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Electrostatic interactions in water: nonlocal electrostatic approach
M. Vatin,1, 2 A. Porro,1 N. Sator,1 J-F Dufrêche,2 and H. Berthoumieux1
1)Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600),
F-75005 Paris, France
2)ICSM/LMCT Site de Marcoule, F-30207 Bagnols-sur-Cze Cedex France

Can we avoid molecular dynamics simulations to estimate the electrostatic interaction between charged objects
separated by a nanometric distance in water? To answer this question, we develop a continuous model for the
dielectric properties of water based on a functional of the polarization. A phenomenological Landau-Ginzburg
Hamiltonian for the electrostatic energy of water is parameterized to capture the dipolar correlations in the
fluid at the nanometric scale. We show that in this framework, the effective interactions of simple objects such
as point charges are analytically tractable. In particular, the derivation of the interaction energy between a
solvated charge and a surface can be reduced to a system of linear equations of electrostatic potentials and
analytically solved. This approach could thus give access in few calculation lines to data that necessitate long
and costly simulations.

I. INTRODUCTION

It is difficult to overstate the importance of electro-
static interactions in aqueous solutions in nanometric
confinements: interaction of charged solutes with pro-
teins in a biological cell, ions in nanoporous materials...1

The description of the solvent in these systems is
challenging2 as one can not skip the molecular details
of water at this scale but running a all-atoms simulation
as a prerequisite of the study of such systems can appear
vainly costly in terms of computer time.

The dielectric interaction between ions can be obtained
by modeling water as a dielectric medium character-
ized by its permittivity. If one represents the ions as
point charges and water as a local dielectric medium
characterized by the bulk dielectric relative permittivity
εw = 78.3 at 25 ◦C, the problem is a textbook exercise
of electrostatics3. The analytic result obtained for mono-
valent ions is surprisingly a very good estimation of the
molecular dynamics results for an interaction distance
larger than 1 or 2 nm. But at small distance, the inter-
action depends on the short-range molecular structure
of the solvent which is not included in this macroscopic
description of the fluid.

Water is an associated liquid, structured by a net-
work of intermolecular interactions, the hydrogen bonds,
which induces short range correlations of the molec-
ular orientations. The bond charge structure factor
Sc(q) = 〈ρ(q)ρ(−q)〉, were ρ(q) is the bond charge den-
sity in Fourier space, and its associated response func-
tion, the longitudinal dielectric susceptibility χ‖(q) were
consistently determined from molecular dynamics simu-
lations and experimental measurements at the end of the
nineties4. In the Fourier space, χ‖(q) possesses a pro-

nounced maximum, far above 1, for q = 3 Å−1 which
is the signature of an overscreening effect of the solvent,
i. e. the possibility for two charges of the same sign to
attract each other at short distance5, and reveals the ex-
istence of characteristic lengths of molecular scale for the
bond charge structure. More recently the dipole-dipole
correlation function was obtained with MD simulations
of SPC/E water6. At short range, the correlation func-

tion between two dipoles oscillates and exponentially de-
cays and is enhanced when compared to long-range van
der Waals dipole-dipole correlations that are reached for
separations larger than 1.5 nm.

The theory of nonlocal electrostatics makes possible to
include short-range correlation lengths between dipoles
of solvent molecules in a continuous description. This
framework is based on a Landau-Ginsburg approach to
express the electrostatic energy of the medium as a func-
tional of the polarization7–10. Increasing the complex-
ity of this functional generates a zoology of χ‖(q) and it
is possible to propose a model associated with an over-
screening response. These phenomenological models have
been used to study the effect of the non locality on the
Born solvation energy of ions in water, with an analytic
approach for a simple nonlocal functional11 and numer-
ically for a model including the overscreening effects12.
The sign and the amplitude of the correction to the local
Born solvation energy depends on the model.

However, the nonlocal dielectric models proposed until
now strongly overestimate the range of the dipolar corre-
lations in water and thus poorly reproduce the dielectric
properties of bulk water9,13. Such models were parame-
terized using the longitudinal dielectric susceptibility of
SPC/E water14 in which a molecule is composed of three
partial charges, two positive for the hydrogen and one
negative for the oxygen (see Fig.1) and its charge distri-
bution can thus be decomposed in a dipole, quadrupole
etc... The charge correlations of liquid water are the sum
of the self and cross correlations of all the multipoles of
the molecule. Such a complexity can difficultly be in-
cluded in a model based on a polar field and containing
few parameters. Non-Gaussian functional that include
saturation effects have been envisaged to improve the de-
scription of electrostatic in water15–17. However it is not
clear why nonlinear effects should be necessary to de-
scribe dipolar correlations in pure water.

In this work, we propose to parameterize the electro-
static functional, which is the input of the nonlocal di-
electric framework, with the dielectric susceptibility of
SPC/E water treated as a dipolar fluid. This consists
in replacing the three charge sites in the SPC/E explicit
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model of water in MD by a two charge distribution asso-
ciated with the same dipolar moment. We show that this
approach allows the properties of bulk water such as polar
correlation functions to be reproduced with good accu-
racy. In a second time, we use the field theory framework
to derive analytically the electrostatic interactions be-
tween point charges and dipoles. Finally we consider the
interaction between a point charge and a surface and il-
lustrate using this example how to calculate electrostatic
interactions between extended objects and implement the
boundary conditions in this framework. The last part is
devoted to the conclusion.

II. WATER AS A POLAR FLUID

We propose to describe water as a polar fluid using the
polarization field P(r) as a relevant physical parameter
to express the electrostatic energy as7,9,10,

H[P] =
1

2ε0

∫
d3rd3r′Pr · χ−1r,r′ ·P′r (1)

=
1

2ε0

∫
d3rd3r′Pr ·Kr,r′ ·P′r

+
1

2ε0

∫
d3rd3r′

∇ ·P(r)∇ ·P(r′)

4π|r − r′| . (2)

where ε0 is the vacuum permittivity and χr,r′ the two-
point dielectric susceptibility tensor. This electrostatic
energy can be decomposed into a term coming from the
short-range molecular interactions encoded by the ker-
nel Kr,r′ and a long range Coulombic interaction. For
isotropic systems, the susceptibility can be decomposed
in a longitudinal χ‖ and in a transverse χ⊥ part that
are linked to the kernel K in the Fourier space by the
relations

χij(q) = χ‖(q)qiqj/q
2 + χ⊥(q)

(
δij − qiqj/q2

)
, (3)

χ‖(q) =
(
1 +K‖(q)

)−1
, χ⊥(q) = K−1⊥ (q), (4)

with (i, j = x, y, z). Following a Landau-Ginsburg ap-
proach, one can propose a local expression for the kernel
K that will give rise to desired properties7.

Molecular dynamics simulations have been used to de-
termine the susceptibility χ(q) of explicit models of water
such as SPC/E model by evaluating polarization corre-
lations that can be linked to the dielectric susceptibility
via the fluctuation dissipation theorem,

χ‖(q) =
β

ε0
〈q ·P(q)q ·P(−q)

q2
〉. (5)

However, the nonlocal dielectric models9,10 parameter-
ized on this response function reproduce poorly the prop-
erties of bulk water as it overestimates by a factor 3 or 4
the range of the dipolar correlations in the bulk water.

In order to improve the parametrization of the field
model, we propose to project the SPC/E model of water
onto a model of dipolar symmetry, that can be captured

+qf

- q

d

f

FIG. 1. Sketch of a water molecule and of its representation
as a dipolar molecule of same dipole moment. The charge qf
is taken equal to qf = 0.42e and d = 1 Å

by the continuous model which is developed using the po-
larization field P (r) and can reproduce only the behavior
of water at the dipolar order. To do so, we replace in
each equilibrium configuration of SPC/E water obtained
with molecular dynamics the 3 charge water molecules
by a 2 charges distribution associated with a dipolar mo-
ment, µ=2.35 D of same value and direction as the one of
SPC/E water molecules. The oxygen is treated as usual
in the SPC/E model, i.e. an atom of charge q0 = −0.8476
e and associated with a Lennard-Jones center. A dummy
atom, X, associated with a charge qf = 0.42 e is placed on

the bisector of the angle HOH at a distance d = 1 Å of
the oxygen. This is illustrated in Fig. 1. This simple two-
charge model is named Dipolar Dumbbell model (DD)18.
We calculate the susceptibility of the corresponding fluid
following a protocol detailed in Appendix B.

The shape of the longitudinal susceptibility in Fourier
space of the water DD model, represented in Fig. 2, is
similar to the susceptibility of SPC/E model (represented
in the inset of the Fig. 2), as it presents a pronounced
maximum, signature of the over-screening in water and
possesses the same bulk susceptibility, obtained for q = 0.
The position and value of the maximum differ however.

We propose the following Hamiltonian,

H[P] =
1

2ε0

∫
d3r(KP(r)

2
+ κl(∇ ·P(r))2

+ α
(
∇2 ·P(r)

)2
+

1

2ε0

∫
d3rd3r′

∇ ·P(r)∇ ·P(r′)

4π|r− r′| .(6)

associated with the longitudinal susceptibility χ‖(q)

χ‖(q) =
1

1 +K + κlq2 + αq4
(7)

determined using Eqs. (1, 3) to model the susceptibil-
ity obtained using MD simulations and presented in Fig.
2. Note that the transverse susceptibility is in this case
equal to χ⊥(q) = 1/K. Such a function presents a quasi-
resonant behavior for well-chosen values of κl and α10.
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FIG. 2. Longitudinal susceptibility derived with Molecular
dynamics simulations and Field theory model. The suscep-
tibility plotted in red is obtained using MD of SPC/E wa-
ter projected on a two point DD model. The susceptibil-
ity obtained from the Field theory framework is given by
Eq. (7) for K = 1/70, κl = −0.36 Å2, α = 0.034 Å4.
The inset represents the longitudinal susceptibility for the
SPC/E model (red curve) and the associated field theory
susceptibility (black curve) obtained for parameters K=1/70,
κl = −0.22Å2, α = 0.012Å4 corresponding to a reproduction
of the SPC/E susceptibility

The longitudinal susceptibility given in Eq. (7) is char-
acterized by three parameters (α, κl,K) and we fix their
values to reproduce nonlocal dielectric properties of the
DD model of water: first, the bulk dielectric suscepti-
bility, χ‖(q = 0) = χb, the characteristic of the quasi-
resonant maximum, i. e. its position, q0 and its value
χm. We extract the values χb = 1.01, q0 = 2.3 Å−1

and χm = 17) from the simulations and we fix the values
of the parameters of the continuous model K, κl and α

through the relations,

χb =
1

1 +K
, q20 =

−κl
2α

,
1

χm
= 1 +K − κ2l

4α
. (8)

It gives K=1/70, κl=-0.36 Å2 and α=0.034 Å4. The
corresponding field theory susceptibility, obtained by pa-
rameterizing Eq. (7) using the SPC/E projection on the
DD model is plotted in black in Fig. 2. The inset rep-
resents the Field theory susceptibility parameterized di-
rectly on SPC/E model.

In order to validate the continuous model proposed
here for the description of the dielectric properties of
bulk water, we compare the polarization correlation
〈P (0)P (r)〉‖ derived analytically in the first framework
and numerically using molecular dynamics simulations.

The correlations are linked to the susceptibility re-
sponse in the real space χij(r) via the fluctuation-
dissipation theorem that can be written as

〈P (0)P (r)〉i,j = ε0kBTχij(r). (9)

The susceptibility tensor χij(r) is obtained by calcu-
lating the Fourier transform of χij(q) . The longitudinal
correlation of the polarization obeys,

〈P (0)P (r)〉‖ = ε0kBTI2(r), (10)

with

I2(r) =
1

(2π)3

∫
d3qeiq·rχzz(q)

=
1

(2π)3

∫
d3qeiq·r

((
1

1 +K + κlq2 + αq4
− 1

K

)
q2z
q2

+
1

K

)
(11)

Performing the Fourier transform of Eq. (11), we ob-
tain for the longitudinal correlation function

〈P (0)P (r)〉‖(r) =
ε0kBT

2πK(K + 1)r3
− ε0kBTe

−r/λe

4π(K + 1)r
cos (r/λo)

(
2

r2
+

1

rλo

(
R+

1

R

))
− ε0kBTe

−r/λe

4π(K + 1)r
sin(r/λo)

( 1

λ2o

(
1

2R3
+

1

R
+
R

2

)
+

1

r

(
1

λo
+

1

λoR2

)
+

1

r2

(
1

R
− 1

))
(12)

with

λe =

√
2

q0
√

1/
√
ζ − 1

, λo =

√
2

q0
√

1/
√
ζ + 1

, (13)

where q20 = −κl/2α, ζ = αq40χb and R = λe/λo. For
the chosen set of parameters, one finds λe =3.8 Å and
2πλo=2.7 Å. The polarization correlation is the sum of a
long-range function, ε0kBT/2πK(K + 1)r3 that depends

only on the bulk properties of the fluid, and of a nonlocal
term taking the form of an oscillating function in a de-
caying envelope dominant at small range and negligible
over a nanometric distance.

The dipole-dipole correlations obtained using the field
theory framework,

〈µ(0)µ(r)〉FT = 〈P (0)P (r)〉‖/µ2
Dρ

2
0, (14)

can be compared to water dipole correlations
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FIG. 3. Dipolar correlation function. The red cross are re-
sults from molecular dynamics simulations that are repro-
duced from the reference6. The black curve is plotted using
the expression 〈µ(0)µ(r)〉FT given in Eq. (14) and the pa-
rameters given in Fig. 2. The inset represents the dipolar
correlation obtained for parameters K=1/70, κl = −0.22Å2,
α = 0.012Å4 corresponding to a reproduction of the SPC/E
susceptibility.

〈µ(0)µ(r)〉MD obtained from molecular dynamics
simulations6.

The expression given in Eq. (14) is represented in Fig.2
(black curve) for the parameters values obtained using
Eq. (8) and compared to the longitudinal dipolar corre-
lation obtained with molecular dynamics simulations for
SPC/E model (red cross). The black curve in the inset
represents the dipolar correlation given in Eq. (14) ob-
tained for a functional parameterized with the longitudi-
nal susceptibility of SPC/E water? . As one sees in this
case, the model strongly overestimates the correlations
and does not reproduce the water layering around a ref-
erence molecule, the extrema of the correlation functions
being shifted with the MD data. On the contrary, the
continuous model parameterized using only the dipolar
correlations in SPC/E liquid reproduces the range and
the structure of the nonlocal correlations.

III. INTERACTION BETWEEN TWO POINT CHARGES
AND BETWEEN TWO DIPOLES

In this section, we first calculate the electrostatic in-
teraction between two point charges Qα, with α = 1, 2
immersed in a nonlocal dielectric medium, located in

rα, and separated by a distance r = |r1 − r2| (see Fig.
4a). The electrostatic potential φ(r) generated by a point
charge Qα located at the position r = rα can be written
as,

φ(r− rα) =
Qα
ε0

∫
d3q

e−iq·(r−ri)

qiεij(q)qj
, (15)

where the dielectric permittivity tensor in Fourier space
εij(q), (i, j = x, y, z) is linked to the susceptibility as
follows5 :

εij(q) = (I− χ(q))
−1
ij

= ε‖(q)
qiqj
q2

+ ε⊥(q)

(
δij −

qiqj
q2

)
, (16)

with I, the identity matrix and the longitudinal and
transverse parts can be written as

ε‖(q) =
1

1− χ‖(q)
, ε⊥(q) =

1

1− χ⊥(q)
. (17)

The interaction energy between two point charges Q1

and Q2 and located in r = r1, respectively r = r2 is

Unl(r1 − r2) =
Q1Q2

(2π)3ε0

∫
d3q

e−iq·(r1−r2)

q2ε‖(q)
. (18)

Performing the integral using the residue theorem, one
finds for the interaction energy Unl(r1 − r2)

Unl(r) =
Q1Q2

4πrε0εw

(
1 +

(εw − 1)e−
r
λe

2λeλo

( (
λ2o − λ2e

)
sin

(
r

λo

)

+ 2λeλo cos

(
r

λo

)))
. (19)

with r = |r1 − r2| and with εw = 1/(1 − χb) is the
macroscopic susceptibility. As the polarization correla-
tion function given in Eq. (12), it contains a long-range

local term Uloc(r) = Q1Q2

4πε0εwr
that depends only on the

bulk properties of the solvent and an oscillating decaying
contribution due to the fine structure of the solvent.

We now consider the interaction between two dipoles,
each composed of two point charges of opposing sign (q,
-q) and separated by a small distance l. The geometrical
center of the dipole 1, dipole 2 respectively, is located in
r1 = 0, r2 = r respectively. The positive charge of the
dipole 1, of the dipole 2 respectively, is located in r = r+1 ,
respectively r = r+2 , and the negative charges in r = r−1
and r = r−2 :

r+1 =

(
0,
l

2
cos(θ1),

l

2
sin(θ1)

)
r+2 =

(
l

2
cos(θ2) cos(φ),

l

2
cos(θ2) + r,

l

2
sin(θ2) cos(φ)

)
,

r−1 = −r+1 , r−2 =

(
− l

2
sin(θ2) cos(φ),− l

2
cos(θ2) + r,− l

2
sin(θ2) cos(φ)

)
. (20)
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The angles θi, (i = 1, 2) vary between 0 and π, and φ
varies between 0 and 2π. They are defined in Fig.2 b.

The medium being linear, the interaction energy between
the dipoles is the sum of the pair interaction between the
point charges of dipole 1 and dipole 2, as

Wnl(r, θ1, θ2, φ) = Unl(|r+1 − r+2 |) + Unl(|r−1 − r−2 |)− Unl(|r−1 − r+2 |)− Unl(|r+1 − r−2 |). (21)

where Unl(r) is the charge-charge interaction given in Eq.(18). Assuming l/r � 1 and expanding each term of
Eq.(21) around r, we find

Wnl(r, θ1, θ2, φ) = −l2
(

cos(θ1) cos(θ2)U ′′nl(r) +
sin(θ1) sin(θ2) cos(φ)U ′nl(r)

r

)
+O(l2), (22)

The free interaction energy W(r) between the dipoles
separated by a distance r is obtained by taken into ac-
count all the possible orientations of the dipoles and by
assuming a Boltzmann statistic for each orientation,

Wnl(r) = −kBT ln(Znl(r)) (23)

with

Znl(r) =
1

8π

∫ 2π

0

dφ

∫ π

0

sin(θ1)dθ1

∫ π

0

dθ2 sin(θ2)e−β Wnl(r,θ1,θ2,φ). (24)

To estimate the free interaction energy, we first perform analytically the integration over φ in Eq. (24) and obtain,

Znl(r) =
1

8π

∫ π

0

sin(θ1)dθ1

∫ π

0

sin(θ2)dθ2 e
−βl2 cos(θ1) cos(θ2)U

′′
nl(r)I0

(
l2β sin(θ1) sin(θ2)U ′nl(r)

r

)
, (25)

where I0(x) is the modified Bessel function of the first
order. The dipolar free interaction energy Wnl(r), given
in Eq. (23), is obtained by computing numerically the
integration over θ1 and θ2 for Znl(r). Note that for a lo-
cal dielectric description of water, the interaction energy
Wloc(r, θ1, θ2, φ), obtained by replacing Unl(r) by Uloc(r)
in Eqs. (21,22), is much smaller than kBT at room tem-
perature. The corresponding partition function can be
expanded at the first order in Wloc/kbT and one ob-
tains an analytic expression for the Keesom (permanent-
permanent dipoles) interaction energy as19

Wloc(r) =
−(lq)4

3(4πε0εw)kBTr6
. (26)

The interaction energy between two point charges
Unl(r) and the interaction energy between freely rotat-
ing dipoles are plotted in Fig. 4 b. and Fig. 4 c.
respectively. Unl(r) can be compared to the potential
of mean force at infinite dilution (McMillan-Mayer po-
tential) between two small atomic ions calculated from
molecular dynamics simulation20–22. Qualitatively an os-
cillating potential around a Coulomb law whose period

is around 2 Å is recovered. The interactions are not
monotonous at short distance. Unl(r) presents a suc-
cession of extrema corresponding to the layering of the
solvent. Nevertheless, the agreement is far from being
quantitative because the amplitudes of the oscillations
are much larger (≈ 50 kBT at short distance) than the
ones observed in the interaction potential between small
ions determined through MD simulations (≈ kBT at the
same distance). The point charges used here give rise
to much stronger electrostatic fields than the ones gener-
ated by the charged Lennard-Jones spheres used in MD
to describe ions. The diameter of the ions strongly re-
duces the local and non local polarization of the solvent.
The next step of this work is to derive interactions be-
tween Smeared Born Spheres23 that reproduce better the
properties of ions in water.

A similar trend is observed for Wnl(r) which presents
successive minima with a period of 2 Å. Such intense
oscillations are not observed in the interaction potential
of two freely rotating ion pairs that can be obtained from
Molecular Dynamics21. The difference can also be related
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FIG. 4. Electrostatic interaction in a nonlocal medium. a.
Sketch of the ion-ion and dipole-dipole interactions. b. Inter-
action energy of two point charges with Q1=-Q2 =1.6×10−19

C rescaled by kbT . The expression is given in Eq. (19) and
the parameters used are given in Fig.2. c. Interaction energy
between two freely rotating dipoles ( q+=-q−=1.6 ×10−19 C
rescaled by kbT . The expression is given in Eq. (23) and the
parameters used are given in Fig.2.

to the hard repulsion of the solute.

IV. INTERACTION OF A POINT CHARGE WITH A
SURFACE

The interaction of a charge solvated in water with a
surface of a dielectric is of prime importance in many
processes such as electrochemistry, biochemistry etc... In
this section we evaluate the interaction energy between
a point charge solvated in a nonlocal dielectric medium
and a dielectric medium of permittivity εd.

An infinite flat surface separating the local and the
nonlocal media is located in z = 0. A charge q is placed
at a distance d of the surface in the nonlocal medium and

z

ρ

O

ed

R 2 R
1

qq

×M (ρ, z )

dd

6 8 10 12 14
- 20

0

20

40

60

d  ( Å )

6 8 10 12 14
0
2
4
6
8

10
12
14

d (Å )
b.

c.

a.

q’
(0
,d

)/
q’

  (
0,
d)

lo
c

E n
l(d

)/
E l

(d
)

FIG. 5. a. Schematic representation of a charge q in a non-
local medium interacting with a surface. The charge q′ is the
image charge in the local medium. b. Image charge q′ as a
function of the distance d. The expression given in Eq. (34)
is plotted for the parameter values given in Fig.2. and εd = 1
c. Interaction energy between a charge solvated in water and
located at a distance d of a local dielectric medium. The
expression is given in Eq. (36).

its coordinates can be noted by (0, 0, d) in a cylindrical
referential (see Fig. 5). As with local electrostatic, the
interaction energy between the charge and the surface
can be calculated with the method of image charges.

In the nonlocal medium, the electrostatic potential
φz>0(ρ, z) at the point M (ρ, z), can be written as the
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sum of a potential created by the real charge q and by
an image charge q′, located in (0, 0,−d),

φz>0(ρ, z) = qΦ(R1) + q′Φ(R2)

(27)

where R1(ρ, z) =
√

(d− z)2 + ρ2 and R2(ρ, z) =√
(d+ z)2 + ρ2 are the distances between M and q, M

and q′ respectively, as illustrated on Fig.5 a., and where
Φ(r) is obtained using Eq. (15)

Φ(r) =
1

4πε0εwr
(1 + εwhnl(r)) , (28)

with

hnl(r) =
e−r/λeλ3eλ

3
o

(
2λeλo cos(r/λo) + (λ2o − λ2e) sin(r/λo)

)
2α(λ2e + λ2o)

2
.

(29)
with λe, λo given in Eq. (13) and α in Eq. (8).

The electrostatic potential φz<0(ρ, z) in the local
medium is simply equal to

φz<0(ρ, z) =
q′′

4πε0εdR1(ρ, z)
, (30)

with q′′ an image charge located in (0, 0, d).
The expressions of the image charges q′ and q′′ can

be obtained by writing the boundary conditions for the
electrostatic field E and electrostatic displacement field
D in z = 0,

Ez<0
i = Ez>0

i , (i = x, y), Dz<0
z = Dz>0

z . (31)

In a non local dielectric medium, these conditions will
involve integro-differential equations due to the relation
between D and E, Dr′ =

∫
d3r′εr,r′Er′ . To circumvent

this difficulty, these conditions can be rewritten by in-
troducing the electrostatic potential φ, E = −∇φ and a
potential ψ such that D = −∇ψ. It gives

∂ρφz<0(z = 0) = ∂ρφz>0(z = 0), (32)

∂zψz<0(z = 0) = ∂zψz>0(z = 0). (33)

One sees easily that for two local media, D = εdE for
z < 0 and D = εwE for z > 0, Eqs. (32-33) take the
usual form for the Maxwell boundary conditions3.

Using the expressions of the potentials φz>0(ρ, z) and
φz<0(ρ, z) given in Eqs. (27-30) and ψz>0 = q

4πε0R1(ρ,z)
+

q′

4πε0R2(ρ,z)
and ψz>0(ρ, z) = εdφz>0, one can solve Eqs.

(32-33) and find

q′(ρ, d) = q
εw − εd (1 + εwhnl(r)) + εwεdrh

′
nl(r)

εw + εd (1 + εwhnl(r))− εwεdrh′nl(r)
(34)

q′′(ρ, d) = q − q′(ρ, d) (35)

with r =
√
d2 + ρ2. For large r, the image charges q′

and q′′ tend to the values obtained for two local media,
q′loc = q(εw−εd)/(εw+εd) and q′′loc = 2εd/(εw+εd) as the

nonlocal correction of the electrostatic potential hnl(r)
vanishes for large r. The ratio q′(d)/q′loc for a point M
located on the z axis, (ρ = 0), is plotted on Fig. 5 b. as
a function of the distance d.

One sees that the charge q′(d) is a function of d at short
distance, contrary to the local case for which the image
charge q′loc is constant. It exhibits oscillations alternat-
ing smaller and larger values than q′loc. The interaction
energy Enl(d) between the charge q and the wall is thus
equal to

Enl(d) = qq′(d)Φ(2d) (36)

with q′(d) given in Eq. (34) and Φ(r) the function given
in Eq. (28).

The nonlocal interaction energy Enl scaled by the
interaction energy obtained in the local case El(d) =
qq′loc

8πε0εwd
is plotted on Fig. 5 c.. Whereas the local en-

ergy is monotonous, i.e. attractive in the case εd � εw
and repulsive for εd � εw, the energy presents here suc-
cession of local minima/ This complex interaction can
be related to molecular simulations studying the wa-
ter/air interfaces24, also showing an oscillating structure,
although ionic correlations seem to play a predominant
role.

V. CONCLUSION

Estimating the electrostatic interactions in water for
objects separated by nanometric distances is essential in
the understanding of in cellulo biochemical processes25

or nanofluidic systems to name a few.
The effective interaction between two ions in water can

be evaluated using molecular dynamics simulations. The
radial distribution function gij(r) for species immersed
in water, i. e. the probability to find a species i at a
distance r of species j obtained with MD simulations,
can then be inverted to obtain the effective interaction
potential Uij(r). The inversion procedure can be realized
via inverse Monte Carlo simulations20, Integral equation
theory26,27, or Maximum entropy likelihood. However,
these methods face the usual limits of the molecular dy-
namics simulations such as the limitation to a numerical
expression of the potential and the time needed to collect
enough statistics for the structure of the solution.

The nonlocal electrostatic functionals give rise to equa-
tions that are tractable analytically for simple geometries
or numerically solvable for more complex systems. How-
ever, when fitted on SPC/E water dielectric properties,
they failed to reproduce the behaviour of bulk water, such
as the dipolar correlation functions and consequently the
interactions in the fluid9,13.

In this paper, we propose to parameterize the electro-
static functional of the polarization using the dielectric
susceptibility of SPC/E water treated as a dipolar liq-
uid. We show that this procedure gives much better re-
sults for reproducing the dipolar correlation function of
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water. In this framework, we derive analytically the in-
teraction between systems of point charges and between
a point charge and a dielectric surface. Charge-surface
interaction is essential in nanoconfined electrolytes but is
difficult to investigate in molecular dynamics simulations,
as image charge effects are out-of-scope of standard sim-
ulations with rigid surfaces. Nonlocal electrostatics can
be formulated to easily treat these cases, as illustrated in
the last part of this work. The calculated force qualita-
tively reproduces the layering of the solvent characterized
by well-defined minima with a period of 2 Å. Neverthe-
less, the absence of hard core repulsion exacerbates the
effect which in practice for simple low charge ions rarely
exceeds thermal agitation. The next step will thus be
able to take into account these effects coupling size and
dielectric relaxation. The ultimate goal is a quantitative
analytical theory of the interactions between charged so-
lutes.

Acknowledgements: HB acknowledges support from
the CNRS through the Défi INFINITI - AAP 2018.

APPENDIX

A. Procedure for MD simulations

In this work we used the DLpoly 4 MD software28.
Electrostatic interactions were treated with the Particle
Mesh Ewald (PME) summation technique. For simula-
tions of the bulk water solution we used 1000 SPC/E
water molecules in a cubic box with periodic conditions.
After a short equilibration run of 0.01 ns with NV E en-
semble, a long equilibration run of 2 ns was performed in
NPT using the Berensen thermostat T = 293.15 K and
pressostat (P = 10−3 katm). Finally a simulation of 16
ns was performed in NV E ensemble and used to deter-
mine the radial distribution functions of pure water. A
2 fs time step was used, while electrostatic interactions
were computed using the Ewald summation technique,
in order to take into account the periodicity of the sys-
tem. The cutoff value for the Van der Waals interaction
was kept slightly below the half-cell size not to encounter
problems due to the fluctuations of the cells volume dur-
ing the simulations occurring in NTP ensemble.

B. Dielectric susceptibility of water as a dipolar fluid

In order to parameterize the model, we compute the
dielectric susceptibility for the SPC/E water treated as
a fluid composed of dipoles. To do so, we replace in
the equilibrium configurations of SPC/E water obtained
with MD simulations each molecule by a dipole composed
of en effective positive charge qf located on the SPC/E
Oxygen and a negative charge -qf located on the dipolar
axis of the water molecule at a distance d of the Oxygen,
as represented in Fig. 1. We impose that the dipole

moment of this charge distribution is equal to the dipole
moment of the SPC/E water, i. e. µ=2.2 D, which leads
to qfd=2.2 D. The charge distribution ρc(r) of such a
dipolar liquid can be written as

ρc(r) = ΣNi=1 (−qfδ(r − rO,i) + qfδ(r − rHf,i) (37)

with N the number of molecules rO,i the position of the
Oxygen in the ith molecule, rHf,i the position of the ef-
fective positive charge in the ith molecule. Such a two
charges fluid is named a Dipolar Dumbell Model and its
longitudinal dielectric susceptibility has been extensively
studied18. The charge structure factor S(q) is the sum
of the intramolecular contribution S(m)(q) and the inter-
molecular contribution S(d)(q) and can be written as

Sc(q) = S(m)(q) + S(m)(q), with (38)

S(m)(q) =
2nq2f
q2

(
1− sin(qd)

qd

)
, (39)

S(d)(q) =
nq2f
q2

(hOO(q) + hHfHf (q)− 2hOHf (q))(40)

where n=0.033 Å−3 is the density of water in normal
conditions and hij(q) is the Fourier transform of the pair
correlation function29 hij(r) = gij(r)− 1.

1L. Jubin, A. Poggioli, A. Siria, and L. Bocquet. Dramatic
pressure-sensitive ion conduction in conical nanopores. Proc.
Natl. Acad. Sci. USA, 115:4063–4068, 2018.

2A. Carof, V. Marry, M. Salanne, J-P. Hansen, P. Turc, and
B. Rotenberg. Coarse graining the dynamics of nano-confined
solutes: the case of ions in clays. Molecular Simulations, 40:237–
244, 2014.

3John David Jackson. Classical electrodynamics. Wiley, 1999.
4P. A. Bopp, A. A. Kornyshev, and G. Sutmann. Static Nonlocal
Dielectric Function of Liquid Water. Phys. Rev. Lett., 76:1280–
1283, 1996.

5A. A. Kornyshev, S. Leikin, and G. Sutmann. ”Overscreening”
in a polar liquid as a result of coupling between polarization and
density fluctuations. Electrochimica Acta, 42:849–865, 1997.

6C. Zhang and G. Galli. Dipolar correlations in liquid water. J.
Chem. Phys., 141:084504, 2014.

7A. C. Maggs and R. Everaers. Simulating nanoscale dielectric
response. Phys. Rev. Lett., 96:230603, 2006.

8F. Paillusson and R. Blossey. Slits, plates, and Poisson-
Boltzmann theory in a local formulation of nonlocal electrostat-
ics. Phys. Rev. E, 82:052501, 2010.

9H. Berthoumieux and A.C. Maggs. Fluctuation-induced forces
governed by the dielectric properties of watera contribution to
the hydrophobic interaction. The Journal of chemical physics,
143(10):104501, 2015.

10H. Berthoumieux. Gaussian field model for polar fluids as a
function of density and polarization: Toward a model for water.
J. Chem. Phys., 148:104504, 2018.

11Andreas Hildebrandt, Ralf Blossey, Sergej Rjasanow, Oliver
Kohlbacher, and H-P Lenhof. Novel formulation of nonlocal elec-
trostatics. Physical review letters, 93(10):108104, 2004.

12J. Rottler and B. Krayenhoff. Numerical studies of nonlocal elec-
trostatic effects on the sub-nanoscale. J. Phys.: Condens. Mat-
ter, 21:255901, 2009.

13M. V. Fedorov and A. A. Kornyshev. Unravelling the solvent re-
sponse to neutral and charged solutes. Molecular Physics, 105:1–
16, 2007.

14G. Jeanmairet, M. Levesque, R. Vuillemier, and D. Borgis.
Molecular Density Functional Theory of Water. J. Phys. Chem.
Lett., 4:619–624, 2013.



9

15A. A. Kornyshev and G. Sutmann. Nonlocal dielectric saturation
in liquid water. Phys. Rev. Lett., 79:3435, 1997.

16A. Levy, D. Andelman, and H. Orland. Dielectric constant
of ionic solutions: A field-theory approach. Phys. Rev. Lett.,
108:227801, 2012.

17H. Berthoumieux and F. Paillusson. Dielectric response in the
vicinity of an ion: A nonlocal and nonlinear model of the dielec-
tric properties of water. J. Chem. Phys., 150:094507, 2019.

18F. O. Raineri, H. Resat, and H. L. Friedman. Static longitudinal
dielectric function of model molecular fluids. J. Chem. Phys.,
96:3068–3084, 1992.

19Jacob N Israelachvili. Intermolecular and surface forces. Aca-
demic press, 1991.

20A. Lyubartsev and A. Laaksonen. Calculation of effective inter-
action potentials from radial distribution functions: A reverse
monte carlo approach. Phys. Rev. E, 52:3730–3737, 1995.

21John J. Molina, Jean-Franois Dufrche, Mathieu Salanne, Olivier
Bernard, and Pierre Turq. Primitive models of ions in solu-
tion from molecular descriptions: A perturbation approach. The
Journal of Chemical Physics, 135(23):234509, 2011.

22Immanuel Kalcher and Joachim Dzubiella. Structure-
thermodynamics relation of electrolyte solutions. The Journal

of Chemical Physics, 130(13):134507, 2009.
23A. A. Kornyshev and J. Sutmann. The shape of the nonlocal

dielectric function of polar liquids and the implications for ther-
modynamic properties of electrolytes: A comparative study. J.
Chem. Phys., 104:1524, 1996.

24Pavel Jungwirth and Douglas J. Tobias. Molecular structure of
salt solutions: A new view of the interface with implications for
heterogeneous atmospheric chemistry. The Journal of Physical
Chemistry B, 105(43):10468–10472, 2001.

25P. Koehl, H. Orland, and M. Delarue. Beyond the Poisson-
Boltzmann model: Modeling biomolecule-water and water-water
interactions. Phys. Rev. Lett., 102:087801, 2009.

26G. Zerah and J-P. Hansen. Self-consistent integral equations
for fluid pair distribution functions: Another attempt. JCP,
84:2336–2343, 1986.
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