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Abstract Stochastic ecological dynamics result from both transient and asymptotic features of the1

underlying system, yet explanations for observed patterns often emphasize asymptotics. For example,2

an ecological state (e.g. a particular population size or community composition) that occurs frequently3

and/or persists for a meaningful duration might be assumed to be a stable equilibrium, even though4

transients can also persist for a long time and may recur. In this paper, we consider one particular5

pattern – a bimodal distribution of states as a system is observed through time – and consider alternative6

causes for this pattern. First, we consider the “asymptotic” explanation that each mode corresponds to a7

distinct stable state. Second, we consider that one mode might correspond to a long transient. We explore8

the dynamics that result from each of these causes in a classic bistable model, focusing particularly on9

the degree of environmental stochasticity needed to generate a bimodal distribution of states in each10

case. Our results highlight that observations of a system’s dynamics do not provide enough information11

to determine the number and location of stable states. We conclude that a more serious and systematic12

consideration for the possible role of transients in driving observed dynamics will lead to stronger insights13

and understanding.14
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2 Karen C. Abbott, Vasilis Dakos

1 Introduction17

Linking pattern to process is a central aspiration in ecology, but it is notoriously challenging because18

di↵erent processes can produce the same pattern (Cale et al. 1989, Urban and Matter 2018). When19

an ecological observation matches the expected behavior of a deterministic, mechanistic model, this20

match is often taken as evidence that the mechanisms included in the model explain the observed data.21

Further, such a match could be seen to suggest that although stochasticity was undoubtedly present in22

the real, observed system, it did not mask the signal of the underlying deterministic processes. However,23

our appreciation for the profound role that stochasticity plays in structuring ecological populations and24

communities continues to grow (Ellner and Turchin 2005, Benincà et al. 2011, Nolting and Abbott 2016,25

Boettiger 2018, Shoemaker et al. 2020). With this understanding comes increased interest in moving26

beyond thinking of stochasticity as a potential masker of patterns, but as a key part of the process that27

generated the pattern (Boettiger 2018). Accomplishing this change requires a better understanding of28

how stochasticity interacts with deterministic processes to drive particular patterns of interest.29

Bimodal distributions of population sizes or other ecosystem properties are intriguing patterns, often30

explained through deterministic processes that give rise to alternative stable states. Indeed, identification31

of bimodality has been suggested as a powerful diagnostic tool of the presence of alternative stable states32

when direct experimental evidence is lacking or di�cult to collect (Sche↵er and Carpenter 2003). In33

particular, the increasing availability of remotely sensed data, the compilation of datasets from multiple34

ecosystems, and the accumulation of long-term monitoring data have recently allowed scientists to clearly35

document multimodal patterns in ecological variables previously hypothesized to have alternative stable36

states (Sche↵er et al. 2015). Some of the most pronounced examples of multimodal distributions come37

from data on vegetation cover that reflect forest and savanna states in tropical forests (Staver et al. 2011,38

Hirota et al. 2011), woodland and treeless states in boreal biomes (Sche↵er et al. 2012, Abis and Brovkin39

2019), and states with distinct functionality in drylands (Berdugo et al. 2017).40

However, it is well known that other processes besides alternative stable states can generate multi-41

modal distributions (Sche↵er and Carpenter 2003). For example, a system with a single stable state and42

a long transient state (associated for example with a saddle point or ghost attractor (Hastings et al.43

2018)) can show bimodality that is just as strong as in systems with alternative stable states (Abbott44

and Nolting 2017). This bimodality occurs when stochasticity allows the system to visit a transient state45

from which escape is slow. When the speed of escape is similar to the rate of stochastic switching between46

stable states, it can be impossible to tell from observations how many stable states are present (Abbott47

and Nolting 2017).48

In this study, we use a stochastic version of what is perhaps the best-known example of an ecological49

model with alternative stable states – the Lotka-Volterra competition model – to illustrate two distinct50
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Mapping the distinct origins of bimodality 3

mechanisms that can give rise to multi-modality, and to better understand the role that stochasticity51

plays under each mechanism. The distribution of population sizes of competing species in this model52

appears bimodal when there are two stable states (priority e↵ects). In this scenario, stochasticity allows53

the system to switch between them. However, stochasticity can also allow multi-modality to appear54

even when there is only a single deterministically-stable state (competitive coexistence). This happens55

when stochasticity allows the system to visit the vicinity of the single-species saddle point which, though56

unstable, can transiently persist for ecologically meaningful amounts of time. In both cases (the bistable57

case and the case with a single stable state but the potential for long transients), stochasticity is crucial for58

the appearance of multi-modality in the distribution of population sizes. With too little noise, the system59

is very likely to remain near one stable state, regardless of the presence or type of other equilibria, and60

the distribution of population sizes will be unimodal. With too much noise, the distribution of population61

sizes will reflect the distribution of stochastic perturbations as the dynamics proceed mostly-randomly,62

revealing little about the underlying deterministic processes (noise-swamping). For both mechanisms, it63

is at intermediate noise levels that multi-modality can appear.64

The notion that stochasticity has a ‘sweet spot’ – an intermediate noise level that is large enough65

to be qualitatively interesting but small enough not to swamp everything else out – is quite general.66

Classical examples are noise-sustained coexistence in a community of competing species (e.g. Chesson67

1985) and population persistence and extinction risk that depend non-monotonically on the color of noise68

(e.g. Ripa and Lundberg 1996). More intricate cases can occur due to stochastic resonance (Wiesenfeld69

and Jaramillo 1998). Outbreaks in periodic populations can be amplified at a certain noise intensity (e.g.70

Blarer and Doebeli 1999), or noise may even provoke species oscillations in an otherwise stable system;71

at a certain timescale such oscillations will even be amplified (e.g. Benincà et al. 2011). More drastically,72

noise can even induce the appearance of underlying chaotic feedbacks (Rand and Wilson 1991), where73

unpredictability becomes maximal at a ‘sweet spot’ of noise intensity (Ellner and Turchin 2005).74

What remains unexplored, however, is whether the sweet spot itself contains useful biological in-75

formation. In the context of our Lotka-Volterra example, is the intermediate noise level that leads to76

bimodality the same regardless of the number of stable states? Or, is the sweet spot for stochastically77

switching between alternative stable states di↵erent from the one for shifting between a lone stable state78

and a long transient? If the sweet spots di↵er, then when we observe a bimodal distribution of states,79

knowledge of the noise intensity could help us to identify which underlying mechanism is acting.80

Here, using stochastic versions of the Lotka-Volterra competition model, we characterize the number81

and locations of modes in the distribution of population densities across a range of interspecific competi-82

tion coe�cients (which determine the number of stable states) and noise intensities. Through simulation,83

we find the intermediate noise range that gives rise to multi-modal population distributions and we study84

the number and location of these modes. We compute quasi-potentials (Nolting and Abbott 2016) and85
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4 Karen C. Abbott, Vasilis Dakos

use them to uncover the basis for changes in the number of modes, the relative stability of each mode,86

and the expected transition rate between modes, regardless of whether all modes represent stable states.87

We find that there is a similar, intermediate noise intensity that is likely to produce bimodal distributions88

of states even if the underlying model is not in the bistable regime. We interpret this finding through a89

broader theoretical lens to conclude that in our stochastic world, ecological understanding requires us to90

consider both equilibrium and transient explanations for observed dynamics.91

2 Methods92

2.1 Models93

To illustrate the origins of multi-modal population distributions, with or without alternative stable states,94

we use the well-known Lotka-Volterra competition model with stochasticity added in two ways. In the95

main text, we consider a model with additive noise,96

dNi(t) =

2

4riNi(t)

0

@1� 1

Ki

2X

j=1

↵ijNj(t)

1

A

3

5 dt+ �dWi(t) , Ni(t) � 0 , i = 1, 2 , (1)

interpreted in the Itô sense. Ni(t) is the population density of species i at time t. Ki is its carrying97

capacity, ri is its intrinsic population growth rate, and ↵ij is the competitive e↵ect of species j on species98

i. Stochasticity is included in the second term, in which dWi are independent Weiner processes with99

mean 0 and infinitesimal variance 1. The parameter � controls the strength of stochasticity.100

To aid biological interpretation at the expense of notational precision, we rewrite Eqn. (1) in the form101

of an ordinary di↵erential equation (the standard Lotka-Volterra competition model) with an additional102

random variable, "i(t), representing a stochastic density independent immigration/emigration at rate,103

dNi(t)

dt
= riNi(t)

0

@1� 1

Ki

2X

j=1

↵ijNj(t)

1

A+ "i(t) , Ni(t) � 0 , i = 1, 2. (2)

We model "i(t) as a temporally-uncorrelated Gaussian stochastic process with mean 0 and variance �. We104

simulate Eqn. (2) by discretizing the ordinary di↵erential equation and drawing "i(t) values as described105

in the next section; this is equivalent to simulating the stochastic di↵erential equation in Eqn. (1) using106

the Euler-Maruyama method.107

Because it represents population density, Ni(t) is constrained to be non-negative. If the value of "i(t)108

drawn at a particular time would dictate that more individuals of species i emigrate than are currently109

present (e.g. a large negative value of "i(t) when Ni(t) is small), we avoid a nonsensical result by setting110

Ni(t) to zero. Subsequent random immigration (i.e. positive "i(t)) could rescue the population from local111

extinction in the additive noise model.112
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Mapping the distinct origins of bimodality 5

In the supplementary materials (Online Resource 1), we also consider a model with stochastic per-113

turbations to the net per capita population growth rate,114

dNi(t)

dt
= riNi(t)

0

@1� 1

Ki

2X

j=1

↵ijNj(t)

1

A+ "i(t)Ni(t) , i = 1, 2. (3)

We call this the multiplicative noise model because the random variable, "i, now appears in a term that115

multiplies population size, Ni(t). In this model, a population that goes extinct remains extinct.116

The benefit of the additive noise model is that the variance in the stochastic term is independent117

of the current population size, which allows us to manipulate stochastic variance independently from118

the parameters that influence the stationary distribution of population sizes. Also, because extinction is119

not permanent in the additive noise model (just as local extinction is typically not permanent in real120

populations that are not isolated), the additive noise model allows us to observe repeated transitions to121

and from temporary competitive exclusion. For these reasons, we focus on the additive noise model for122

the remainder of the main text.123

2.2 Analysis124

We are interested in the role of stochasticity in driving the appearance of multi-modal distributions of125

population size and, particularly, whether this role is di↵erent when the deterministic model is bistable126

versus when it is not. To study the e↵ect of noise intensity, we varied �, the standard deviation of the127

noise term, "i(t).128

We set ↵ii = 1 and Ki = 1 for i = 1, 2 and study the model’s behavior across ↵12,↵21 combinations129

that span two bifurcations: from stable coexistence to competitive exclusion of species 1; then from130

competitive exclusion of species 1 to bistability (each species can stably exclude the other). Throughout,131

we maintain the relationship ↵12 = 1.03↵21 and adjust ↵21 to cross these bifurcations, which occur as132

↵12 and then ↵21, respectively, cross 1. We set r1 = 0.1 and r2 = 0.15, meaning that the slightly stronger133

competitor (species 2) is also a faster grower. Supplemental analyses (not shown) confirm that our main134

results are not specific to this parameter setting.135

2.2.1 Stochastic simulations136

We simulated the stochastic models in MATLAB by discretizing Eqn. (2) with a step size of dt = 0.01137

(see Online Resource 2, Fig. 11 for examples). Before simulation, we drew 50 independent sequences of138

"i(t) values with mean 0 and variance 1 for each i = 1, 2. These sequences were rescaled to have variance139

�2dt and then used to generate 50 replicate realizations of the stochastic dynamics for each parameter140

set (combination of ↵21 (with ↵12 = 1.03↵21) and �). Because we reuse the same sequences of "i(t), note141

that any di↵erences we see when we compare across parameter sets are due to changes in the parameter142
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6 Karen C. Abbott, Vasilis Dakos

values rather than variance in the stochastic process itself. Stochastic simulations were run for 1000 time143

units from initial conditions near the coexistence equilibrium (“near” meaning displaced from the interior144

equilibrium by the first drawn values of "1 and "2 adjusted to have the appropriate variance).145

2.2.2 Modes in the distribution of population sizes146

We estimated the number of modes in the distribution of population sizes in the last 500 time units of the147

simulated time series. Multi-modality was assessed by fitting a 2D Gaussian mixture distribution to the148

time series of both species (see Online Resource 2, Fig. 12 for examples). As we had four deterministic149

equilibria (extinction, species 1 alone, species 2 alone, coexistence), we fitted distributions of 1 to 5 com-150

ponents (mixtures of 1 to 5 Gaussian distributions) to allow for an extra degree of freedom when selecting151

for the best fitting component based on the minimum Bayesian Information Criterion (BIC). We did this152

using the fitgmdist function in MATLAB that employs a maximum likelihood procedure by selecting a153

full covariance type and a regularization parameter set to 0.005 to avoid poorly estimated covariances154

(that occurred when variation in our time series was minimal, especially in the case of multiplicative155

noise). We used the number of components returned as an estimate of the di↵erent clusters (modes) in156

the time series. We also estimated the Euclidean distance between the means of each component as a157

measure of di↵erence between clusters (modes), and we approximated the size of each cluster (mode)158

by estimating the average Mahalanobis distance of all points to the mean of each cluster. We applied159

these estimations for each of the 50 realizations of each of 2,500 ↵21 – � combinations (we changed160

↵21 from 0.5 to 1.5, and � from 0.01 to 0.5 in log scale, both in 50 steps, maintaining the relationship161

↵12 = 1.03↵21 throughout). Lastly, for each of these ↵21 – � combinations, we report summary statistics162

averaged across the 50 realizations on the mean number of modes, coe�cient of variation (CV) in number163

of modes, median number of modes, modal number of modes, standard deviation in number of modes,164

and evenness of clusters, as well as average size of clusters and average distance between clusters in state165

space. We report the first two of these summary statistics in the main text, and the rest appear in Online166

Resource 3.167

2.2.3 Quasi-potentials168

We computed quasi-potential surfaces (Moore et al. 2015, 2016, Nolting and Abbott 2016) for the additive169

noise model (Eqn. (2)) under four di↵erent parameter combinations: two in the parameter region with170

stable coexistence and two in the bistable region. The quasi-potential is a generalization of the better-171

known concept of a potential function. The potential of a deterministic system is a function that describes172

how the system’s state will change through time, as a function of its current state. It is often interpreted173

as a landscape, with valleys and peaks that correspond to states the system will move toward or away174

from, respectively, like a ball rolling on the landscape. Because it describes the global dynamics – that175
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Mapping the distinct origins of bimodality 7

is, state changes for any state – the potential is a much more powerful tool than local linear stability176

analysis that only characterizes dynamics close to an equilibrium state. However, most ecological models177

of two or more species lack a potential function, because their dynamics are governed by additional forces178

(like a propensity to cycle) besides just the pull “downhill” toward stable states. The quasi-potential is179

a surface that can be interpreted in the same way as the potential, and it can be computed numerically180

for deterministic models that, like the Lotka-Volterra model, lack a true potential function (Moore et al.181

2015, 2016, Nolting and Abbott 2016). It is therefore an ideal tool for characterizing the global dynamics182

of our 2-dimensional system.183

For stochastic models such as Eqn. (2), we compute the quasi-potential for the deterministic part of184

the model only. Stochasticity can be thought of as random jostling of the ball that would otherwise tend185

to roll downhill on the quasi-potential surface. The di↵erence in quasi-potential height between two states186

quantifies how readily the system will move from one to the other. In other words, a larger stochastic187

perturbation is needed to move to a state that is steeply uphill from the current state, and a deeper188

valley can be thought of as more stable than a shallow valley (Nolting and Abbott 2016). We computed189

quasi-potentials using the QPot package (Moore et al. 2015) in R (R Core Team 2017) following the190

methods detailed in Moore et al. (2016) for ↵21 = 0.7, 0.9, 1.1, and 1.3 and other parameters as above.191

2.2.4 First passage times192

In ecosystems with alternative stable states, a key property we often wish to understand is the expected193

frequency with which the system should shift from one stable state to another. The mean first passage194

time (MFPT) is the expected waiting time for a system at one stable state (in one valley on the potential195

or quasi-potential landscape) to cross an intervening unstable equilibrium (a peak), after which it will196

converge onto a di↵erent stable state (roll into a di↵erent valley). We calculated mean first passage times197

for the same four parameter combinations (↵21 = 0.7, 0.9, 1.1, and 1.3). In all cases, we calculated the198

passage times between the coexistence equilibrium and each of the exclusion equilibria (N1 = 1, N2 = 0199

and N1 = 0, N2 = 1). When the coexistence equilibrium was stable (↵21 = 0.7, 0.9), the passage time200

reflects how long it takes to get from this state to an unstable exclusion equilibrium. When the coexistence201

equilibrium was unstable, the passage time is how long it takes to get to this state from a stable exclusion202

equilibrium. Thus, in all cases, our first passage times reflect the amount of time the system will stay203

near a stable state before reaching an unstable one.204

We simulated model Eqn. (2) using the procedure described above (see 2.2.1 Stochastic simulations)205

to find the mean and distribution of first passage times. For each of the four example parameter sets, and206

for each of 12 values of � between 0.001 and 1, we ran 50 replicate simulations beginning near a stable207

equilibrium. We ran each simulation until the populations left the vicinity of the stable equilibrium in208

the direction of the adjacent saddle (see Online Resource 4). The time at which this exit occurred was209

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Karen C. Abbott, Vasilis Dakos

recorded as the first passage time and the MFPT was the mean first passage time in the 50 realizations210

for a given parameter set.211

We can also compute mean first passage times analytically from the quasi-potentials (Nolting and212

Abbott 2016), although this method relies on a small-noise approximation and is thus expected to213

become inaccurate as � increases. The calculation is based on the di↵erence in the quasi-potential height214

at the stable and unstable equilibria – a greater height di↵erence (i.e. a deeper valley) means that215

larger stochastic perturbations would be needed to move the system “uphill” away from the stable state,216

resulting in a longer first passage time. If the quasi-potential height is Vs at the stable equilibrium and217

Vu at the unstable equilibrium, the MFPT from the stable to unstable equilibrium under noise intensity218

� is,219

MFPT ⇡ 2⇡

|�1u|

s
|detr2Vu|
detr2Vs

exp

✓
2 (Vu � Vs)

�2

◆
(4)

(Bouchet and Reygner 2015, Nolting and Abbott 2016), where |�1u| is the magnitude of the dominant220

eigenvalue of the Jacobian matrix evaluated at the unstable equilibrium and r2Vx (x = s, u) is the221

Hessian matrix (i.e. a matrix of second-order partial derivatives) evaluated at Vx . Once we have computed222

quasi-potentials, we have the necessary heights, Vx, at the equilibria as well as heights at nearby states223

to estimate the derivatives.224

3 Results225

Simulated population dynamics from the additive noise model (Eqn. (2)) illustrate the two distinct ways226

in which bimodality in the distribution of population sizes can arise. Bimodality can arise from true227

bistability (Fig. 1a–b), or from stochastic dynamics around a single stable equilibrium with the influence228

of long transients elsewhere in state space (Fig. 1c–d). Both of these examples are in the ‘sweet spot’:229

stochasticity is strong enough to allow us to observe more than just a unimodal distribution of population230

sizes around a single stable state, yet not so strong as to mask the biological mechanisms represented in231

the model.232

By analyzing many replicate simulations across ↵ij values, we can map out that sweet spot: the233

� values that lead, on average, to bimodal distributions of the state variables (Fig. 2a-b), with modes234

corresponding to biological features of the model. Moving left to right along the x-axis of panel (a) moves235

the system from a region with stable coexistence (↵21 < 0.97 so that (↵12 = 1.03↵21) < 1), through a236

narrow window (0.97 < ↵21 < 1) where species 1 is competitively excluded, then (when ↵21 > 1) into237

the bistable region. Thus, multi-modality (i.e. instances where the mean number of modes observed in238

simulations meaningfully exceeds 1) to the left of the dashed line in Fig. 2a cannot be due to alternative239

stable states, whereas multi-modality on the right-hand side may be.240
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Mapping the distinct origins of bimodality 9

On the left-hand side, where the deterministic model has a single stable state corresponding to species241

coexistence (↵12 < 1), our baseline expectation would be a unimodal distribution of population sizes242

around this coexistence state. For su�ciently small noise, this is what we see, but for higher intensity243

noise, the populations are able to visit the proximity of the two saddle points at N1, N2 = (0, 1) and (1,0),244

and relatively slow escape from these saddles creates additional modes in the population distribution245

(Fig. 2c,e). In these instances, we may see two modes (as in the Fig. 1 examples) as populations drop246

to lower density and are slow to recover. These modes are shifted toward the two unstable boundary247

equilibria (N1, N2 = (0, 1) and (1,0)) relative to the stable coexistence equilibrium (Fig. 2c). We may also248

see three distinct modes, one near the coexistence equilibrium and the other two closer to the boundary249

equilibria (Fig. 2e). We are more likely to observe three modes with higher intensity noise (larger �,250

Fig. 2a). As ↵21 (and thus ↵12) increase toward the bistable region, the beginning of the sweet spot –251

the minimum intensity noise needed to produce, on average, two or more modes – declines (Fig. 2a).252

In contrast, in the bistable region (↵21 > 1, right of the dashed line in Fig. 2a), the location of253

the sweet spot appears to have weaker dependence on the strength of interspecific competition. For low254

intensity noise (such as the region blown up in Fig. 2b), the amount of noise needed to cause switching255

between alternative stable states increases the deeper into the bistable region we go. However, for high256

intensity stochasticity (i.e. the top part of Fig. 2a, still right of the dashed line), the average number of257

modes is fairly insensitive to the strength of competition. At su�ciently high stochasticity, we again may258

see bi- (Fig. 2d) or trimodal distributions (Fig. 2f).259

The shapes of the quasi-potentials can help us understand these observations. The quasi-potential260

surface transitions from single-welled to double-welled when the deterministic model undergoes bifur-261

cation from stable coexistence to bistable competitive exclusion (Fig. 3). Less stochasticity is needed262

to transition over flatter parts of the quasi-potential surface. Therefore, Figs. 3a–b suggest that when263

interspecific competition is weaker (a relative to b), the coexistence state is more stable and so a higher264

intensity of noise will be needed to push the system away from stable coexistence to one of the relatively265

flat regions around the boundary equilibria. This change in quasi-potential shape explains the downward266

slope of the contour lines on the left-hand side of Fig. 2a: far from the bistable region, the quasi-potential267

well around the coexistence state is deep (as in Fig. 3a) and strong stochasticity is needed to see more268

than a single mode, but closer to the bistable region, the quasi-potential is relatively flat between the269

three equilibria (as in Fig. 3b) and multi-modality can appear with weaker noise.270

Under parameter values for which the deterministic model has alternative stable states, the quasi-271

potential is double-welled. Lower intensity noise should be needed to transition between shallower wells272

(as in Fig. 3c) than between deeper wells (Fig. 3d). This explains the increasing slope of the contour273

lines on the right-hand side of Fig. 2a (and in Fig. 2b), at least for lower values of �. We do not see274
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10 Karen C. Abbott, Vasilis Dakos

evidence of this e↵ect with larger � suggesting that at some point, the noise is su�cient to cause similar275

transitions between wells despite di↵erences in quasi-potential well depth.276

The quasi-potential allows us to estimate mean first passage times, although this estimate is only277

accurate for small � (Fig. 4, solid curves near the y-axis). For larger values of �, we used simulations278

to calculate mean and the distribution of first passage times (Fig. 4, violin plots). Intuitively, mean279

first passage times are shorter when noise intensity is higher (higher �), regardless of the strength of280

competition. First passage times were longer and more variable when there was a single stable equilibrium281

(Fig. 4a,b) than when there were alternative stable states (Fig. 4c,d).282

In aggregate, our results reveal strong similarities in the stochastic dynamics of this model in two283

di↵erent regimes (single stable state versus alternative stable states). In both regimes, bimodal distribu-284

tions of states appear when the strength of stochasticity is in an intermediate ‘sweet spot’, with modes285

corresponding to both stable equilibria and saddles. This sweet spot can be reached with weaker noise286

levels the closer the system is to the bifurcation that separates the regimes. In both regimes, this e↵ect287

can be understood by observing that the quasi-potentials necessarily flatten near this bifurcation. In288

both regimes, mean first passage times are shorter for stronger noise, and trimodal distributions of states289

are more likely to appear with stronger noise.290

So, what are the major di↵erences between the regimes? We can see that higher intensity noise is291

generally required to produce multi-modal distributions of population sizes when there is a single stable292

state (Fig. 2a). We also find that there is more variability among replicates in the number of modes when293

there is a single stable state (Fig. 5, which shows more yellow shades on the left-hand side and more blue294

on the right). In other words, the likelihood of consistently observing exactly two modes is greater when295

those modes correspond to alternative stable states. We also saw higher variance in first passage times296

(more elongated violin plots in Fig. 4a-b relative to c-d) with a single stable state.297

The multiplicative noise model (Eqn. (3)) leads to similar conclusions (Online Resource 1). We again298

see bimodality in both regimes, with a sweet spot in the absence of alternative stable states around 0.3299

for our parameter setting, compared to about 0.45 when the model is bistable (Fig. 7 in Online Resource300

1). The fact that the sweet spot for � is now higher, not lower, in the bistable regime may simply301

reflect di↵erences in the population densities that multiply the noise term in Eqn. (3). In any case, the302

sweet spots are again similar on the two sides of the bifurcation. Like the additive noise model, when303

there is only one stable state, the noise intensity needed to produce an average of two modes declines304

as competition increases toward the bistable region. Within the bistable region, the number of modes305

is again relatively insensitive to changes in the competition coe�cients. As in the additive noise model,306

the number of modes is more variable among realizations when there is only one stable state. The only307

major qualitative di↵erence between models, which is a direct consequence of their formulation, is that308

the multiplicative model is extinction prone under high intensity noise.309
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Mapping the distinct origins of bimodality 11

4 Discussion310

The Lotka-Volterra model is a textbook example of alternative stable states and is often a student’s first311

encounter with priority e↵ects. Even though its behavior is so well known, these analyses revealed new312

insights. Most importantly, we found that there is a similar (roughly � = 0.2-0.4), intermediate noise313

intensity that is likely to produce bimodal distributions of states whether or not the underlying model314

is in the bistable regime (Fig. 2a). This occurs because transient visits to the vicinity of unstable saddle315

points can have very similar e↵ects as visits to alternative stable states (Fig. 2c-f). This in turn is due316

to the fact that both saddles and stable states occur in locally flat regions of the quasi-potential surface317

(Fig. 3).318

Quasi-potentials were useful in this study for visualizing the deterministic part of the dynamics in319

a way that permits an intuitive understanding of the e↵ects of adding noise (e.g. by noting flat versus320

steep areas). Height di↵erences between two points on the surface reflect the amount of “work” needed321

to counteract the downhill pull to move between those states along the most likely path (Freidlin and322

Wentzell 2012). By considering the most likely path, lower probability events (such as those considered323

in large deviation theory; see e.g. Wainrib 2013) are not reflected. This feature explains why mean first324

passage times derived from the quasi-potential became less accurate as the noise intensity – and thus325

the opportunity to travel along paths farther from the most likely one – increased (Fig. 4). There are326

other ways to extract a potential-like surface from a stochastic process, and each provides a di↵erent327

and complementary interpretation. For example, the Helmholtz-Hodge decomposition yields a surface328

in which height di↵erences reflect work needed to move along an average, rather than most likely, path329

between two states (Bhatia et al. 2013, Strang 2020). Whether this surface more accurately predicts330

quantities like mean first passage time in ecological models remains to be seen. However, this surface no331

longer corresponds directly to the deterministic part of the process (e.g. peaks and wells no longer occur332

at the equilibria of the underlying ordinary di↵erential equation model) and thus much of the intuitive333

appeal of the quasi-potential is lost. It is for this reason that we opted to use the quasi-potential in the334

present study.335

Our results make clear that bimodality alone cannot be taken as evidence of alternative stable states.336

In the Introduction, we asked whether the location of the ‘sweet spot’ – the intermediate noise level337

needed to see bimodality – could help us discriminate between true alternative states and look-alikes.338

Our anti-climactic answer is, maybe but probably not. We did observe di↵erences in the strength of noise339

at the sweet spot (stronger when there is only one stable state and the system is not near the bifurcation;340

Fig. 2). We also found higher variability among replicates in first passage times (Fig. 4) and number of341

modes (Fig. 5) when there was a single stable state versus when there were alternative stable states.342

However, none of these di↵erences was dramatic. To be useful as a diagnostic, we would need much larger343
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12 Karen C. Abbott, Vasilis Dakos

(e.g. order of magnitude) di↵erences that would allow us to recognize noise as strong or variance as high344

without a detailed comparative study (stronger or higher than what?).345

By studying a di↵erent model capable of alternative stable states, and again comparing bistable346

and uni-stable regimes, Abbott and Nolting (2017) illustrated how saddle points e↵ectively masquerade347

as additional stable states due to their similar influence on the stochastic dynamics. Time series of348

stochastic transitions between two stable states were indistinguishable from transitions between a single349

stable state and a saddle by any measure we considered: the relationship between mean and equilibrium350

population sizes; the temporal variance in population sizes; and the results of several statistical tests for351

the strength of bimodality (Abbott and Nolting 2017). We did not, however, test for di↵erences in the352

amount of stochasticity needed to see bimodality, and the present study fills that gap. Taken together,353

we see strong evidence that because long transients can occur near saddles, the e↵ects of saddles and354

asymptotically stable states on stochastic dynamics are exceedingly similar.355

The influence of saddles on transient dynamics is well-known (Hastings et al. 2018, Morozov et356

al. 2020), and yet the tacit presumption that common and or recurrent states must correspond to357

stable, asymptotic equilibria remains ingrained in ecological thinking. This is understandable, because358

asymptotic equilibria are intuitively appealing and because some common states really do correspond359

to stable states (e.g. Fig. 1a). Nevertheless, this study joins the call to consider both asymptotic and360

transient explanations for observed dynamics (Hastings 2001, 2004, Abbott and Nolting 2017, Hastings361

et al. 2018, Francis et al. in review).362

We began this article with a nod to the age-old problem of linking pattern to process, and on the sur-363

face, it may appear that our results only add to the list of reasons this is di�cult. Looking more deeply,364

though, it points to new ways forward. For instance, while bimodality should not be taken on its own as365

evidence of alternative stable states, it could imply the existence of other non-stable states like saddles366

and ghost attractors that could potentially become stable if conditions change. More realistic patterns of367

stochasticity (like correlated noise) might cause the modes we identified to become quasi-stable for the368

relevant timescales of a particular system; this warrants further investigation. Our results also highlight369

a need for mechanistic models in the interpretation of data on population and community dynamics.370

If a validated mechanistic model for a particular system has alternative stable states, this provides di-371

rect evidence that bimodal state distributions are likely due to underlying bistability. Importantly, if a372

validated mechanistic model does not show alternative stable states yet the data appear bimodal, our373

analysis shows that the model may nonetheless be correct! Deeper understanding of stochastic and tran-374

sient dynamics serves to strengthen data-model integration, ultimately leading to better understanding375

of real ecological systems.376
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Mapping the distinct origins of bimodality 13
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Fig. 1 Single realizations of model Eqn. (2), shown as (a,c) time series and (b,d) the corresponding distributions of
abundances for species 1. The example in (a–b) shows bimodailty that arises from bistability of the two boundary equilibria.
(Recall that random immigration prevents permanent extinction in this model, so the boundary equilibria are not absorbing.
Because populations are prevented from becoming negative, the modes created by the two stable states are shifted inward
from 0 and 1.) The example in (c–d) shows bimodality that arises from stochastic switching between the stable coexistence
equilibrium at N1 ⇡ 0.56 and the unstable boundary equilibria. The same sequences of Gaussian(0,1) values were used to
construct "i(t) in both examples, adjusting by the appropriate �. In all panels, r1 = 0.1, r2 = 0.15,K1 = K2 = 1; in (a–b)
↵21 = 1.3,↵12 = 1.339,� = 0.15; in (c–d), ↵21 = 0.7,↵12 = 0.721,� = 0.2. Note that although we show just N1 here for
clarity of presentation, our analyses are based on the bivariate distribution of N1, N2 values, as shown in Fig. 2.
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Fig. 2 See next page for caption.
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Mapping the distinct origins of bimodality 15

Fig. 2 caption: (a-b) Mean number of modes for di↵erent combinations of ↵21 and �, averaged across 50 realizations;377

(b) is a zoomed in view from (a). The ‘sweet spot’ for bimodality is outlined and shaded with white. (We define the sweet378

spot here as parameter combinations resulting in a mean number of modes between 1.8 and 2.2. Note that this definition is379

conservative relative to other possible definitions, like a median or mode of 2 modes (Online Resource 3).) The deterministic380

model is bistable to the right of the dashed line. ↵21 values used in subsequent panels are marked with arrows along the381

x-axis. (c-f) Locations of the modal population sizes in example realizations of the model. Colors correspond to di↵erent382

noise intensities (� values), and circles mark the mode(s) observed in a single realization for each noise intensity. Multiple383

dots of the same color signify multi-modal distributions under that noise intensity. Coexistence and boundary equilibria384

are marked with a black diamond if stable and a black ⇥ if unstable. For the ↵21 value used in (c,e), the species would385

stably coexist in the absence of noise. For small to moderate noise intensities, the modal population sizes correspond to386

the stable coexistence equilibrium. However, with high noise intensity, the distribution becomes (c) bimodal or even (e)387

trimodal as populations have the opportunity to transiently visit the unstable single-species equilibria. (As in Fig. 1, the388

modes are shifted inward from the N1 = 0 and N2 = 0 boundaries due to the stochastic immigration/emigration term,389

and this e↵ect increases with the noise intensity.) In (d,f), the noise-free model is bistable, with one species excluding the390

other. With small enough noise, we see a unimodal distribution of population sizes around one of these stable equilibria391

(which one depends on the particular sequence of noise). However, with higher noise intensity, the distribution becomes392

(d) bimodal due to the ability of the populations to switch between stable states, or (f) trimodal as populations transiently393

visit the unstable coexistence equilibrium as well.394
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Quasi-potentials!  In (a) and (b), coexistence is stable and in (c) and (d), we have bistability of 
the boundaries. 

Parameter values are as before (K1 = K2 = 1 and �11 = �22 = 1), with the values of �12  and �21 as 
marked by the letters (a-d) in the bifurcation diagrams.  Because the quasi-potential is 
calculated based on the full deterministic model, I also specified r1 = 0.1 and r2 = 1.5*r1.  
Initially, I did not expect these growth rates to have an effect, but after looking at the graphs I 
realize they do.  In (a-c), the N2-only boundary equilibrium is “more stable” than the N1-only 
boundary equilibrium (even when both are unstable), which we see because the quasi-potential 
is lower at that boundary.  However, once we’re well into the bistable regime and the quasi-
potential basins for the boundaries are well separated (panel (d)), the N1-only boundary 
equilibrium becomes more stable.  I believe this is because N1’s lower growth rate makes 
escape from this boundary more difficult.  Anyway, just one little thought — I think these 
figures are really interesting.

Fig. 3 Quasi-potentials for 4 levels of interspecific competition: (a) ↵21 = 0.7, (b) ↵21 = 0.9, (c) ↵21 = 1.1, (d) ↵21 = 1.3.
In all panels, ↵12 = 1.03 ⇥ ↵21. There is one stable equilibrium (coexistence) in (a,b) and in (c,d) the model is bistable.
Grayscale shading scales with height on the z-axis to aid interpretation of the images. r1 = 0.1, r2 = 0.15,K1 = K2 =
1,↵11 = ↵22 = 1.
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First passage times for different levels of noise.  Same parameters as before, for the same 4 
cases.  The violin plots show the distribution of first passage times from simulations.  Gray are 
times to transition between the coexistence equilibrium and the N1-only boundary; cyan are 
between coexistence and the N2-only boundary.  Mean first passage times can also be computed 
from the quasi-potential, but the formula is only valid for small noise.  But, for σ = [0, 0.1], I 
have plotted the MFPTs calculated from the quasi-potentials; those are the black/cyan curves in 
the upper left of each panel, just to see.  The match isn’t great, but could be a lot worse… 

To measure FPTs from simulations, I started the simulation at a stable equilibrium point 
(coexistence for (a-b), and first one boundary then the other for (c-d)) and simulated with noise 
until the population had traveled 99% of the distance to an unstable point.  When the 
coexistence equilibrium was stable, I noted which boundary the population had traveled to, so 
that I could properly count that passage time toward the gray (toward the N1 boundary) or cyan 

Noise intensity, !� Noise intensity, !�

Noise intensity, !� Noise intensity, !�
Fig. 4 Log of first passage times for (a) ↵21 = 0.7, (b) ↵21 = 0.9, (c) ↵21 = 1.1, (d) ↵21 = 1.3, for di↵erent values of
noise intensity, �. Violin plots (gray shapes, jittered to allow both shapes at each � value to be seen) were computed from
simulations of model Eqn. (2). Darker gray shapes show the distribution of log first passage times between the coexistence
equilibrium and the N1-only boundary; shape width represents the frequency with which each transition time was observed.
The solid bars superimposed on each shape mark the log of the mean first passage time. Lighter, semi-transparent shapes
show the same information for passage times between the coexistence equilibrium and the N2-only boundary. Mean first
passage times were also calculated from the quasi-potentials for small noise (0 < �  0.1) and are plotted as black (for
transitions to and from the N1-only equilibrium) and gray (to/from the N2-only equilibrium) curves in the upper left part
of each panel. r1 = 0.1, r2 = 0.105,K1 = K2 = 1,↵11 = ↵22 = 1.
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Fig. 5 Coe�cient of variation in the number of modes, for the same 50 realizations as those plotted in Fig. 2a. The 1.8
and 2.2 contours from Fig. 2a are redrawn in white and the area in between shaded to delineate the bimodal region. The
bistable region is to the right of the dashed line. Notice that in the bistable region on the right, CVs tend to be lower overall
(more blue and fewer yellow shades) and lower in particular within the bimodal region outlined in white (CV ⇡ 0� 0.2 on
the right, versus ⇡ 0.2� 0.3 on the left). This means that even when we expect a bimodal state distribution (mean number
of modes between 1.8 and 2.2, outlined in white), the actual number of modes observed in di↵erent realizations will be less
variable when there are alternative stable states.
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Benincà E, Dakos V, Van Nes E, Huisman J, Sche↵er M (2011) Resonance of plankton communities with409

temperature fluctuations. Am Nat 4:E85–95.410
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Dear Kim and Alan, 
 
Thank you for inviting us to respond to the reviewer’s comments on our manuscript, 
“Mapping the distinct origins of bimodality in a classic model with alternative stable 
states.”  We followed nearly all recommendations and feel the paper has improved as a 
result.  We are submitting the revised version of our manuscript both with and without 
changes marked in red, for your convenience.  Our responses to all comments are in 
red below.  Please let us know if you see the need for any further changes before final 
acceptance. 
 
Sincerely, 
Karen and Vasilis 
 
Assoc Editor: I have nothing to add to these stellar reviews, accept an agreement with 
reviewer #2 about the use of vague pronoun references, and with reviewer #1 about the 
"noisiness" of fig 5 
 
Thanks for emphasizing these points – please see below for our detailed responses. 
 
Reviewer #1: I have carefully reviewed the manuscript, "Mapping the distinct origins of 
bimodality in a classic model with alternative stable states."  This is a very nice 
treatment of an important issue that is well referenced and clearly written.  Here, the 
authors illustrate how intermediate levels of stochasticity can give rise to bimodal 
distributions in state dynamics even when the underlying deterministic system has only 
a single stable state. The authors focus on the case of how certain phenomena which 
can create long transients can provide a mechanism for stochastic bimodality. While the 
authors acknowledge stochastic bimodality has been well documented under other 
mechanisms before, I think this is the first time it has been shown in these long 
transients. It is also a rather compelling simple example of what I think is still a generally 
under-appreciated point (that bimodality is not sufficient evidence to establish alternate 
stable states.) 
 
I have a few minor suggestions below which I think could improve the manuscript, but 
no substantive objections to the treatment of the issues here. 
 
Eq 1 & 2 are shown as ordinary differential equations with stochastic terms.  While this 
is quite common practice, I believe it to be somewhat sloppy notation -- stochastic 
differential equations (SDEs) are not ODEs, and the notation is rather ambiguous as to 
whether the equation refers to an Ito or Statonovich integral (I believe the authors have 
the Ito form in mind).  
 
This is a good point and our first inclination was to simply replace Eqns 1 & 2 (now Eqns 
2 & 3) with their SDE forms.  However, the random variable epsilon doesn’t appear 
directly in the SDEs and we feel epsilon is a useful quantity for biological interpretation.  
Therefore, we have chosen to provide both versions of the additive noise model: the 
SDE in Eqn 1 (specifying that we intend the Ito form on L 97) and the sloppy-but-friendly 

Response to reviews



ODE + random variable in Eqn 2.  We discuss their relation in the new text on L 101-
107 before moving ahead with the Eqn 2 form.  We feel this approach removes the 
mathematical ambiguity caused by Eqn 2 (previously Eqn 1) while maintaining 
readability by ecologists who are more familiar with ODEs than SDEs. 
 
pg 5 line 4: It would be nice if the authors summarized consistencies or any salient 
differences of the multiplicative noise model here.  The authors have provided a 
reasonable justification for focusing on the additive noise model (though the 
corresponding ecological assumptions could be detailed a bit more precisely -- 
particularly as noise in immigration / emigration process might seem less intuitive than 
environmental or demographic noise -- though near an equilibrium the additive noise 
model can be a good approximation of the multiplicative one too.).  However, they 
merely note that multiplicative noise is treated in the supplement without any comment 
as to what that supplement shows.  The supplement itself also avoids much textual 
discussion comparing the results, but basically leaves it up to the reader to compare 
supplemental figures to those of the main text.  
 
We have remedied this with a new paragraph at the end of the Results section (L 298-
309). 
 
pg 5, line 54: As there are quite a variety of methods for determining bimodality, some 
citation for the method chosen would be nice.  
 
We took a rather ad hoc approach, after getting dissatisfying results from published 
methods such as the dip test (Hartigan and Hartigan 1985) and the critical window size 
test (Silverman 1981).  We are therefore unaware of an appropriate citation to use here. 
 
pg 10, line 23: Discussion: I quite like the discussion of the 'sweet spot' in noise size, 
which as the authors observe, has nice resonance with other stochastic theory while 
being a distinct example here.  It may be too speculative, but it calls to mind the prior 
literature on chaotic dynamics with the hypothesis that ecological systems may often be 
at the 'edge of chaos.'  Just tossing it out there in case the authors find it any use 
drawing the comparison. 
 
This is a thought-provoking connection, and we’re tempted to try it.  However, we feel 
there is an important difference that precludes us from making this connection casually.  
The “edge of chaos” literature argues that selection has positioned ecological systems 
near the chaotic regime.  We are not arguing here that ecological systems *are* 
typically at the sweet spot in noise size, just that *if* they’re at the sweet spot, here’s 
what we can expect to see.  The question of whether nature is organized in such a way 
as to make it more likely that we’re at this sweet spot is really interesting, but not 
something we feel equipped to responsibly speculate on at the moment. 
 
Fig 4: I found the illustration of the break-down of the small noise assumption in the 
mean first passage time from the quasi-potential to actually be quite interesting.  While 
it's clear that the approximation should fail at 'some point', it's not so common to see 



that point illustrated so clearly, and I thought the textual discussion and the figure rather 
glossed over this.  It may also be worth mentioning in the discussion that the large 
deviation theory or WKB approximation may provide a better estimate than the quasi-
potential MFPT for this.  
 
We appreciate the invitation to talk more deeply about quasi-potentials and related 
approaches, and gladly added a paragraph to the Discussion (L 319-335) to address 
this point. 
 
Fig 5. I found this figure rather harder to read than all the other figures.  I think the color 
scale and overly fine (noisy) resolution for the contours distracts a bit from the main 
point of the figure -- it might be worth revisiting this to see if there is a way to make the 
bimodal region in intermediate noise intensities 'pop out' a bit more.  
 
We agree that this figure is busy but are unsure how to remedy that.  To aid 
interpretation, we have added text to the figure caption to help readers see what we are 
asking them to take away from this figure. 
 
 
Reviewer #2: What a wonderful paper!  Clearly written, well explained, and presenting 
profound results from a very simple model.  It is a privilege to provide this review, and 
I'm terribly sorry it has taken me so long to get the paper read.  I only have very minor 
editorial comments, which the authors are free to ignore, as the paper really is just fine 
as it is.  Should the authors be interested in following my suggested revisions however, I 
think that they imrpove the readability of the behaviour. 
 
Here is a summary of my corrections: 
1. Years ago, a co-author taught me that the word "this" should always be followed by 
the object to which it refers (point of grammar).  I do find that following this rule does 
make writing clearer. 
 
This advice is helpful.  (<- edited from “This is helpful advice” – see, I’m learning!)  Edits, 
including all those suggested in the marked up pdf provided by the reviewer, have been 
made throughout. 
 
2. A few typos, commas that need to be moved, etc. 
 
Corrected.  We thank this reviewer for her/his attention to detail! 
 
3. I was a little dissatisfied with "movement away from the vicinity of the stable steady 
state" being equated with "arriving at the unstable steady state" being shunted entirely 
to Online resources.  It would be helpful to have a few words of explanation included in 
the main text. 
 
Point taken.  The phrase “in the direction of the saddle” has been added (L 209) to 
clarify that we indeed look for movement away from the stable state in the right direction 



to signify a first passage.  While remaining details are still left to the supplement, we 
suspect this phrase would have prevented the reviewer from feeling uneasy about 
whether we measured what we say we measured.  
 
Thanks again for giving me the opportunity to review this paper, and I hope to see it in 
print soon! 
 


