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Abstract

Interactions between species generate the functions on which ecosystems and humans

depend. However, we lack an understanding of the risk that interaction loss poses to eco-

logical communities. Here, we quantify the risk of interaction loss for 4,330 species interac-

tions from 41 empirical pollination and seed dispersal networks across 6 continents. We

estimate risk as a function of interaction vulnerability to extinction (likelihood of loss) and

contribution to network feasibility, a measure of how much an interaction helps a community

tolerate environmental perturbations. Remarkably, we find that more vulnerable interactions

have higher contributions to network feasibility. Furthermore, interactions tend to have more

similar vulnerability and contribution to feasibility across networks than expected by chance,

suggesting that vulnerability and feasibility contribution may be intrinsic properties of interac-

tions, rather than only a function of ecological context. These results may provide a starting

point for prioritising interactions for conservation in species interaction networks in the

future.

Introduction

Species are the predominant biological unit of interest across ecology and conservation. How-

ever, it is interactions between species, rather than species themselves, that mediate the eco-

logical functions that drive community dynamics and support biodiversity [1]. For example,

pollination interactions shape co-evolution in diverse plant–animal communities [2], the

structure of ecological networks shapes the persistence of mutualistic systems [3,4], and seed

dispersal maintains spatial patterns of diversity [5]. Given the importance of interactions—

both with other species and with the abiotic environment—for ecosystem functioning and sta-

bility, their loss could have reverberating effects on entire communities and, ultimately, the

ecosystem services they deliver [6,7].
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Although interactions are a vital component of biodiversity, they remain largely neglected

in the presence of the dominant species-centred perspective [8,9]. The few existing studies

of interaction loss tend to focus on the impact of anthropogenic stressors on single interac-

tions at single sites [10]. Other studies that have considered interaction loss at the commu-

nity level either are at local scales [11], are based on hypothetical network structures [12],

or do not consider population dynamics [13]. Theory has shown that the reorganisation and

changes in the number and structure of interactions can affect the stability and persistence

of species in food webs [14,15], as well as mutualistic [16–18] and host–parasite communi-

ties [19,20]. However, this work has focused almost entirely on the overall structure of

interactions within a community (metrics such as connectance and nestedness) and

rarely on individual interactions themselves. There is thus a gap in assessing community-

level responses to the loss of individual interactions. Specifically, we lack a quantitative

understanding of the risk that interaction loss poses to the stability and persistence of

communities.

Here, we address this gap by quantifying the risk of interaction loss to 41 pollination and

seed dispersal communities that, combined, compose a global dataset of 4,330 species–species

links (see Methods). Such mutualisms are fundamental to the functioning of most communi-

ties. The loss of pollination can lead to pollen limitation, potentially compromising reproduc-

tion for the vast majority of plant species that rely, to some extent, on animal pollinators

[21,22]. Similarly, the disruption of seed dispersal can have deleterious, cascading conse-

quences for those woody plant species that depend on frugivores, which can exceed 90% in

biodiverse ecosystems such as tropical rainforests [23]. Loss of these mutualistic links can

occur for many reasons, perhaps most obviously if one of the interacting species goes extinct.

However, there are many other ways that a link can disappear without extinctions—such as

phenological decoupling, changing behaviour, and ecological extinction (when a species is

reduced to such low abundance that it no longer significantly interacts with other species)

[24–27]—and it is this kind of link loss that is the focus of this study. Hereafter we distinguish

between the terms “interaction” and “link”: interaction refers to all occurrences of a given

taxon–taxon interaction identity at the metaweb level (all local networks considered), whereas

link refers to a single occurrence of an interaction in a particular local network. For example,

let there be two networks, 1 and 2, with links between species X and species Y in a network

represented as X–Y. Network 1 contains three links (A–B, A–C, and B–D), and Network 2

contains two links (A–B and A–E). Across these networks, there are five links (A–B, A–C, B–

D, A–B, and A–E), but only four interactions (A–B, A–C, B–D, and A–E), because the link

between species A and B occurs in two networks.

Conventionally, risk is a function of both the likelihood of an event occurring and the sever-

ity of the impacts if it does occur [28]. For ecological networks, we therefore start by reasoning

that the risk of losing a particular link is a function of (i) the likelihood of that link being lost

(that we refer to as link vulnerability, V) and (ii) the severity of the consequences to the com-

munity if the link is lost (that we measure as link contribution to network feasibility, I, a mea-

sure that reflects the extent to which a link contributes to a community’s ability to tolerate

environmental perturbations). In some ways, our 2 components of risk reflect the approach

taken in systematic conservation planning, in which sites are prioritised for designation as pro-

tected areas based on their vulnerability and irreplaceability [29]. Using novel quantitative

methods that we illustrate in Fig 1, we explore the relationship between vulnerability and feasi-

bility contribution of all links in our dataset. We next examine whether vulnerability and feasi-

bility contribution are intrinsic attributes of interactions, rather than functions of ecological

context, by testing whether an interaction’s vulnerability and feasibility contribution is more

similar across occurrences than expected by chance. These relationships will help us
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determine, first, whether links that are less vulnerable to extinction are also more important

for community feasibility and, second, whether vulnerability and feasibility contribution are

intrinsic properties of interactions, given past evidence of the evolutionary conservatism of

species roles in ecological networks [30].

Fig 1. The quantities used in the analysis. Top: an illustrative network depicting interactions between plants and pollinators. A focal link is highlighted in black. The

generalisation of a link is the average degree of the two interacting species. The frequency of the link is the visitation rate between the two interacting species. Frequency

and generalisation are both standardised to between 0 and 1 and then combined to determine the vulnerability of a link, such that vulnerable links are low-frequency

interactions between specialists [11]. The feasibility of the network was measured twice: once in its original form, with all links, and once following the removal of a focal

link. The ratio of these two values (feasibility with and without the focal link) is the feasibility contribution of the link. This is represented by the graph on the right of the

figure. The feasibility of a network is defined as the parameter space of intrinsic growth rates in which all species in a community can have positive abundances [4]. The

feasibility domain of the network with the focal link is represented by the dotted outline, and the feasibility domain of the network without the focal link is represented by

the pink area. In this case, removing the link has reduced the feasibility of the community (reduced the size of the dotted area). A reduced feasibility means that a

perturbation that moves the community from the initial state (blue circle) to a final state (green circle) will result in extinctions because the community moves outside the

pink feasibility domain. However, no extinctions would occur under the same perturbation in the original community without the focal link removed, because the final

state of the community (green circle) is within the dotted outline. Together, vulnerability and feasibility contribution describe the risk to a community of losing a

particular link.

https://doi.org/10.1371/journal.pbio.3000843.g001
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Results

Relationship between link vulnerability and link feasibility contribution

We calculated the vulnerability and feasibility contribution of 4,330 links from a global quanti-

tative dataset of 29 plant-pollinator and 12 plant-seed disperser networks (Fig 1). Our measure

of vulnerability aimed to capture the likelihood of a link between 2 species being lost in the

presence of a stressor. An empirical study by Aizen and colleagues [11] examined pollination

networks in 12 isolated hills in Argentina that ranged in size from tens to thousands of hectares

[11]. They found that interactions in these hills (sierras) tended to be subsets of the interac-

tions present in the next largest sierra. In other words, as the area of habitat decreased, interac-

tions were lost nonrandomly. Two properties of plant-pollinator links independently and

additively explained this nonrandom loss: link frequency and generalisation, with less frequent

and more specialised links being more vulnerable. We, thus, followed Aizen and colleagues

[11] and measured vulnerability as a function of link frequency (how often the 2 species

involved in the link interact) and link generalisation (the mean number of links [the mean

degree] of the 2 species involved in the link; a form of link ‘redundancy’). According to this

definition, weak (less frequent) links between specialists are more vulnerable than strong

(more frequent) links between generalists [11].

We defined feasibility contribution as the contribution of a given link to the feasibility of a

community, where feasibility is a measure of the range of environmental conditions that a

community can withstand without leading to species extinctions [4,31]. For our analysis, links

with high feasibility contribution were those that, when removed, lowered the community’s

feasibility; that is, when removed, they reduced the amount of environmental variability that a

network can tolerate before species extinctions took place (Fig 1; see Methods). We note that

ours is just one possible way to capture the stability contribution of a link. Although other defi-

nitions could be used to measure different properties of community stability [32,33], we chose

the feasibility approach to avoid constraints on the choice of parameters and type of perturba-

tions that most stability metrics impose [4,34]. Feasibility largely avoids these issues by consid-

ering all possible sets of parameters and how these parameters can be changed by

perturbations in any direction, thus allowing for a more generalisable and consistent metric of

dynamic importance that is comparable across different networks (see Methods).

We found that there was a significantly positive correlation between the vulnerability and

feasibility contribution of links across the 41 networks (estimate = 0.11, standard

error = 0.015; Wald test: χ2 = 53.71, df = 1, P� 0.001; R2
GLMM(m) = 0.20, R2

GLMM(c) = 0.42)

(Fig 2). This correlation indicates that the links that contribute most to the feasibility of our

communities have the highest vulnerability values and thus may be those that are most likely

to be lost in the face of environmental changes. Frequency and generalisation were also signifi-

cantly positively correlated, but the relationship was noisy (see S2 Fig), and frequency

explained only 8.9% of the variance in generalisation, suggesting that these two components

each contribute unique information to the vulnerability metric. Note that our results are not

dependent on link asymmetries (the ratio of the degrees of 2 interacting species) because, for a

given species, link asymmetry and our measure of link generalisation are perfectly collinear.

Taxonomic consistency of link vulnerability and link feasibility

contribution

What drives the positive relationship between vulnerability and feasibility contribution? Such

a pattern could arise if links tend to have the same vulnerability and feasibility contribution

independent from the community in which they occur. This would imply some form of
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evolutionary conservatism in interaction properties. We tested this hypothesis by assessing the

extent to which vulnerability and feasibility contribution exhibited taxonomic consistency: the

tendency for an interaction’s vulnerability and feasibility contribution to be more similar

across all the networks in which the interaction occurs than expected by chance (see S4 Fig

and S5 Fig for an identical analysis of link frequency and generalisation). If vulnerability and

feasibility contribution exhibit taxonomic consistency, then all occurrences of a given interac-

tion should have similar levels of these properties. For each interaction, we therefore compared

the variance in vulnerability and feasibility contribution to a null expectation where links were

sampled randomly from across the dataset (see Methods). If taxonomic consistency was pres-

ent—that is, if all links in an interaction tend to have more similar vulnerability and feasibility

contribution than expected by chance—then the observed variance in vulnerability and feasi-

bility contribution should be less than that produced by the null model. We carried out analy-

ses at genus, family, and order levels, but not at the species level, because very few interactions

at the species level occurred more than once in the data. We found a strong tendency towards

consistency for vulnerability at all taxonomic levels: between 76% and 83% of interactions had

Fig 2. The relationship between vulnerability (the likelihood of a link being lost) and feasibility contribution (the

contribution of a link to a network’s feasibility) for all species–species links across 41 mutualistic networks. Best-

fit line is from a mixed-effects model with feasibility contribution as the response variable, vulnerability as a fixed

effect, and network identity as a random effect. Grey band represents the 95% confidence interval. To focus on

mutualistic effects, these results are from analyses of feasibility contribution with zero interspecific competition (ρ = 0),

following [17]. See S1 Fig for results using weak competition (ρ = 0.01) which were qualitatively similar. Data

underlying this figure are given in S1 Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

https://doi.org/10.1371/journal.pbio.3000843.g002
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positive consistency in vulnerability (Mean[VarianceObserved − VarianceNull] was positive; pro-

portions shown in Fig 3). There was significant taxonomic consistency in vulnerability for

18% of genus, 17% of family, and 30% of order interactions (see Methods). There was also a

strong tendency towards consistency for feasibility contribution at all taxonomic levels:

between 77% and 83% of interactions had positive consistency in feasibility contribution (pro-

portions shown in Fig 3). There was significant taxonomic consistency in feasibility contribu-

tion for 14% of genus, 20% of family, and 33% of order interactions (see Methods). Given that

conservatism was observed across large geographic scales, with many significantly consistent

interactions composed of links occurring in different regions or continents, our results suggest

that vulnerability and feasibility contribution may be, to some extent, intrinsic properties of

interactions and not only a function of ecological context.

Fig 3. The degree of taxonomic consistency for each interaction at genus (n = 469), family (n = 466), and order (n = 151) levels, for vulnerability (likelihood of a

link being lost) and feasibility contribution (contribution of a link to a network’s feasibility). Taxonomic consistency is the tendency for properties of an interaction

to be more similar across occurrences than expected by chance. Points represent individual interactions. Boxplots represent 5%, 25%, 50%, 75%, and 95% quantiles of the

same data, moving from the bottom whisker to the top whisker. Number in bottom left of each panel is the proportion of interactions that exhibited positive consistency

(VarianceObserved < VarianceNull). For visualisation, a small number of points with low values were removed. The percentage of points with values lower than the y-axis

minimum are as follows for each panel: (a) 1.5%, (b) 1.1%, (d) 3.2%, (e) 1.5%, and (f) 1.3%. To focus on mutualistic effects, these results are from analyses of feasibility

contribution with zero interspecific competition (ρ = 0), following [17]. See S3 Fig for results using weak competition (ρ = 0.01) which were qualitatively identical. Data

underlying this figure are given in S9 Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

https://doi.org/10.1371/journal.pbio.3000843.g003
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Discussion

To our knowledge, our analysis represents the first attempt to quantify the risk that link loss

poses to the dynamics of ecological communities. We find that, across 41 ecological networks,

the links that contribute most to a network’s ability to tolerate environmental perturbations

are the same links that are most likely to be lost in the face of such perturbations (Fig 2). We

additionally find that there is a strong tendency for interactions to have more similar vulnera-

bility and feasibility contribution across occurrences than expected by chance, with a substan-

tial proportion of interactions exhibiting this signal significantly (Fig 3).

The positive relationship between vulnerability and feasibility contribution means that the

more vulnerable a link is, the more likely it is to have a negative impact on network feasibility

if it is lost. This result is not an inherent function of link generalisation. Rather, there are highly

generalised links that have a high feasibility contribution and specialised links that have a low

feasibility contribution (and even cases in which removing a specialised link increases the fea-

sibility of the network, that is, has negative feasibility contribution) (S2 Fig). Such patterns

would not arise if the positive correlation between feasibility contribution and vulnerability

was present by definition. Vulnerability is therefore an important indicator of the extent to

which a link supports or hinders a community’s ability to tolerate environment variation and

thus species’ long-term persistence. This result is concerning because it suggests that losing

vulnerable interactions may reduce the ability of mutualistic networks to absorb future stress-

ors. Aizen and colleagues [11] found low-frequency, specialist links were more vulnerable to

habitat loss. Combined with our results, this could mean that environmental stressors like hab-

itat loss may be detrimental for whole-community feasibility, not just those links that are

vulnerable.

The positive relationship between link vulnerability and feasibility contribution suggests

that links have a tendency to fall into one of 2 categories: low vulnerability and low (negative)

feasibility contribution or high vulnerability and high (positive) feasibility contribution. Thus,

some links have a high probability of survival to the detriment of the community as a whole,

while others contribute to the collective good at the expense of their own viability [35,36].

While the causes of these patterns are unclear, specialised links may contribute more to feasi-

bility because removing links from resource-limited species could strongly condition their

existence on their few remaining links, reducing the range of conditions compatible with the

stable coexistence of all species in the community. Our results are supported by findings that

species that contribute most to a network’s nestedness are those that have the lowest survival

probability in species persistence simulations [36]. Perhaps there is a tendency for some spe-

cies to maximise their fitness by being involved in a mixture of ‘selfless’ links that ensure that

the community as a whole remains intact, and ‘greedy’ links that provide stable benefit to the

species over time [35]. Determining how such ‘selfless links’ arise is an important area for

future research because characterising the conditions compatible with their genesis could aid

the design or maintenance of resilient ecosystems, and cooperative systems more broadly.

We found that many interactions tend to have similar vulnerability and feasibility contribu-

tion values across occurrences, implying a form of evolutionary conservatism in properties of

species interactions. While it is hard to decipher the driving force of such observed conserva-

tism, it is reasonable to hypothesise that the consistency of vulnerability is driven by the abun-

dance of the interacting partners. We tested this by assessing consistency in interaction

frequency as a proxy for abundance and found strong patterns of consistency (see S4 Fig and

S5 Fig). Alternatively, consistency of vulnerability could be driven by conserved patterns of

generalisation. For example, pollinator species have been shown to have similar levels of gener-

alisation across their range [37]. Similarly, Rodrı́guez-Flores and colleagues [38] found that
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particular pollinator clades tended to be generalist, while Martı́n González and colleagues and

Rezende and colleagues [39,40] found significant phylogenetic signal in pollinator interactions.

Meanwhile, the taxonomic consistency of feasibility contribution has substantial implications.

While here we consider the feasibility contribution of individual links, such feasibility contri-

bution values are governed by the whole network structure, not just the roles of the 2 partner

species involved in the link. To illustrate this, consider 2 pollinators, i and j, and 2 plants, m
and n, that all interact with each other; that is, i and j both interact with m and n. If j leaves the

network, the feasibility contribution of all remaining links will change [41]. Thus, that link fea-

sibility contribution is consistent across occurrences suggests that links, and their partner spe-

cies, are consistently embedded in networks in similar ways, as has been found for species in

antagonistic networks [30,41]. While there is strong evidence that plant–animal mutualistic

networks continuously change their structure over time as links form and dissolve [42–44],

our results suggest that links have similar properties, in terms of vulnerability and feasibility

contribution, whenever they do occur. This implies that link consistency imposes constraints

on network structure: although networks rewire, such changes in structure result in links hav-

ing consistent roles [41]. A possible way to test this hypothesis explicitly is to estimate the risk

of link loss in communities with temporally resolved interaction networks, as such network

data are becoming increasingly available [44,45].

Our results could have useful conservation implications in the future. Differences in links’

vulnerability, feasibility contribution, and taxonomic consistency could be used to guide proac-

tive conservation efforts: links with high vulnerability and feasibility contribution could provide

a useful starting point to inform prioritisation before any links are lost (see below). Similarly,

links with high feasibility contribution that are not currently vulnerable could be a focus of

monitoring efforts in case they become vulnerable in the future. Importantly, by explicitly

focusing on links themselves, our methods could be used to identify high-priority links that are

not expected to be so based only on assessments of species extinction risk. Conversely, our

results may be able to inform species conservation if high-priority links tend to involve species

that are also of high priority. Determining the relationship between the conservation priority of

species and the links that they form is an important area for future research. Our finding of

widespread taxonomic consistency potentially allows properties of interactions to be inferred in

regions without network data, even if such properties are only known for congeneric, confami-

liar, or conorder interactions. This is important because species interaction networks are often

cost- and time-intensive to collect, and coverage is highly biased geographically [46,47].

It is important to note, however, that the conservation applications we discuss are, at this

time, only potential. Before the methods presented here are used for conservation purposes, it

is necessary to empirically validate the models used, as well as their assumptions. We have

focused on one aspect of community stability (that of feasibility) and one approach to quantify

it. There may be other metrics of stability to consider, and the relationship between vulnerabil-

ity and stability could depend on the metric of stability used. Similarly, there may be other cor-

relates of mutualistic link vulnerability—perhaps based on species abundance or centrality

measures—that would be equal or better candidates for empirical validation. In unipartite

food webs, for example, body mass or trophic level could prove useful as a basis for link vulner-

ability measures [48]. Determining the best proxies of link vulnerability through theoretical

and experimental approaches is an important topic for future studies. Our approach nonethe-

less provides a good theoretical proxy for setting conservation priorities and lays the founda-

tion for future methodological refinement by computational and theoretical ecologists. These

refinements, combined with rigorous empirical experimentation by field ecologists, should

establish a two-way interaction between theorists and field ecologists that facilitates the devel-

opment of useful tools for link conservation in the future.
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Conserving links is perhaps even more challenging than conserving species. While species

conservation requires one species to remain extant, link conservation requires that 2 species

remain at sufficiently-high abundance to still significantly interact: 2 species must be prevented

from going ecologically extinct [24–26]. Moreover, because interaction extinction often pre-

cedes species loss, conservation actions acting on interactions must occur sooner than actions

for conserving species. Sampling issues are an additional complication. There is some evidence

that interactions are easier to miss than species during sampling [49], suggesting that sampling

artefacts could impact interaction conservation more than species conservation (though see

[50] for an example where approximately 70% of interactions were sampled). Beyond longer

and more intensive surveying, solutions now exist for inferring missing interactions in empiri-

cal data, using machine learning [51–53] or statistical methods with network time series

[54,55]. These approaches could be important to help overcome the issue of missing interac-

tions in interaction conservation. We found no evidence that sampling effects influenced our

vulnerability metric (S1 Analysis).

Despite link conservation attracting little attention so far, the importance of interactions is

now widely recognised. Our results could help guide future research in this nascent and

important field, because ultimately it is links that support the ecological functions and services

that communities provide.

Methods

Data

We assembled a dataset of 4,330 plant-animal links from 41 quantitative mutualistic networks

spanning a broad geographical range, with data in tropical and non-tropical areas from both

islands and mainlands (www.web-of-life.es [56,57]). For the majority of networks, link weights

were equal to the total number of visits by animal individuals to a given plant species. The

database spanned 2 types of mutualism, comprising 3,182 pollination links from 29 pollination

networks and 1,148 seed dispersal links from 12 seed dispersal networks. The data contained

551 plant species and 1,151 animal species. The median sampling intensity [58,59] for the net-

works was 0.91 (standard deviation of 1.98).

Interaction properties

Link vulnerability. We developed a measure of network link vulnerability following

Aizen and colleagues [11]. They identified 2 factors that determine the vulnerability of a mutu-

alistic link between a plant (i) and animal (j) species: link frequency (hereafter ‘frequency’) and

link degree (hereafter ‘generalisation’) [11]. Frequency is how often a link occurs between i
and j (such as the number of times individuals of a pollinator species visit individuals of partic-

ular flower species), whereas generalisation is defined as the mean degree of the 2 species

involved in a link, that is, the average number of species with which species i and j interact [11]

(see S3 Analysis for a test of the generalisation-vulnerability relationship controlling for species

extinctions). This notion of vulnerability aims to capture the sensitivity of a network to the loss

of a given link, utilising weighted interaction data (Fig 1).

We calculated the frequency and generalisation of all links in our dataset. Following Aizen

and colleagues [11], we first log10 transformed all frequencies. Second, to make results between

networks comparable, we standardised frequency and generalisation to between 0 and 1 at the

network level. Finally, we calculated the vulnerability of a link between species i and j, as Vij =

(1 − fij)(1 − Dij), where fij is the standardised link frequency and Dij is the standardised link

generalisation. In this formulation, the index can take values between 0 (least vulnerable) and
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1 (most vulnerable), which means that it categorizes weak links between specialist partners as

more vulnerable than strong links between generalists.

We chose to characterise link vulnerability using the metrics provided by Aizen and col-

leagues as, to our knowledge, they are the only empirically validated metrics for link vulnerabil-

ity in mutualistic networks. Additionally, Aizen and colleagues’ metrics encompass reasons for

link loss beyond species extinction. For example, more specialised links are more vulnerable,

not necessarily just because the species involved may be more vulnerable but also because the

links cannot be ‘saved’ by other species if the interacting species become isolated in space or

time while remaining extant. Link vulnerability metrics based purely on measures of node vul-

nerability may not capture this possibility and instead might represent link loss solely as a func-

tion of the likelihood of species loss. While this is important, it is not the only aspect of link loss,

and thus any future link vulnerability measures must be considered in terms of their ability to

capture the full range of reasons for link loss, not just the likelihood of species extinction.

Link feasibility contribution. To characterise link feasibility contribution, it was neces-

sary to consider the contribution of a link to dynamic properties of the network. It is common

for analyses of network dynamics to use numerical simulations to calculate species persistence:

the proportion of species that survive a particular perturbation. Such analyses are useful, but

results can be very sensitive to the choice of growth rates: by changing the intrinsic growth

rates, it is possible for almost any network structure to have full persistence [4]. Similarly, per-

sistence analyses can be sensitive to the type and direction of the perturbation used; depending

on the perturbation specified, a given network structure can appear to have high or low persis-

tence [34]. Thus, simulation approaches do not allow consistent or generalisable conclusions

to be reached about the relationship between structure and dynamics in ecological networks.

Feasibility is an alternative, and more general, approach that avoids these issues by not rely-

ing on a single set of parameter values or a particular perturbation but instead asking how

large the range of parameter values that are compatible with the stable coexistence of all species

is [4,31]. Feasibility can therefore be thought of as the ‘safe operating space’ of ecological com-

munities: it is an indicator of how much environmental stress a community can tolerate before

extinction of any of its constituent species. Formally, feasibility is defined as the volume of the

parameter space of intrinsic growth rates in which all species in a community can have positive

abundances [17,60].

Feasibility is essential for understanding how communities might respond to future envi-

ronmental changes. For example, in a very feasible community, there is a large range of condi-

tions under which all species stably coexist. Therefore, in the presence of an environmental

perturbation, such as climate change or habitat loss, it is less likely that any of the species in the

community decline to extinction. Conversely, in a community with low feasibility, there is a

small range of conditions under which all species stably coexist. Therefore, perturbations are

more likely to result in species extinctions. Regardless of the size of the feasibility domain,

there is always complete coexistence of the community within the domain. The size of the fea-

sibility domain simply shows how much change in conditions can be tolerated by the commu-

nity while all species remain extant.

Calculating feasibility requires a model to describe the population dynamics of species in a

mutualistic network. Following several researchers [4,17,31,61], we used a generalized Lotka-

Volterra model of the following form:

dPi
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where Pi and Ai give the abundance of plant and animal species i, respectively; ri denotes the

intrinsic growth rates; αij represents intraguild competition; and γij is the mutualistic benefit.

The mutualistic benefit follows the equation γij = γ0Lij/diδ, where Lij = 1 if there is a link

between species i and j and zero if there is no link; di is the degree of species i; δ is the mutualis-

tic trade-off [62]; and γ0 is the overall level of mutualistic strength. A mean field approximation

was used for the intraguild competition parameters, setting αii
(P) and αii

(A) equal to 1 and αij
(P)

and αij
(A) equal to ρ(i 6¼ j). Such an approximation is a standard approach that follows the rec-

ommendation of Rohr and colleagues [4] and was necessary given the absence of empirical

data on interspecific competition. We estimated the mutualistic trade-off, δ, empirically across

all networks in our dataset. δ is given by the slope of 2 linear regressions [4]

logðfij=d
P
i d

A
j Þ ¼ aP � dlogðdP

i Þ and logðfij=d
A
i d

P
j Þ ¼ aA � dlogðdA

i Þ;

where fij is the link frequency between animal species j and plant species i, aP is the intercept

for plants, and aA is the intercept for animals. These regressions were performed together on

the whole dataset. In this regression, link frequency is used as a proxy for per-capita effects, as

this has been demonstrated to be a good surrogate [4,63,64]. We obtained a value for δ of

0.339, which was consequently used in all simulations (see S4 Analysis for results using a range

of δ values). To focus on mutualistic effects, we ran analyses with zero interspecific competi-

tion (ρ = 0), following Saavedra and colleagues [17]. Results were qualitatively identical using

weak competition (ρ = 0.01) (S1 Fig and S3 Fig). The average mutualistic strength was set as

half the average mutualistic strength at the stability threshold.

Using this model, the size of a network’s feasibility domain is estimated. To do this, no sin-

gle set of intrinsic growth rates is chosen. Instead, a vector of intrinsic growth rates at the cen-

tre of the feasibility domain is first estimated analytically. Being at the centre of the domain,

this growth rate vector can tolerate the greatest changes before leaving the feasibility domain.

The boundaries of the domain are then approximated by randomly perturbing this central

intrinsic growth rate vector to measure the amount of deviation allowed before feasibility is

lost (see [4]). In this way it is possible to estimate feasibility: the range of parameter values

compatible with complete species coexistence. Using feasibility values, we measured the feasi-

bility contribution of a link between species i and j (Iij), defined as the ratio between the feasi-

bility of the network with (O) and without (R) the focal link: Iij = OO / OR, where O is the

feasibility (Fig 1). Feasibility contribution values were expressed as ([100 � Iij] − 100), such that

Iij = 0 if the feasibility of the network was identical with and without the focal link. Feasibility

contribution could not be measured for 931 links which, when removed, resulted in at least

one species having no connections; these were excluded from the dataset. The vulnerability of

the excluded links was slightly higher than the 3,399 links for which we could analyse feasibility

(mean vulnerability of 0.41 versus 0.51 for included and excluded, respectively). From examin-

ing histograms of the 2 sets of links (S6 Fig), however, we do not think that this will signifi-

cantly affect our conclusions because our analysed set still covers the full span of vulnerability

values well (over 100 links in the top 5% of link vulnerabilities are from the ‘analysed set’) and

the 2 distributions are similarly shaped (hump-shaped distributions with fewer values at low

and high vulnerabilities), just slightly shifted from each other on the vulnerability axis. If we

were able to calculate feasibility contribution for all links, and had a complete dataset of 4,300

links, the mean vulnerability would be 0.43, close to the mean vulnerability of the set of links

we analysed (0.41).

To examine the relationship between interaction vulnerability and feasibility contribution,

we used a linear mixed-effects model, with feasibility contribution as the response variable,

vulnerability as a fixed effect, and network identity as a random effect. Linear mixed-effects
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models were run and analysed using the ‘lme4’, ‘car’, and ‘MuMIn’ R packages [65–68]. We

calculated the variance explained by fixed effects (marginal R2
GLMM(m)) and the variance

explained by both fixed and random effects (conditional R2
GLMM(c); [37,45,67,69]).

Link frequency, species abundance, and feasibility contribution. Our measure of link

vulnerability incorporates link frequency which, in turn, may depend on species abundances.

We do not believe this is a problem for our analysis, however. The visitation frequencies of a

given network in our dataset may be related to species abundances (for which we do not have

data). These abundances correspond to a point either inside or outside the feasibility domain.

As we do not know the actual abundances of the species in our empirical networks, we can

only infer—based on the fact that these communities occur in nature—that the empirical com-

munities are within the feasibility domain. Our analysis shows whether the feasible domain

gets bigger or smaller when a link is removed. If it gets bigger, there is a higher probability that

the empirical network—with its particular combination of frequencies and (unknown) abun-

dances—is in the feasibility domain, that is, there is a higher probability that the network is fea-

sible without the focal link. Conversely, if the domain gets smaller, it is less likely that the

network is in the feasibility domain, that is, there is a smaller probability that the network is

feasible without the focal link.

Ideally, our analysis would incorporate a measure of visitation frequency that is indepen-

dent of, or corrected for, species abundances. However, network data with corresponding spe-

cies abundances are very rare and perhaps impossible to compile for a global analysis as

presented here, with data in mainland, island, tropical, and non-tropical systems.

Thus instead, we briefly review the literature on the topic below, conduct 2 analyses to

assess the influence of abundance on our results (S2 Analysis and S5 Analysis), and repeat all

analyses with frequency removed as an explanatory variable (S2 Fig and S4 Fig).

Our results suggest that the conventional wisdom that interaction frequency is a proxy for

abundance has only mixed empirical support. Although visitation frequency may be influ-

enced by species abundances, it does not represent the true abundance because it is not inde-

pendent of the network itself [70]. Few studies have looked at the relationship between the

distribution of species abundances and visitation frequency. However, those that do exist pro-

vide mixed results. Olito and Fox [71] find that abundances do not successfully predict

observed interaction frequencies. Hu, Dong, and Sun [72] find that abundance explains only

20%–40% of variation in pairwise interaction frequencies, and Vizentin-Bugoni and colleagues

[73] find that ‘frequency of interaction is a poor proxy for abundance’. This may be because,

while Vizentin-Bugoni and colleagues found a significant relationship between species abun-

dance and frequency of interactions for pollinators, they found no relationship between spe-

cies abundance and frequency of interactions for plants. Overall, these results suggest a very

mixed picture about how closely interaction frequency and abundance are related. These

mixed findings are corroborated by our analysis of a plant–hummingbird network that

includes independent abundance data [74–76] (S5 Analysis). We found that the relationship

between observed interaction frequency and interaction probabilities determined by either

empirical or idealised abundance distributions were only very weakly correlated. Thus, we

conclude that abundance is a poorer predictor of visitation frequency than traditionally

thought, suggesting that our correlation between vulnerability and feasibility might not be

biased by the use of visitation frequencies uncorrected for abundances.

Taxonomic consistency of vulnerability and feasibility contribution

We next assessed the extent to which vulnerability and feasibility contribution exhibited taxo-

nomic consistency: the tendency for an interaction’s vulnerability and feasibility contribution
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to be more similar across all the networks in which it occurs than expected by chance. Signifi-

cant taxonomic consistency would imply a form of evolutionary conservatism: that vulnerabil-

ity and feasibility contribution are intrinsic properties of interactions, rather than a function of

the ecological context in which they occur [30].

To explain our analysis, we refer to the example in Fig 4. Fig 4A shows 3 networks. Each of

these networks is made up of a number of links, represented by shapes. Network 1 contains 7

links, and Networks 2 and 3 each contain 10 links. The number on each shape is the value of a link

property, such as vulnerability or feasibility contribution; in this example, the values are each link’s

vulnerability. Different shapes (each with their own colour for visual clarity) indicate the identity

of an interaction. Thus, the 7 links in Network 1 each belong to one of 5 different interactions.

To assess taxonomic consistency, it is necessary for a link to occur more than once. In the

original network data, links were between 2 species. However, only 180 (5.8%) interactions at

the species level occurred more than once in the data. To address this, we made comparisons

at 3 levels of taxonomic aggregation: genus, family, and order [30]. For each level of taxonomic

aggregation, we excluded all interactions that only occurred once. Thus, in this example, we

Fig 4. Schematic illustrating the steps used to assess the taxonomic consistency of vulnerability and feasibility

contribution. (a) Three networks made up of links, represented by shapes. The number on each shape is the value of a

link property, such as vulnerability or feasibility contribution. Different shapes (each with different colours for

visualisation) represent different interactions. (b) Using the red square interaction as an example, we calculate the

variance (σ2) in its link property (e.g., vulnerability). (c) 1,000 ‘null sets’ comprising the same number of links as the

observed interaction were created, by sampling links randomly without replacement. Variance in each null set was

calculated. (d) Paired differences in variance were calculated by subtracting the observed variance from each of the null

variances. The mean of these differences was then calculated and plotted (e).

https://doi.org/10.1371/journal.pbio.3000843.g004
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would not assess the taxonomic consistency of the yellow diamond interaction that occurs

only once in the data. Note that, due to this taxonomic aggregation, multiple links of the same

interaction can occur in a network. For example, in Network 1, one of the red squares could be

a link between Bombus terrestris and Knautia arvensis, while the other red square could be a

link between B. muscorum and K. arvensis. While these links have different species-level identi-

ties, if aggregated to the genus level, they are both Bombus–Knautia links and thus belong to

the same interaction, as shown in the figure. The distribution and number of interactions

would be different when links are aggregated to the family and order level.

We then assess taxonomic consistency in vulnerability and feasibility contribution for all

interactions, except the yellow diamond as it only occurs once (for clarity, in this example we

only consider vulnerability, but this analysis was also carried out for feasibility contribution).

We now explain how the analysis proceeds for the red square interaction as an example. If the

red square interaction exhibits taxonomic consistency in its vulnerability values, then all red

square links should have similar levels of vulnerability. More specifically, variance in vulnera-

bility across all red square links should be lower than expected by chance. We therefore start

by extracting all red square links from the data and measuring the variance in their vulnerabil-

ity, in this case 0.01 (rounded to 2 decimal places for visualisation purposes; Fig 4B). We then

assess whether this observed variance is less than a random expectation. To do this, we create

1,000 ‘null sets’, comprising the same number of links as the red square interaction (4) but

consisting of links sampled randomly without replacement from across the dataset; links that

were part of the focal (red square) interaction were excluded so that they were not sampled as

part of any null set (Fig 4C). To ensure that vulnerability and feasibility contribution values

were comparable between networks, and to control for any network-level effects, we used only

relative values of vulnerability and feasibility contribution. Vulnerability values were rescaled

between 0 and 1 at the network level, while feasibility contribution values were already relative

(see definition of feasibility contribution earlier). Relative values are more relevant for our

study because we were interested in whether interactions tend to have the same relative roles

in all communities in which they occur, rather than whether they have the same absolute val-

ues of a particular property. For example, we wanted to know whether a given link was always

the most vulnerable link in a community, rather than whether it always has an absolute vulner-

ability value of, for example, 0.7.

For each of these 1,000 null sets, we calculated the variance in vulnerability across all links

in the set (Fig 4C). We then calculated paired differences in variance, by subtracting the vari-

ance in red square vulnerabilities (0.01) from each of the null variances (VarianceNull − Varian-

ceObserved; Fig 4D). A positive difference between red square variance and a given null variance

indicates that the red square links are more similar in vulnerability than the links in that null

set. We next calculated the mean of these paired differences (Fig 4D). If an interaction exhibits

taxonomic consistency, the mean paired difference will be positive, because the observed vari-

ance would be lower than that expected by chance. Finally, we calculated P from the 1,000

paired differences. P is the proportion of null sets that have lower variance in vulnerability than

the red square interaction (negative paired differences). An observed interaction had significant

consistency when P< 0.05, indicating that the probability of a null set having a lower variance

than the observed interaction is<0.05. Fig 4E shows how we would plot the taxonomic consis-

tency results (mean paired differences) for all interactions in the example data, as in Fig 3.

These steps were repeated for all interactions in the data, for vulnerability and feasibility contri-

bution values (see S4 Fig and S5 Fig for results of this analysis using frequency and generalisa-

tion), and for 3 levels of taxonomic aggregation (genus, family, and order). Taxonomic

consistency results were qualitatively identical using weak competition (ρ = 0.01) (S3 Fig).

‘
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Supporting information

S1 Fig. Relationship between link vulnerability and feasibility contribution (ρ = 0.01). The

relationship between vulnerability (the likelihood of a link being lost) and feasibility contribu-

tion (the contribution of a link to a network’s feasibility) for all species–species links across 41

mutualistic networks (ρ = 0.01). Best fit line is from a mixed-effects model with feasibility con-

tribution as the response variable, vulnerability as a fixed effect, and network identity as a ran-

dom effect. Grey band represents the 95% confidence interval. Data underlying this figure are

given in S2 Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

(PDF)

S2 Fig. Relationships between link generalisation, frequency, and feasibility contribution

(ρ = 0). The relationships, for all species–species links across 41 mutualistic networks (ρ = 0),

between (a) standardised generalisation and feasibility contribution (Wald test: χ2 = 50.09,

df = 1, P� 0.001), (b) standardised frequency and feasibility contribution (Wald test: χ2 =

83.19, df = 1, P� 0.001), and (c) log(frequency) and log(generalisation) (Wald test: χ2 =

125.91, df = 1, P� 0.001). Best fit lines are from mixed-effects models with network identity as

a random effect. Grey band represents the 95% confidence interval. Data underlying this figure

are given in S3 Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

(PDF)

S3 Fig. Taxonomic consistency of vulnerability and feasibility contribution (ρ = 0.01). The

degree of taxonomic consistency for each interaction at each taxonomic level, for both vulner-

ability (likelihood of a link being lost) and feasibility contribution (contribution of a link to a

network’s feasibility) (ρ = 0.01). Taxonomic consistency is the tendency for properties of an

interaction to be more similar across occurrences than expected by chance. Points represent

individual interactions. Boxplots represent 5%, 25%, 50%, 75%, and 95% quantiles of the same

data, moving from the bottom whisker to the top whisker. Number in bottom left of each

panel is the proportion of interactions that exhibited positive consistency (VarianceObserved <

VarianceNull). For visualisation, a small number of points with low values were removed. The

percentage of points with values lower than the y-axis minimum are as follows for each panel:

(a) 1.5%, (b) 1.1%, (d) 7.2%, (e) 6%, and (f) 5.3%. Data underlying this figure are given in S10

Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

(PDF)

S4 Fig. Taxonomic consistency of frequency and generalisation (ρ = 0). The degree of taxo-

nomic consistency for each interaction at each taxonomic level, for both standardised fre-

quency and generalisation (ρ = 0). Taxonomic consistency is the tendency for properties of an

interaction to be more similar across occurrences than expected by chance. Points represent

individual interactions. Boxplots represent 5%, 25%, 50%, 75%, and 95% quantiles of the same

data, moving from the bottom whisker to the top whisker. Number in bottom left of each

panel is the proportion of interactions that exhibited positive consistency (VarianceObserved <

VarianceNull). Considering frequency, there was significant taxonomic consistency for 14% of

genus, 19% of family, and 21% of order interactions (see Methods). Considering generalisa-

tion, there was significant taxonomic consistency for 21% of genus, 25% of family, and 43% of

order interactions. For visualisation, a small number of points with low values were removed.

The percentage of points with values lower than the y-axis minimum are as follows for each

panel: (a) 1.5%, (b) 0.6%, (c) 0.7%, (d) 11.5%, (e) 8.8%, and (f) 10.5%. Data underlying this fig-

ure are given in S9 Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

(PDF)
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S5 Fig. Taxonomic consistency of frequency and generalisation (ρ = 0.01). The degree of

taxonomic consistency for each interaction at each taxonomic level, for both standardised fre-

quency and generalisation (ρ = 0.01). Taxonomic consistency is the tendency for properties of

an interaction to be more similar across occurrences than expected by chance. Points represent

individual interactions. Boxplots represent 5%, 25%, 50%, 75%, and 95% quantiles of the same

data, moving from the bottom whisker to the top whisker. Number in bottom left of each

panel is the proportion of interactions that exhibited positive consistency (VarianceObserved <

VarianceNull). Considering frequency, there was significant taxonomic consistency for 14% of

genus, 19% of family, and 20% of order interactions (see Methods). Considering generalisa-

tion, there was significant taxonomic consistency for 21% of genus, 24% of family, and 42% of

order interactions. For visualisation, a small number of points with low values were removed.

The percentage of points with values lower than the y-axis minimum are as follows for each

panel: (a) 1.5%, (b) 0.9%, (c) 0.7%, (d) 11.5%, (e) 8.8%, and (f) 10.6%. Data underlying this fig-

ure are given in S10 Data (https://doi.org/10.6084/m9.figshare.12689258.v1).

(PDF)

S6 Fig. Distribution of vulnerabilities for links for which feasibility contribution could be

calculated and links for which feasibility contribution could not be calculated. The distri-

bution of vulnerabilities for 3,399 links for which we could analyse feasibility contribution

(‘Included’) and 931 links for which we could not analyse feasibility contribution. Vertical

dashed lines indicate the mean vulnerability of the 2 groups (0.41 for included links; 0.51 for

excluded links). Data underlying this figure are given in S4 Data (https://doi.org/10.6084/m9.

figshare.12689258.v1).

(PDF)

S1 Analysis. Influence of sampling intensity on vulnerability.

(PDF)

S2 Analysis. Analysis assessing the influence of species abundance.

(PDF)

S3 Analysis. Testing the link generalisation–vulnerability relationship while controlling

for local species extinctions.

(PDF)

S4 Analysis. Identifying the domain of δ values where vulnerable links have the highest fea-

sibility contribution.

(PDF)

S5 Analysis. Is visitation frequency a good proxy for abundance?

(PDF)

Author Contributions

Conceptualization: Benno I. Simmons, Lynn V. Dicks, William J. Sutherland, Vasilis Dakos.

Data curation: Benno I. Simmons.

Formal analysis: Benno I. Simmons, Hannah S. Wauchope, Vasilis Dakos.

Funding acquisition: Benno I. Simmons, Lynn V. Dicks, William J. Sutherland.

Investigation: Benno I. Simmons.

PLOS BIOLOGY Interaction loss in mutualistic communities

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000843 August 31, 2020 16 / 20

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s005
https://doi.org/10.6084/m9.figshare.12689258.v1
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s006
https://doi.org/10.6084/m9.figshare.12689258.v1
https://doi.org/10.6084/m9.figshare.12689258.v1
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s007
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s008
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s009
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s010
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000843.s011
https://doi.org/10.1371/journal.pbio.3000843


Methodology: Benno I. Simmons, Tatsuya Amano, Lynn V. Dicks, William J. Sutherland,

Vasilis Dakos.

Project administration: Benno I. Simmons.

Software: Benno I. Simmons.

Visualization: Benno I. Simmons, Vasilis Dakos.

Writing – original draft: Benno I. Simmons.

Writing – review & editing: Benno I. Simmons, Hannah S. Wauchope, Tatsuya Amano, Lynn

V. Dicks, William J. Sutherland, Vasilis Dakos.

References
1. Poisot T, Stouffer DB, Gravel D. Beyond species: Why ecological interaction networks vary through

space and time. Oikos. 2015; 124: 243–251. https://doi.org/10.1111/oik.01719

2. Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. Indirect effects drive coevolution in

mutualistic networks. Nature. 2017; 550: 511–514. https://doi.org/10.1038/nature24273 PMID:

29045396

3. Bastolla U, Fortuna MA, Pascual-Garcı́a A, Ferrera A, Luque B, Bascompte J. The architecture of mutu-

alistic networks minimizes competition and increases biodiversity. Nature. 2009; 458: 1018–1020.

https://doi.org/10.1038/nature07950 PMID: 19396144

4. Rohr RP, Saavedra S, Bascompte J. On the structural stability of mutualistic systems. Science. 2014;

345: 1253497–1253497. https://doi.org/10.1126/science.1253497 PMID: 25061214

5. Wandrag EM, Dunham AE, Duncan RP, Rogers HS. Seed dispersal increases local species richness

and reduces spatial turnover of tropical tree seedlings. Proc Natl Acad Sci. 2017; 114: 10689–10694.

https://doi.org/10.1073/pnas.1709584114 PMID: 28847937
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32. Kéfi S, Domı́nguez-Garcı́a V, Donohue I, Fontaine C, Thébault E, Dakos V. Advancing our understand-
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47. Kaiser-Bunbury CN, Blüthgen N. Integrating network ecology with applied conservation: A synthesis

and guide to implementation. AoB PLANTS. 2015. p. plv076. https://doi.org/10.1093/aobpla/plv076

PMID: 26162897

48. Jacob U, Thierry A, Brose U, Arntz WE, Berg S, Brey T, et al. The Role of Body Size in Complex Food

Webs. A Cold Case. Advances in Ecological Research. 2011. pp. 181–223. https://doi.org/10.1016/

B978-0-12-386475-8.00005–8
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