1,1-disubstituted allenes with an original electrophilic indazole 

reagent.121 The reaction took place on the -position of the allene, and the use of a chiral diphosphine 

ligand has made possible the direct formation of C3-allyl indazoles bearing quaternary center with 

excellent enantioselectivity (Scheme 51). 

 

Scheme 51: Cu-catalyzed hydroarylation of allenes with indazole. 
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Scheme 52: Cu-catalyzed hydroamination of allenamides. 

 

 

 

 Addition of Boronic acid 

As an alternative to hydroarylation by C-H functionalization, several metal-catalyzed methods using 

organoboronic compounds as nucleophile were reported. 

The most common catalyst used for this reaction is based on palladium. The pioneering work was 

reported by Ma, using 10% of Pd(PPh3)4 and acetic acid to perform the regio- and stereoselective 

addition of various phenylboronic acid to mono-, di- and tri-substituted allenes (Scheme 53).123 On the 

same period, the group of Oh reported a quite similar catalytic system using 3% of Pd(PPh3)4, in presence 

of 10% of acetic acid applied to mono- and di-substituted allenes.124 

In order to investigate the mechanism of the reaction, Ma published a study based on mass 

spectrometry.125 This work, performed with the group of Guo, postulated the generation of a palladium 

hydride species by the oxidative addition of organoboronic acid and Pd(0) as the first step of the 

mechanism, then they showed the formation of key cationic π-allyl intermediate, probably formed by 
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oxidation and elimination of a hydrogen of a (η3-allyl)palladium complex, during the analysis process 

(Scheme 53). They also extended the method to 1,2-allenylphosphonates, 1,2-allenic sulfones and 

sulfoxides.126  

 

Scheme 53: Hydroarylation of allenes with aryl boronic acids and mechanistic studies. 
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Scheme 54: Hydroarylation of allenes with aryl boronic acids by Pt- and Pd-catalysis assistance.  

 

In 2019, investigating the reactivity of enantioenriched 5-allenyloazolidinones, the group of Hyland 

reported their palladium(0)/phosphite-catalyzed coupling with boronic acid derivatives.131 This reaction 

gave a direct access to 5-vinyloxazolidinones which are valuable building block to construct bioactive 

scaffolds (Scheme 55). 

 

Scheme 55: Pd(0)-catalyzed hydroarylation of allenyloxazolidinones with arylboronic acids. 
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Scheme 56: Asymmetric hydroarylation of (P)-allenes with aryl boronic acids by Rh-catalysis. 

 

Finally, nickel-based catalytic system also demonstrated their efficiency for hydroarylation of 
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esters to allenes was reported by the group of Shirakawa.134 This system was efficient and highly 

stereoselective on multi-substituted allenes and occurred with Ni(cod)2 as catalyst and a simple bidentate 

P-N ligand (Scheme 57).  

 

 

Scheme 57: Ni-catalyzed hydroarylation of allenes with aryl- and styryl boronic esters.  
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Scheme 58: Ni-catalyzed hydroarylation of allenamides and allenoates with boronic acids. 
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Scheme 59: Pd-Catalyzed hydroarylation of allenes via the intermediate formation of silanes. 

 

In 2019, another use of palladium as catalyst was reported for the hydroarylation of N-allenyl 

sulfonamides with aryl iodides.142 This catalytic system was relying on a borylation-arylation strategy, 

and interestingly, the position of the obtained double bond can be modified using a one-pot or a 

sequential procedure (Scheme 60) giving access to both linear vinylic and branched allylic amines. 

 

 

Scheme 60: Pd-catalyzed hydroarylation of N-allenyl sulfonamides: Access to linear vinylic amines and branched 

allylic amines. 

 

3.2. By hydrocarbonation with carbon pronucleophile 

 

Parallel to the addition of aromatic moieties, the addition of carbon pronucleophiles such as 

dicarbonyls compounds and derivatives has been widely described. The first example was published by 

Yamamoto in 1994.143 Using Pd2(dba)3.CHCl3 and dppb as ligand, the addition of activated methylene 

and methyne compounds to mono- and 1,1-disubstituted allenes was performed with a 

regiodivergentselectivity (Scheme 61). 
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Scheme 61: Pd-catalyzed addition of methyne and methylene derivatives with allenes.  

 

Later, the group of Trost used an allylpalladium chloride dimer as catalyst associated to diverse 

bidentate ligands to perform a similar reaction with mono- or 1,3-di-subsituted allenes and 

bis(benzenesulfonyl)methane or methylated Meldrum's acid.144 Simultaneously, Cazes reported the 

addition of malonates and β-ketoesters to monosubstituted allenes by a palladium-catalyzed process.145  

Pursuing their investigations on the hydrofunctionalization of allenes with methylmalononitrile and 

derivatives, the group of Yamamoto noticed that aliphatic carbon-based allenes and allenyl sulfides 

underwent addition of the pronucleophile on the carbon (Scheme 62, eq. 2), while the reaction with 

alkoxyallenes occurred exclusively on the carbon (Scheme 62, eq. 3).146–148 Besides, when arylallene 

derivates were used, both additions on the carbon  and  were observed (Scheme 62, eq. 1).  

 

Scheme 62: Influence of the nature of the allene for the regioselectivity of the addition. 

 

The authors suggested that in the case of alkoxyallenes, the alkoxy group stabilizes positive charge 

formed at the -position, thereby enhancing the electrophilicity of this carbon . On the other hand, a 

sulfur containing substituent may destabilizes such a positive charge and promotes addition on the -

position. Finally, regarding allenes bearing an aromatic group, a cumulative influence of electronic 

effect of the substituents on the aromatic rings and a steric effect due to the structure of the 

methylmalononitrile derivative may dictate the regioselectivity. These studies also led to the publication 

of a novel system, using Pd(PPh3)4, and adapted for the addition of malonate-type pronucleophiles.149 

Trost and co-workers reported the first enantioselective addition of pronucleophile on terminal 

alkoxyallenes, performed in presence of a palladium/DACH-phenyl ligand system. The method, 

regioselective on the carbon, was first limited to Meldrum's acid (Scheme 63) and was later extended 

to more general 1,3-dicarbonyl compounds such as acyclic and cyclic 1,3-diketone and azalactones.150,151 
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Scheme 63: Pd-catalyzed regio- and enantioselective addition of alkoxyallenes with 1,3-dicarbonyl compounds.  

 

In 2017, the group of Luo described the enantioselective terminal addition of β-ketocarbonyls and 

aldehydes to 1,1-disubstituted allenes, performed in the presence palladium precatalyst coupled with a 

chiral amine and a diphosphine type ligand (Scheme 64).152 In terms of mechanism, palladium is 

supposed to activate the allene to allow the formation of an allyl-palladium species. The latter is able to 

couple with the enamine intermediate, resulting from the condensation of the ketoester and the chiral 

amine, and then liberate the product after hydrolysis.  
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Scheme 64: Pd(chiral amine)-catalyzed enantioselective addition of mono and 1,2-disubstituted allenes with 1,3-

dicarbonyl compounds.  

 

As an alternative to palladium, the group of Breit developed a rhodium/phosphine based catalytic 

system. The method involves β-ketoacids and mono- and disubstituted terminal allenes to produce γ,δ-

unsaturated ketones via a regioselective C-C bond formation occurring with a decarboxylative 

process.153 The same catalytic system associated with a chiral phosphorous ligand was also used to 

performed the enantioselective addition of 1,3-diketones on terminal allenes with moderate to excellent 

enantioselectivity (Scheme 65).154 The authors showed that obtained chiral 1,3-diketones could be useful 

for the synthesis of various heterocycles or others carbocycles without loss of the enantiomeric excess. 
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Scheme 65: Enantioselective addition of allenes with 1,3-dicarbonyl compounds catalyzed by rhodium.  

 

In 2018 our group developed for the first time the use of a copper-based catalytic system for the 

allylation of 1,3-dicarbonyl compounds starting from terminal allenamides. As low Cu(I) loading allows 

the regio- and stereoselective formation of the desired product, the method offers an efficient and cheap 

alternative to the systems based on precious metals such as palladium and rhodium. (Scheme 66).155 
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Scheme 66: Cu-catalyzed allylation of 1,3-dicarbonyl compounds with allenamides. 

 

The same year, the group of Breit employed malonitrile as dicarbonyl compounds, and performed 

allylation with a rhodium/Josiphos-type ligand catalyst with excellent enantioselectivity (Scheme 67).156 

The reaction scope was quite large and tolerated many functionalities on the starting 1,3- disubstituted 

allenes. Furthermore, authors performed oxidative cleavage of the synthetized substituted malonitriles 

to obtain --unsaturated methyl esters. 

 

 

Scheme 67: Rh-catalyzed enantio allylation of malonitriles. 

 

The same group proposed in 2019 an efficient kinetic resolution of racemic internal allenes for 

synthesis of enantiopure allylic diketones thanks to a combination of rhodium precatalyst and chiral 

phosphine of phosporamidite type. (Scheme 68).157 
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Scheme 68: Rhodium-catalyzed synthesis of enantiopure allylic diketones by kinetic resolution from 1,3-disubstituted 

allenes. 

 

3.3. By Addition of Alkynes, Alkenes and Alkanes 

 

The hydroalkynylation of allenes to give the corresponding enynes is rather rare in the literature. 

This reaction has been described firstly by the team of Trost in 1990 with a palladium catalytic system 

and 1,1-di- and 1,1,3-trisubstituted allenes.158 Using palladium acetate with tris(2,6-

dimethoxyphenyl)phosphine (TDMPP) or alternatively tetrakis(carbomethoxy)-palladacyclopentadiene 

(TCPC) with tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) selectively allowed the synthesis of 

enynes with a total inversion of the double bond position (Scheme 69). 

 

Scheme 69: Pd-catalyzed addition of alkynes to allenyl esters.  

 

This selectivity was also observed in 2003 by Gevorgyan when he extended this reaction to 

allenylphosphine oxides and obtained enynephosphine oxydes.159 At the same time Grigg published a 

regioselective addition of alkynes to allenes by a palladium and copper co-catalytic system.160 

Parallel to the use of palladium, rhodium-catalyzed condensation of mono-substituted allenes and 

alkynes has been reported by Yamaguchi in 1994. Using HRh(CO)(PPh3)3 and triethylphosphine, the 

enyne obtained is almost exclusively the endo-(E) one (Scheme 70, eq. 1).161 Inspiring by the latter, a 

catalytic system based on Ru(H2)(PPh3)4/diphosphine catalytic was used for the generation of enyne 

R1 .
+

R3

O O

R4

[Rh(cod)Cl]2 (5 mol%)

DCM, rt, 16 h

R1

O

R4

O

R3

L :

O

O
P N

R2

R2

+

R1

O

R4

O

R3

R2

rac

R1, R2 : (CH2)2Ph, C11H23,

             (CH2)2CH(CH3)2, 

             C5H11

R3, R4 : Alkyl, Aryl, Heteroaryl

L (10 mol%), TFA (50 mol%)

R1 . CO2Me + R2

R1

MeO2C

R2

R1

MeO2C

R2

E:Z 1:1
33-94%

TDMPP (4 mol%)

TTMPP(4 mol%)R1 : Alkyl R2 : Alkyl, TMS

TCPC : Pd

MeO2C
CO2Me

CO2Me
MeO2C

if R = H TDMPP
if R = OMe TTMPP

P

MeO

MeO

3
R

Pd(OAc) (4 mol%)

TCPC (4 mol%)

67-85%



 46 

with an exo-selectivity (Scheme 70, eq. 2).162 In this case, the use of a hydroxyl group is necessary for 

this condensation, the exo-selectivity being probably due to steric hindrance. 

 

 

Scheme 70: Addition of alkynes with terminal allenes for C-C bond formation catalyzed by Ru or by Rh.  

 

The rhodium-catalyzed asymmetric addition of terminal alkynes to diarylphosphinylallenes was 

reported by Nishimura and Hayashi, using [Rh(acac)(C2H4)2] and (R)-binap as ligand.163 From 1,1-di-

substituted allenes, the addition gave selectively the corresponding exo-phosphinoenyne with good 

enantioselectivity. The same group performed the cobalt-catalyzed asymmetric addition of 
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enantiomeric excess (Scheme 71).164 
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Scheme 71: Enantioselective addition of silylacetylenes to terminal allenes for C-C bond formation catalyzed by Co. 

 

In 2019, Roulland and co-workers developed a simple Pd/Cu co-catalytic system able to 

stereoselectively produce 1,3-enynes starting from alkynes and terminal allenes (Scheme 72). 165 Among 

many examples, this simple method was applied to the formation of two key intermediates for the 

synthesis of tiacumicin B aglycon, a natural antiobiotic drug. 

 

Scheme 72: Pd/Cu-catalyzed hydroalkynylation of terminal allenes. 
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Another strategy was reported in 2018 by the group of Breit, using a decarboxylative 

hydroalkynylation reaction with terminal allenes and aryl propiolic acids under rhodium/diphosphine 

catalysis (Scheme 73).166 The reaction scope is quite large and the system allows the synthesis of the 

corresponding enantiopure enynes with excellent regio- and enantioselectivity. 

 

Scheme 73: Rh-catalyzed enantioselective decarboxylative hydroalkynylation of terminal allenes. 
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reported with moderate to good yields due to polymerization of the later (Scheme 74).  
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precatalyst is a complex of copper coordinated to a NHC ligand (N-Heterocyclic Carbene). This reaction 

provided access to (E)-1,5-dienes with excellent stereoselectivity. 

 

 

Scheme 75: Hydroallylation of allenes with allyl chlorides catalyzed by Cu/NHC ligand. 

 

Copper/NHC systems were also used to catalyze the reductive allyl-allyl cross-coupling of allenes 

in an efficient manner. Starting from allylic phosphates and terminal allenes, they were able to obtain 

optically active 1,5-dienes in a highly enantioselective and site-specific fashion (Scheme 76).169 The 
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Scheme 76: Cu-catalyzed enantioselective allyl-allyl cross-coupling.  
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Scheme 77: Enantioselective Cu-catalyzed reaction of terminale allenes with allenyl boronates. 

 

Iron-based catalysts are also able to allow the formation of C-C bonds by allene 

hydrofunctionalization, as shown by the team of Ma who reported an iron-catalyzed conjugate addition 

of 2,3-allenoates with Grignard Reagents, with good regio- and stereoselectivities (Scheme 78, eq. 

1).171,172 Five years after, the same team developed a reaction catalyzed by CuCl with tetrasubstituted 

allenes (Scheme 78, eq. 2).173 
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Scheme 79: Copper catalyzed hydroalkylation of mono-substituted allenes with alkyltriflates. 

 

3.4. Aminoalkylation 

 

The radical aminoalkylation of allenes has been performed in 2015 by the group of Li and Xu, using 

visible light photoredox catalysis with 1 mol% of [Ru(Bpy)3](BF4)2. With mono-, di- and tri-substituted 

allenes, this regioselective addition on the central sp-hybridized carbon led to the formation of 

unsaturated -aminobutyric ester derivatives (Scheme 80). A mixture of E/Z (up to 91/9) compounds 

and a variation of position of the final double bond has generally been obtained.175 

 

 

Scheme 80: Ru-based photocatalyzed aminoalkylation of mono-, di- and trisubstituted allenoates. 

 

In the meantime, the group of Krische developed an original aminomethylation reaction between 

allenes and hexahydro-1,3,5-triazine branched products of hydroaminomethylation bearing all-carbon 

quaternary centers under ruthenium/diphosphine catalysis.176 

In 2019 Breit and co-workers extended the use of the rhodium/diphosphine toolbox for the 

functionalization of allenes to hydroaminoalkylations.177 Photoredox catalysis based on rhodium- or 

iridium systems was able under blue LED activation and in the presence of rac-BINAP ligand, to allow 

the selective linear allylation of N-Phenyl tetrahydroisoquinoline (Scheme 81). 
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Scheme 81: Combined photoredox- and Rh- or Ir-catalyzed hydroaminoalkylation of disubstituted terminal allenes. 

3.5. Hydrocyanation 

 

The metal-catalyzed hydrocyanation of allenes did not received much attention in the past. The first 

example was reported in 1985 and catalyzed by a nickel complex.178 However this process suffered for 

a lack of selectivity, giving addition of the nitrile on the three different carbons of the allene (C1, C2 

and C3). An hydrocyanation resulting product was observed by Arai during the study of a cyclization 

process or with the cleavage of a cyclopropane ring.179,180 However the regio- and stereoselective 

hydrocyanation was only reported with 1,3-disubstituted allenes bearing an aryl group and acetone 

cyanohydrine as cyano surrogate. The catalytic system is based on Ni(0) and PMePh2 acting as ligand.181 

The use of enantioenriched allenes allowed to perform the reaction with good to excellent chirality 

transfer (Scheme 82).182 

 

Scheme 82: Ni-catalyzed enantioselective hydrocyanation of chiral allenes with acetonecyanohydrin. 

 

Recently, the authors applied their catalytic system to the formal synthesis of (±) quebrachamine, 

acting as -adrenergic blocking behavior in uro- genital tissue (Scheme 83).183 
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Scheme 83: Synthesis of Quebrachamine by nickel-catalyzed allene hydrocyanation. 

 

An extension of this asymmetric system has been reported later by Fang and co-workers, using a 

(R,R)-Ph-BPE-Ni(0) complex catalyst.184 Various enantiomerically enriched allylic nitriles were 

obtained with good enantiomeric excess in good yields.  

3.6. Miscellaneous 

In order to further gain in molecular complexity, some studies reported original 

hydrofunctionalizations of allenes involving three-component reactions. In 2013, as part of their work 

on hydrocyanation of allenes, Arai and co-workers reported a nickel-catalyzed procedure for the 

cyanative hydroalkynylation of terminal allenes, efficient in an intra- and inter-molecular manner 

(Scheme 84).185 This 3-component reaction allows the selective formation 1,4-cyano dienes in good 

yields. 

 

Scheme 84: Ni catalyzed triconponent cyanative hydroalkynylation of terminal allenes with acetonecyanohydrin. 

 

A second example of 3-component method has been published in 2019, with the gold-catalyzed 

reaction between alcohols, -aryl--diazoesters and terminal allenamides, giving a selective access to 

tert-allylic ethers with excellent stereoselectivity (E/Z > 20/1).186 This system was also efficient with 

water, making possible the synthesis of tert-allylic alcohols (Scheme 85).  
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Scheme 85: Au-catalyzed stereoselective three-component reaction with allenamides alcohols and diazoesters. 

 

3.7. Umpoled reaction with carbon dioxide and carbon monoxide (and surrogates) 

 

The development of metal-catalyzed hydrofunctionalization of allenes is not only described with 

nucleophilic coupling partner but is also possible with electrophilic species. Allenes are then considered 

as pronucleophilic species. Several electrophiles have been used with this strategy, such as carbone 

dioxide CO2 and carbon monoxide CO. This strategy constitutes umpoled reactions compared to all the 

others described in this review. 

In 1990 Alper reported the first use of carbon monoxide for the functionalization of allenes.187 The 

catalytic system is based on nickel cyanide, used in a two-phases system with cetyltrimethylammonium 

bromide (CTAB) as phase-transfer agent. With one atmosphere of carbon monoxide, it gave 

regioselectively the β,γ-unsaturated acid (Scheme 86). 

 

Scheme 86: Hydrocarbonylation of allenes catalyzed by Ni.  

 

In parallel, the addition of carbon dioxide to mono-substituted and 1,3-disubstituted allenes was 

performed and catalyzed with an electrogenerated nickel(0) complex.188 Proceeding with smooth 

conditions, this system unfortunately lead to the formation of mixture of different regioisomers, with 

addition of the carbon dioxide on the three different carbons of the allene. The ratio of regioisomers was 
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highly dependent to the substitution of the allene. Currently the regio- and stereoselectivity for the 

nickel-mediated hydrocarboxylation of mono- and 1,3-disubstituted allene with carbon dioxide is only 

available with a stoechiometric amount of metal.189–191 

Palladium-based catalyst is well known to perform carbonylation reactions, and this is also true in 

presence of allenes. In 1998, Grigg used 5 mol% of Pd(PPh3)4 under one atmosphere of carbon monoxide 

for the addition on terminal allenes of a of amine or alcohol nucleophiles, to give the corresponding 

allylic amides or esters (Scheme 87).192 The broad reaction scope of this method gives access to allyl 

molecules via insertion of CO on the central carbon of the starting allene.  

 

Scheme 87: Hydrocarbonylation of terminal allenes in presence of amine or alcohol nucleophiles catalyzed by Pd.  

 

As an extension of this work, Beller studied the hydroalkoxycarbonylation of allenes in the presence 

of alcohols under 40 atmosphere of CO for the synthesis of α,β- and β,γ-unsaturated esters. The 

regioselectivity of this palladium-catalyzed system could be inverted by a simple change of ligand 

(Scheme 88).193 The authors suggested that Xantphos L1 favors the intermediate formation of a π-allyl-

Pd complex and then affords the corresponding -unsaturated esters (Scheme 88, eq. 1). On the other 

hand, when diphenylphosphinopyridine L2 is employed as ligand, an alkenyl-Pd complex is generated 

that allows the formation of -unsaturated esters (Scheme 88, eq. 2). Same authors associated with 

Jioa also studied the mechanism of a similar cobalt-catalyzed hydroformylation of allenes by DFT and 

proposed that the anti-Markovnikov product is favored by both kinetic and thermodynamic effects.194 
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Scheme 88: Ligand-controlled the regioselectivity of hydroalkoxycarbonylation of allenes catalyzed by Pd.  

 

The employ of rhodium-based catalytic system was also described for the addition of carbon 

monoxide coupled with hydrogen. The group of Ma reported the use of this mixture at a pressure of 4.8 

bars to perform the hydroformylation-hydrogenation of 1,2-allenyl-phosphine oxides and phosphonates 

catalyzed by RhH(CO)PPh3)3.195 Breit and co-workers reported a method proceeding under 30 bar of 

CO/H2, in which the regioselective hydroformylation of 1,1-di-substituted allenes was accomplished 

using [Rh(CO)2(acac)] catalyst associated to the 6-DPP ligand (Scheme 89). It was applied to the 

synthesis of substrates of interest such as (-)-menthone, (+)-camphor and estrone derivatives.196 The 

rhodium-catalyzed hydroformylation was also extended to 1,1,3-trisubstituted allenes by Schomaker 

and co-workers in 2017. Using BisDiazaphos ligand, the reaction was performed regioselectively on the 

terminal carbon of the allene under 10 bars of CO/H2 (1:1).197  
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Scheme 89: Rh-catalyzed hydroformylation of disubstituted terminal allenes.  

 

Carbon dioxide was also used as an electrophile with palladium catalysts. Thus, Iwasawa published 

the hydrocarboxylation on the more substituted carbon of 1.2 disubstituted terminal allenes with a silyl 

pincer-type palladium complex (Scheme 90).198 This reaction, which was the model for the study of 

original PSiP pincer ligands, was also applied to mono-substituted and 1,1- or 1,3-disubstituted 

allenes.199  

 

Scheme 90: Hydrocarboxylation of terminal allenes with a Pd/PSiP system.  

 

In 2015, Tsuji and Fujihara also reported the use of carbon dioxide for the synthesis of homoallylic 

alcohols from allenes, using a catalytic system based on a copper/diphosphine ligand system associated 

to a hydrosilane (Scheme 91).200 Authors proposed a mechanism starting from the generation of a 

copper-hydride complex, then an allylcopper intermediate reacts with CO2 at the  carbon to afford a 

copper carboxylate. The latter is then reduced by hydrosilane to form a copper alkoxide intermediate 

that provide the final homoallylic alcohol. 
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These methods of hydrocarboxylation198,200 are of high interest because they could allow the fixation 

of CO2 but also create high valuable molecules such unsaturated carboxylic acids.199 

 

 

Scheme 91: Mechanism of the synthesis of homoallylic alcohols from allenes and CO2 catalyzed by Cu. 

 

Exploring the use of carbon dioxide surrogate for the hydrocarboxylation of allenes, the group of 

Iwasawa reported the reaction of formate salts (benzyltrimethylammonium formate) to generate in-situ 

CO2 and a hydride. Occurring with a PGeP-palladium catalyst, the regioselective hydrocarboxylation 

was observed on the more hindered extremity of 1,1-di-substituted allenes (Scheme 92).201 A good 

tolerance to various functional groups was observed and extension to mono-substituted and 1,3-

subsituted allenes was also possible. Additionally, benzyltrimethylammonium formate can be 

successfully replaced by the commercially available and much more atom-economical potassium 

formate HCO2K in the particular case of 1,1-dimethylallene.  
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Scheme 92: PGeP-Pd complex catalyzed hydrocarboxylation of allenes with formate salts as CO2 surrogate 

(benzyltrimethylammonium formate).  

 

The group of Lu published in 2018 a DFT study on hydrocarboxylation of dimethylallene catalyzed 

by PGeP-palladium (Scheme 93).202 After an initial coordination of the palladium with the formate (in 

excess), a new palladium hydride intermediate would be formed via releasing of CO2. The hydride 

formed could react with dimethylallene to afford to an allyl palladium complex. The latter would 

undergo an insertion of CO2 and would then release the expected product. 

 

Scheme 93: DFT studies of the palladium catalyzed hydrocarboxylation of dimethylallene with formate salts. 

 

3.8. Umpoled Reaction with Aldehyde 

 

Another possibility for the use of allenes as pronucleophile is their hydrofunctionalization with 

readily accessible aldehydes.203 Thus, during their investigations about the aldehyde C-H bond cleavage 

involving a rhodium catalyst, the group of Miura observed in 1999 the addition of aldehydes (2-

hydroxybenzaldehyde) on  carbon of terminal allenes (Scheme 94).204 This reaction was performed 

with 1,1-dimethylallene or mono-substituted allenes with a good regioselectivity on the terminal carbon, 

except for the phenylallene which underwent addition on both last and central carbons.  
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Scheme 94: Rh-catalyzed addition of aldehydes with mono- and disubstituted terminal allenes. 

 

The rhodium-catalyzed hydroacylation of allenes was then described by Willis in an 

enantioselective manner in 2008, with ee up to 96% thanks to the use of chiral P-P ligand (DuPhos type 

ligand).205 Very efficient on 1,3-di-substituted allenes, this reaction was limited to β-S-aldehydes 

(Scheme 95). An extension of the scope without chirality was also published with tri-substituted 

allenes.206 

 

 

Scheme 95: Rh-catalyzed hydroacylation of 1,3-disubstituted allenes with aryl aldehydes.  

 

The addition of benzaldehyde derivatives to 1,1-di-substituted allenes was also described using a 

palladium catalyst, by formal reductive coupling. Thus, Cheng and co-workers reported that 

PdCl2(PPh3)2 in presence of SnCl2 was able to catalyse the in-situ hydrostannylation of allenes, which 

was followed by the addition an aldehyde to give homoallylic alcohols (Scheme 96).207 
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Scheme 96: Pd-catalyzed hydroacylation of allenes via in-situ hydrostannylation. 

 

Noteworthy, the [Pd(allyl)Cl]2/DPEPhos/chiral amine system described by Luo for the 

enantioselective addition of dicarbonyl compounds (Scheme 64) was also applied in the same study with 

aldehydes.152  

In 2005, a nickel-based catalytic system for hydroacylation has been disclosed by Jamison and co-

workers. Using Ni(cod)2 and an achiral NHC-ligand, an enantioselective three-component reaction was 

performed involving internal chiral allenes, organosilanes and aromatic aldehydes (Scheme 97). A 

similar system without chirality transfer was also published with aliphatic aldehydes and terminal 

allenes and afforded the formation of trisubstituted allylic alcohols. 208–210 

 

 

Scheme 97: Ni-catalyzed enantioselective hydroacylation of internal chiral allenes in the presence of organosilanes.  

 

Iridium-based complexes were also efficient catalytic systems for the addition of an aldehyde to an 

allene. Working almost exclusively with 1,1-dimethylallene, the group of Krische reported the racemic 

(Scheme 98) and enantioselective iridium-catalyzed addition of various aldehydes, thus leading under 

atmospheric pressure of H2  to the corresponding allylic alcohols with good to excellent yields.211–213 
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Scheme 98: Enantioselective Ir-catalyzed hydroacylation of terminal allenes. 

 

In 2019, the same team employed gaseous allene in enantioselective aldehyde reductive coupling 

catalyzed by an allyl-iridium complex, giving (R)-homoallylic alcohols (Scheme 99).214 In the same 

study, they also used the exact same catalytic system with allyl acetate instead of allene and surprisingly, 

an inversion of enantioselectivity has been observed leading to the formation of (S)-homoallylic 

alcohols. Computation and experimental studies suggest two different mechanisms. Using allene, a 

hydrometallation lead to a diastereomeric -allyliridium-C,O-benzoate complexes, through a 

pentacoordinate iridium hydride. On the other hand, the use of allyl acetate involves an ionization from 

a square planar iridium complex. This divergence in mechanistic pathways could explain the difference 

of enantioselectivity. 
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Scheme 99: Ir-catalyzed enantioselective allene-aldehyde reductive coupling. 

 

In parallel to this development of iridium-based catalytic systems, the same group also reported the 

use of ruthenium catalysts for selective addition of aldehydes to allenes. They thus published the addition 

of paraformaldehyde on the -position of 1,1-disubstituted allenes215, including later trifluoromethyl-

bearing allenes.216 The diastereoselective addition of various aldehydes to sulfonamido allenes was also 

performed, still with a total regioselectivity on the  carbon, giving access to anti-sulfonamido 

alcohols.217  

In 2016, the use of gold was disclosed simultaneously by the group of González and the group of 

López in collaboration with Mascareñas for the intermolecular α-functionalization of aldehydes with 

allenamides catalyzed by gold.218,219 Both groups used a synergistic gold and organo- catalysis.  

A formal hydroacylation of terminal allenes was also reported by Tsuji in 2013, employing 

palladium, acid chlorides and hydrosilanes (Scheme 100).220 Performed under smooth conditions, this 

reaction gave an access to α,β-unsaturated ketones with regioselectivity and in favor of the formation of 

the E-product even if around 10% of Z-product was usually observed. A similar palladium-catalyzed 

system was also reported using carboxylic anhydrides and afford unsaturated ketones.221 

 

Scheme 100: Regioselective Pd-catalyzed hydroacylation of terminal allenes with acyl chlorides. 
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Ma,223 both using Cu-H catalysts. In the first case, the copper-catalyst was used to perform a 

hydroalumination of 1,1-disubstituted allenes, whose product was then engaged with an aldehyde for 

the formation of ,-ketones. In the second case, the copper-catalyst allowed the direct addition of 

anhydride leading to the synthesis of similar structures and the use of a chiral biphosphine ligand made 

possible the enantioselective control of the obtained all-carbon-quaternary center (Scheme 101).  

 

Scheme 101: Cu-catalyzed enantioselective hydroacylation of allenes. 

 

3.9. Umpoled Reaction with Alcohol 

 

After preliminary studies using their iridium catalyst for the reaction of allenes with aldehydes but 

also applied to some alcohols,211,212 Krische and co-workers reported the direct iridium-catalyzed 

coupling of methanol with various allenes (Scheme 102).224 

 

Scheme 102: Ir-catalyzed addition of methanol with allenes. 

 

The mechanism of the reaction was studied by DFT calculations by Wang and Li (Scheme 103).225 

The first step is the addition of methanol to the precatalyst, to form the active iridium species. This step 

is followed by a β-elimination, to generate an iridium hydride complex and formaldehyde. Then the 

allene undergoes a hydrometalation to form a π-allyl complex, followed by addition of the in situ formed 

formalhyde. After rearrangement, the final product is then formed by methanolysis with regeneration of 

the active iridium catalyst. 
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Scheme 103: Mechanism of the Ir-catalyzed addition of methanol with allenes.  

 

An extension of this iridium-catalyzed coupling reaction of CF3-allenes with methanol was then 

reported with a chiral control, for the generation of quaternary carbon bearing a CF3 group.226 The 

hydrofunctionalization of allenes in order to obtained trifluorinated patterns was also published in 2019, 

when Krische and co-workers described the reductive coupling between 1,1-disubstituted allenes and 

fluoral catalyzed by iridium combined with chiral diphosphine (PhanePhos type). This method allowed 

the access of CF3-substituted secondary alcohols in excellent yields with high enantioselectivities 

(Scheme 104).227 
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Scheme 104: Ir-catalyzed enantioselective allene-fluoral coupling. 

 

The same year another iridium/chiral diphosphine catalytic system (cyclometalated π-allyliridium 

Binap complex) was applied for the hydroxyalkylation of phthalimido-allene with a large scope of 

primary alcohols. This enantio- and diastereoselective reaction gave a direct access to vicinal amino 

alcohols, which can be used for the synthesis of several valuable structure such as substituted 

morpholines (Scheme 105).228 

 

Scheme 105: Regio- and enantioselective Ir-catalyzed reaction with phthalimido-allene. 
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In parallel, the same group explored the possibility to use ruthenium-based catalyzed and described 

the regio- and diastereoselective hydrofunctionalization of allenamides with primary alcohols (Scheme 

106).229 This reaction, supposed to proceed through a six-membered ring transition state, occurred with 

a total diastereoselectivity.  

 

Scheme 106: Regio- and diastereoselective Ru-catalyzed addition of primary alcohols with allenamides for C-C bond 

formation. 

 

The study of same reaction, performed on 1,1-di-substituted allenes, have shown that the 

diastereoselectivity was improved thanks to a Curtin-Hammet effect.230 This ruthenium-catalysed 

system was also described with fluorinated alcohols.231 

3.10. Umpoled Reaction with miscellaneous Groups 

 

Very few examples of functionalization of allenes with ketones and derivatives were reported. Using 

very specific isatins as nucleophiles, Krische and co-workers reported two systems with iridium and 

ruthenium able to catalyze the enantioselective reaction of this natural product with dimethylallene.232,233 

With the ruthenium-based system, the method is effective with unprotected insatin, giving a concise 

access to 3-tert-prenylated oxindoles which constitute a family of interest of bioactive drugs (Scheme 

107). Then authors realized the chlorination of the product in order to obtain a convenient substrate for 

nucleophilic substitution with various C-nucleophiles as malonates, cyanides, rich arenes and indoles.  
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Scheme 107: Ru-catalyzed addition of isatins on 1,1-dimthylallene.  

 

Jiang used a palladium-based catalyst to realize the addition of pyrazolones on alkoxyallenes 

(Scheme 108).234 This regio- and enantioselective reaction, performed at room temperature with 

0.5 mol% of  palladium and a chiral P,N-ligand, occurred on the -carbon of the allenyl ether. Its 

regioselectivity was inverted if the palladium-catalytic system is replaced by a chiral phosphoric acid 

(5 mol%). Under palladium-catalyzed conditions, branched isomer was mainly obtained 

(branched/linear > 11/1) with excellent diastereo- and enantioselectivities. On the other hand, the use of 

5 mol % of chiral phosphoric acid afforded in the formation of the linear products. With more than 35 

examples, the reaction scope of this methodology was wide and tolerant to various substitutions on 

pyrazolones. 

 

Scheme 108: Regio- and enantioselective Pd-catalyzed addition of pyrazolones with allenyl ethers. 

 

In 2018, an addition of hydrazones on alkoxyallenes also catalysed by palladium has been reported 

by Deagostino and co-workers. They used a simple palladium/PPh3 catalyst system and t-BuOLi as base 

allowing the generation of conjugated or skipped dienes (Scheme 109).235 
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Scheme 109: Pd-catalyzed addition of hydrazones on alkoxyallenes. 

 

The group of Montgomery published in 2010 the regioselective nickel catalyzed reductive coupling 

of various enones with mono- and 1,3-disubstituted allenes (Scheme 110).236 This reaction affords the 

possibility to synthesize γ,δ-unsaturated carbonyl compounds with 1,1-disubstituted alkenes. 

 

Scheme 110: Ni-catalyzed addition enones with mono- and 1,3-disubstituted allenes.  

 

The copper-catalyzed addition of imines, as equivalent of activated carbonyl group, to allenes has 

been reported by the group of Buchwald using a copper-hydride catalytic system, known to be effective 

for the reductive addition of imines and carbonyls to unsaturated compounds (Scheme 111).237 A 

variation of the functional group placed on the imine, allowed the authors to modify the regioselectivity 

of the addition. Classic functional groups like benzyl gave branched allylated products (homoallylic 

molecules) while a N-phosphinoyl imine gave access to linear products.  

 

 

Scheme 111: Addition of terminal allenes to an imine catalyzed by a Cu-H system. 

.
RO

+

R : THP, Bn, MEM

Pd(OAc)2 (5 mol%)

PPh3 (15 mol%)

LiI (5 mol%)

tBuOLi (1.2 equiv)

Et3N, THF, 75 °C
Ar

NNHTs

Ar' Ar'

Ar

OR

52-92%

Ph

Ph

OTHP

85%

Tol-4

4-tolyl

OTHP

65%

PhF-4
OTHP

89%

Ph

Ph

OBn

92%

Ph

Ph

OBn

92%

Ph

2-tolyl

OTHP

65%
E/Z : 50/50

Ph
OTHP

90%
E/Z : 70/30

Ph
OBn

88%
E/Z : 55/45

4-FC6H4

4-CNC6H44-ClC6H4

+ . R5R4R1

O

R2

R3

Ni(cod)2 (10 mol%)

PPh3 (20 mol%)

Et3SiH (10 mol%)

Toluene, 50 °C, 6 h

R1

O

R2

R3

R4

R5

R1 : Aryl, Alkyl

R2 : H, Me

R3 : H, Aryl, Alkyl

R4 : Aryl, Alkyl, OR

R5 : H, Alkyl

15 examples
50-90%

+
R1

.

R2 H

N
R3

Cu(OAc)2 (5 mol%)

DCyPE (6 mol%)

(MeO)2MeSiH, tBuOH

MTBE, rt, 12h

H
N

R1

R2

R3

Cu(OAc)2 (5 mol%)

DCyPE (6 mol%)

PhSiH3, tBuOH

Toluene, rt, 12 h

R1
R2

HN
P(O)Ph2

R1 : Alkyl, OR R2 : Aryl, Cy

R3 : Bn, 2,4-DMB

13 examples
48-98%

9 examples
55-92%



 70 

 

Recently the same group showed that an in-situ generated CuH-based catalyst, used in the presence 

of chiral diphosphine and silane, was able to perform the allylation of ketones with terminal disubstituted 

allenes238 or with simple gaseous allene. (Scheme 112).239 the corresponding chiral allylic alcohols were 

obtained with excellent regio- and enantioslectivities. 

 

 

Scheme 112: Regio- and enatioselective Cu-catalyzed allylation of ketones. 

 

In 2019, the team of Sieber also reported the enantioselective copper-catalyzed allylation of ketones 

using allenamides.240,241 As for the copper-catalyzed functionalization of imines, an inversion of the 

selectivity is possible thanks to the modification of the ligand (Scheme 113). Indeed, using 

phosphoramidite allowed the formation of linear products (-hydroxyaldehyde equivalent) whereas the 

use of NHC-type ligands gave branched products (1,2-amino alcohol synthon). 

 

Scheme 113: Ligand-controlled regio- and enantioselective Cu-catalyzed allylation of ketones with allenamides. 
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hydroalkoxylation and hydrocarbonylation (Figure 3). The first one involved allenes with aliphatic 

alcohols and phenols derivatives, especially with palladium and gold-based catalysts. The second one 

uses palladium, rhodium and copper as catalyst for the addition of allenes to various carboxylic acids. 

 

Figure 3 : Transition-metal catalyzed hydrofunctionalization of allenes for C-O bond formation. 

 

4.1. Hydroalkoxylation 
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The first hydroalkoxylation of allenes with aliphatic alcohols has been described by Rutjes in 

1997.242 A palladium/diphospine (1,3-bis(diphenylphosphino)propane) catalytic system, directly 

inspired by a previous paper describing a carbonylation of iodophenols with allenes,243 allowed the 

synthesis of functionalized dihydropyrans and tetrahydrooxepines from methoxyallene and various 

alcohols bearing an double bond (Scheme 114).  

 

R2 •

R1

R3

R2

R1

R3

O

R2 R3

O

R1
or

R2

R1

R3

O
Alk

R2 R3

O
Alk

R1

or

Alk-OH

R2

R1

R2 R3

O
Ar

R1

or

Ar-OH

O
Ar

R CO2H

R

O

R

O

Pd, Au, Rh

Pd, Rh, Ir, Cu

Pd, Au, Rh



 72 

 

Scheme 114: Hydroalkoxylation of methoxyallene with aliphatic alcohols catalyzed by Pd: access to O-heterocycles.  

 

The method was used later to obtain various acetals for the synthesis of more complexes products 

of high interests.244–248 This catalytic system was also enhanced by Rhee in 2014,249 using a chiral ligand 

for the formation of cyclic acetals with a good enantioselectivity.  

Another palladium-based system described in 2005 by Yamamoto250 afforded an original synthesis 

of allyl ethers and allyl carboxylates (Scheme 115). This method, limited to mono-substituted aromatic 

allenes, was efficient for the addition of alcohols with a total regioselectivity on the terminal carbon, 

and was also used for the addition of carboxylic acids to an aryl-alkyne with an in situ generation of 

allenes. Authors proposed a mechanism involving a palladium-hydride complex in situ generated as the 

catalytic active species. The latter would be able to coordinate the terminal allene to allow the formation 

of a -allylic-palladium complex that could be attacked by an alcohol and then release the corresponding 

allylic ether.  
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Scheme 115: Proposed mechanism for hydroalkoxylation of arylallenes with alcohols catalyzed by Pd. 

 

In 2008, three groups described almost simultaneously the gold/silver-catalysed hydroalkoxylation 

of allenes. Widenhoefer reported hydroalkoxylation of mono-substituted, 1,1- and 1,3-di-substituted, 

trisubstituted, and tetrasubstituted allenes with primary and secondary alcohols, methanol, phenol, and 

propionic acid using an NHC ligand in very soft conditions,251 this reaction was described as fully regio- 

and stereoselective and was extended to the addition of water (Scheme 116).252  

 

 

Scheme 116: Hydroalkoxylation and hydration of monosubsituted, 1,1- and 1,3-disubstituted, trisubstituted, and 

tetrasubstituted allenes co-catalyzed by Au and Ag.  
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ether and [AuPPh3]+ upon protonation of the carbon–metal bond. The cationic gold active species 

[AuPPh3]+ was generated by precipitation of chlorine as the silver salt. 

 

 

Scheme 117: Suggested mechanism for the Au/Ag-co-catalyzed hydroalkoxylation of allenes.  

A related catalytic system allowed Horino to publish the addition of aliphatic alcohols on 4-

vinylidene-2-oxazolidinone (Scheme 118).254 Due to the specificity of this allene, they found out that 

the addition occurred on the -carbon. The obtained 2-oxazolidione are of high interest for the synthesis 

of some antibacterial agents, and as chiral auxiliaries in asymmetric synthesis. 
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Scheme 118: Hydroalkoxylation of allenes co-catalyzed by Au/Ag. 

 

After these first works, various strategies were developed in order to extend the application of gold-

catalyzed hydroalkoxylation of allenes. Pérez-Castells observed the hydroalkoxylation of allenes as a 

side reaction during the synthesis of benzazepines.255 Cui and Zhang reported two isolated examples of 

(Ph3PAuNO3)-catalyzed addition of alcohols onto aromatic allenes and alkoxyallenes.256,257 Maseras 

performed in 2009 a DFT study of gold-catalyzed hydroalkoxylation of allenes,258 suggesting that the 

regioselectivity observed by Widenhoefer (Scheme 116)251,252 and Yamamoto (Scheme 117)253 was a 

result of an Au(I)-catalyzed interconversion of the allylic ether product. Indeed, the catalyst used for the 

hydroalkoxylation was found to be able to promote the interconversion of the two different regioisomers, 

explaining the great selectivity for the linear product (Scheme 119). 

 

Scheme 119: Au-catalyzed interconversion of allylic ether. 

O

O

N

.

Ts
+ ROH

ClAuPPh3 (5 mol%)

AgSbF6 (5 mol%)

DCM, rt
O

O

N
Ts

RO

O

O

N
Ts

MeO

65%

O

O

N
Ts

EtO

64%

O

O

N
Ts

O

70%

O

O

N
Ts

O

60%

Ph

O

O

N
Ts

O

68%

O

O

N
Ts

O

37%

Ph

O

O

N
Ts

O

58%

10 examples
37-70%

R : Alk, allyl

OR

RO
H

OR

ROH

[Au]
‡

RO
H

OR

[Au]

RO
H

OR

‡
[Au]

ROH

Au[NHC]

ROH

OR



 76 

 

The group of Lee succeeded in switching the regioselectivity described above,258 delaying the 

isomerization process by performing the reaction in DMF with a large excess of alcohols.259 While 

employing enantiopure 1,3-disubstituted allenes, the reaction was initially reported with poor chirality 

transfer, this limitation was overcame in these new conditions catalyzed by gold complex (Scheme 

120).260 Various alkyl tert-allylic ethers were then obtained with an excellent chirality transfer from a 

large scope of 1,3-disubstituted allenes and alcohols. 

 

Scheme 120: Hydroalkoxylation of enantioenriched 1,3-disubstituted allenes with excess of alcohols co-catalyzed by 

Au/Ag. 

 

In 2018, Widenhoefer and co-workers re-evaluated the interconversion hypothesis, as no 
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gold -allene complex, favored as a tight-ion pair with OTf-. This addition is then followed by a direct 

outer-sphere addition of the alcohol to the complex, then by protodemetallation giving formation of the 

primary allylic ether, also leading to the regeneration of the cationic Au(I) active specie (Scheme 121). 

They also pointed the potential effect of reaction medium on the mechanism of the reaction, as non-

polar solvent favored the tight ion-pair intermediate. 
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Scheme 121: Proposed mechanism for the Au/Ag-co-catalyzed hydroalkoxylation of 1,1-dimethylallene 

 

Finally, the rhodium-catalyzed hydroalkoxylation of allenes was also reported by the group of Breit 

in 2016. Using a ferrocene-based chiral ligand called (S,S)-iPr-ferrocelane associated with a rhodium 

dimer, the enantioselective obtention of tert-allylic ethers was performed with mono-substituted allenes 

and alkyne analogues with a large scope of aliphatic and benzylic alcohols (Scheme 122).262  

 

Scheme 122: Rh-catalyzed enantioselective hydroalkoxylation of terminal allenes with aliphatic and benzylic alcohols. 
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 Aromatic alcohols 

The hydroalkoxylation of allenes with aromatic alcohols was originally observed as a side reaction 

by Alper and co-workers during a study about palladium-catalyzed carbonylation of mono- and di-

substituted allenes.243 In 2000 Rutjes described the palladium-catalyzed hydroalkoxylation of allenes 

with phenols bearing a free-alkene in ortho, as a key step for the synthesis of chromenes via ring-closing 

metathesis (Scheme 123).263 Noteworthy, the reaction proceeded at room temperature and allowed the 

formation of the diene in only one minute.  

 

Scheme 123: Hydroalkoxylation of terminal allenes with phenols catalyzed by Pd.  

 

Similar conditions were also used for the obtention of allylic O,O- and N,O-acetals with aliphatic 

and aromatic alcohols.244–248 A gold catalytic system described by Zhang and co-workers,257 using 

(PPh)3AuNO3 with alkoxyallenes was exploited indifferently with aliphatic and aromatic alcohols.  

Hayashi performed the hydroalkoxylation of diphenylphosphinyallenes with a rhodium catalyst and 

a chiral ligand (Scheme 124). The reaction which was the first reported intermolecular asymmetric 

addition of phenols to allenes, afforded access to an original family of phosphorous ligand.264 

 

 

Scheme 124: Enantioselective Rh-catalyzed hydroalkoxylation of diphenylphosphinyallenes with phenols.  

 

In 2015, the group of Cao published the palladium/PNNP ligand-catalyzed asymmetric 
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Scheme 125: Enantio- and regioselective hydroalkoxylation of alkoxyallenes with phenols catalyzed by Pd/chiral 

ligand system. 

 

Working with rhodium/chiral diphosphine system, Breit and Liu showed that hydroxyphthalimides 

could be added on terminal allenes with excellent regio- and enatioseselectivity (Scheme 126).266 With 

this new method, authors obtained allylic alcohols which are intermediates for the synthesis of 

putaminoxin E (cytotoxic agent). 

 

Scheme 126: Enantio- and regioselective Rh-catalyzed addition of hydroxyphthalimides to terminal allenes. 
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Compared to the addition of alcohols, the addition of carboxylic acids to allenes has been rarely 

reported. The first hydrocarboxylation of allenes was described in 1967 by Shier.267 During their studies 

about dimerization and polymerization of allenes in presence of a palladium catalyst and sodium acetate, 

traces of hydrocarboxylated products were observed. 

The first dedicated study of this reaction was published by the group of Yamamoto in 1998.268 Using 

1 mol% of palladium and a diphosphine ligand (dppf), the addition of aliphatic and aromatic carboxylic 

acids on terminal carbon of mono-substituted allenes was performed with total regio- and 

stereoselectivities while starting from 1,1-disubstituted allenes a mixture of E and Z products was 

obtained (Scheme 127). Authors suggested that this reaction occurs via the generation of a palladium 

hydride able to activate an allene to give an allyl palladium intermediate. The latter affords the allyl 

carboxylates expected with regeneration of a Pd(0) by reductive elimination. 

 

Scheme 127: Hydrocarboxylation of allenes with carboxylic acids catalyzed by Pd and proposed mechanism.  
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associated to a diphosphine ligand.  The system allowed the hydrocarboxylation of terminal allenes with 
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Scheme 128: Hydrocarboxylation of 1,1-disubstituted allenes with carboxylic acids catalyzed by Ir.  

 

As part of their work on the hydrofunctionalization of allenes catalyzed by rhodium, the group of 

Breit reported in 2011 an enantioselective system from terminal aliphatic allenes with a large range of 

carboxylic acids to obtain branched allylic esters (Scheme 129, eq. 1).270,271 This method was also used 

few years later for a flexible protecting-group-free synthesis of Clavosolide (a cytotoxic molecule), via 

a dimerization of a molecule bearing an allene and a carboxylic acid group (Scheme 129, eq 2).271 In 

both case, the use of chiral diphosphine (R,R)-diop allowed better activites. 

 

Scheme 129: Rh-catalyzed enantioselective hydrocarboxylation of allenes: application to the synthesis of Clavosolide 
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Scheme 130: Formation of macrocyles by enantioselective Rh-catalyzed hydrocarboxylation of allenes. 
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Scheme 131: Cu-catalyzed hydrocarboxylation of N-allenyl derivatives. 
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5. Conclusion 

For a long time, allenes were a forgotten unsaturated molecule family in organic chemistry. 

However, since the turn of the century, many studies mainly involving catalytic systems based on 

transition metals, have focused on the reactivity of allenes. In this review, we focused on the discoveries 

and developments in the intermolecular hydrofunctionalization of allenes for the formation of allylic 

structures via the creation of C-N, C-C and C-O bonds. A large variety of transition metals complexes 

was used to catalyze this transformation (Scheme 131). Precious metals as Pd, Rh and Au were 

predominantly used, but the exploitation of simple catalytic system employing abundant and cheap 

transition metals is rapidly developing, in order to make this reaction more sustainable. The allylic 

structures synthesized incorporate alkyl- and aryl ethers, or ester functions obtained via the formation 

of C-O bond. For the creation of the C-N bond via the allene hydrofunctionalization, a bountiful number 

of nitrogen nucleophiles such as alkyl- and arylamines, azides, amides, ammonia and hydrazines was 

used to selectively afford the corresponding allylic structures. Finally, the family of reactions involving 

the construction of C-C bonds is the most frequently described, with the formation of allylic structures 

including alkyl, aryl, nitrile, carbon monoxide, carbon dioxide, aldehyde, ketone and alcohol functions. 

Remarkably, a lot of the methods have been applied to the total synthesis of many natural products or 

highly potential bio-active molecules. Allene hydrofunctionalizations usually proceed with high regio- 

and stereoselectivity under smooth conditions with total atom-economy. The recent rationalization of 

the observed selectivities by mechanistic studies could lead in this field to even more innovative 

methodologies. In this context we can expect that this type of reaction will progressively become a 

classic and inevitable strategy for the synthesis of allylic moieties under more sustainable conditions 

than the historical and classical reactions 
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