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The Mesozoic is a key period in fern evolution, with the rise of most modern families. Weichselia reticulata is a widely distributed Jurassic-Cretaceous fern that has been suggested to belong to the Matoniaceae or possibly the Marattiaceae. The most accepted classic whole-plant reconstruction for this species is based on stem and foliage material from the Barremian/Aptian locality of Négresse (Bernissart, Mons Basin, Belgium). In this work, two of these stems are revised and analysed by CT-scan imaging, providing new information on their internal anatomy and external morphology. The results show that Weichselia reticulata has a unique anatomy, distinct from all other extant or fossil ferns. Stem external morphology suggests adaptations to stressful environments, as it presents scale insertions, and a thick cortex. Especially noteworthy is the presence of structures interpreted as aerophores or nectaries at the base of putative roots and petioles that could suggest a need for extra ventilation of the frond or interactions with animals. While these new results do not settle the question of the systematic affinities of Weischelia, they provide new information about its autoecology and allow us to test the validity of previous whole-plant reconstructions.

INTRODUCTION

Today ferns represent the second largest group of vascular plants, with more than 300 genera and several thousand species (Bierhorst, 1971;[START_REF] Ppg | A community-derived classification for extant lycophytes and ferns[END_REF]. Particularly diversified, they have explored a wide range of morphologies and anatomies through time [START_REF] Tidwell | A review of selected Triassic to Early Cretaceous ferns[END_REF]. After a first evolutionary radiation in the Paleozoic, the Mesozoic is a key period for the group that sees the rise of most modern families (e.g. [START_REF] Niklas | Patterns in vascular land plant diversification[END_REF][START_REF] Lehtonen | Environmentally driven extinction and opportunistic origination explain fern diversification patterns[END_REF].

Weichselia reticulata (Stokes and Webb) Fontaine is a widespread Mesozoic fern, ranging in age from the Bathonian (Middle Jurassic) to the Cenomanian (Upper Cretaceous) and geographically from around 60°N to 60°S [START_REF] Blanco-Moreno | Palaeobiogeographic and metric analysis of the Mesozoic fern Weichselia[END_REF]. It was first described from the English Weald as Pecopteris reticulata (Stokes and Webb, 1924), based on small charred fragments of vegetative fronds that are the most frequent type of remain of this fern (Fig. 1C). Unambiguous stem material is very scarce, and it is only known by a few specimens coming from the Cran du Nord locality (Bernissart colliery, Négresse mine shaft, Belgium). This material was first studied by [START_REF] Bommer | Contribution à l'étude du genre Weichselia[END_REF] but it is Alvin (1971) that provided its most detailed description.

Even though W. reticulata was widely distributed and is often very abundant in the localities where it is present, its systematic affinities remain unclear. It is often assigned to the Matoniaceae because of the organisation of the leaves [START_REF] Bommer | Contribution à l'étude du genre Weichselia[END_REF][START_REF] Alvin | The spore-bearing organs of the Cretaceous fern Weichselia Stiehler[END_REF]Alvin, 1971;[START_REF] Van | A review of the Matoniaceae based on in situ spores[END_REF][START_REF] Sender | New reconstruction of Weichselia reticulata (Stokes et Webb) Fontaine in Ward emend. Alvin, 1971 based on fertile remains from the middle Albian of Spain[END_REF]. However, based on the work of [START_REF] Bommer | Contribution à l'étude du genre Weichselia[END_REF] and focussing on anatomical characters only, [START_REF] Edwards | On the Cretaceous fern Paradoxopteris and its connexion with Weichselia[END_REF] suggested a close relation with Paradoxopteris Hirmer from the Early and early-Late Cretaceous of North Africa (e.g. [START_REF] Hirmer | Handbuch der Paláobotanik[END_REF][START_REF] Edwards | On the Cretaceous fern Paradoxopteris and its connexion with Weichselia[END_REF][START_REF] Koeniguer | Étude paléophytogéographique du Continental Intercalaire de l'Afrique Nord-Équatoriale. Sur de nouveaux échantillons du genre Paradoxopteris[END_REF]El Afty et al., 2019), which is close to Marattiaceae. A few authors also suggest a relation to this family based on anatomy and fertile structures (Zeiller, 1914;[START_REF] Silantieva | Weichselia Stiehler from Lower Cretaceous of Makhtesh Ramon, Israel: new morphological interpretation and taxonomical affinities[END_REF].

Weichselia has been recovered from fresh water deposits such as lakes or rivers [START_REF] Seward | La flore wealdienne de Bernissart[END_REF]Carpentier, 1927;[START_REF] Daber | A Weichselia-Stiehleria-Matoniaceae community within the Quedlinburg Estuary of Lower Cretaceous age[END_REF][START_REF] Barthel | Abu Ballas Formation (Tithonian/Berriasian; Southwestern Desert, Egypt) a significant lithostratigraphic unit of the former "Nubian Series[END_REF][START_REF] Barale | Découverte de Weichselia reticulata (Stokes & Webb) Fontaine emend. Alvin, filicinée leptosporangiée, dans le Crétace Inférieur de la province de Lérida (Espagne): implications stratigraphiques et paléoécologiques[END_REF] Palaeontology Palaeontology [START_REF] Harris | Burnt ferns from the English Wealden[END_REF][START_REF] Aguirrezabala | El Weald de Igea (Cameros-La Rioja). Sedimentología, bioestratigrafía y paleoicnología de grandes reptiles (dinosaurios)[END_REF][START_REF] Ross | The stratigraphy and palaeontology of the Upper Weald Clay (Barremian) at Smokejacks Brickworks[END_REF]Batten, 1998;[START_REF] Diéguez | Early Cretaceous ferns from lacustrine limestones at Las Hoyas, Cuenca province, Spain[END_REF][START_REF] Gomez | Paleoflora from the Wealden facies strata of Belgium: Mega-and meso-fossils of Hautrage (Mons Basin)[END_REF], as well as from brackish habitats such as marshes, deltas, estuaries or lagoons [START_REF] Batten | Wealden Palaeoecology from the Distribution of Plant Fossils[END_REF][START_REF] El-Khayal | Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development[END_REF][START_REF] Gómez | Nota sobre la macroflora del Cretácico inferior de la Cuenca de Préjano (LaRioja)[END_REF][START_REF] Shinaq | The flora of an estuarine channel margin in the Early Cretaceous of Jordan[END_REF]; [START_REF] Barale | Découverte de nouvelles flores avec des restes à affinités angiospermiennes dans le Crétacé inférieur du Sud tunisien[END_REF][START_REF] Lyon | Late Cretaceous equatorial coastal vegetation: new megaflora associated with dinosaur finds in the Bahariya oasis, Egypt[END_REF][START_REF] Gomez | Late Cretaceous plants from the Bonarelli level of the Venetian Alps, northeastern Italy[END_REF][START_REF] Barale | Cuticules végétales dans le Crétacé inférieur du Sud du Liban[END_REF][START_REF] Almendros | Molecular features of fossil organic matter in remains of the Lower Cretaceous fern Weichselia reticulata from Przenosza basement (Poland)[END_REF][START_REF] Diez | New data regarding Weichselia reticulata: soral clusters and the spore developmental process[END_REF][START_REF] Silantieva | Weichselia Stiehler from Lower Cretaceous of Makhtesh Ramon, Israel: new morphological interpretation and taxonomical affinities[END_REF]. Due to the xeromorphic traits observed in this genus (Alvin, 1974), some authors suggest that Weichselia inhabited dune regions in marine areas [START_REF] El-Khayal | Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development[END_REF], while others believe this fern was adapted to extreme drought conditions and attribute its presence in wet areas to transport from its natural habitat to fluvial ecosystems via flooding (Alvin, 1974). The high abundance of burnt remains of Weichselia in the fossil record has also led some authors to suggest it was an early successional plant [START_REF] Barral | Local-scale analysis of plant community from the Early Cretaceous riparian ecosystem of Hautrage, Belgium[END_REF].

To date there have been five main reconstructions of the general habit of Weichselia reticulata (Fig. 1A). Following the first reconstruction by [START_REF] Bommer | Contribution à l'étude du genre Weichselia[END_REF], [START_REF] Daber | A Weichselia-Stiehleria-Matoniaceae community within the Quedlinburg Estuary of Lower Cretaceous age[END_REF] proposed a new one based on pedate petiole heads found in Quedlinburg (Barremian, Germany) that were interpreted as stems with a crown of radiating pinnate fronds. Alvin (1971) refuted this reconstruction and proposed the most accepted one to date. He described an upright stem with petioles that are spirally arranged and putative rooting organs produced in the opposite direction of the petioles. Sterile and fertile pinnae are separate and consist of radially disposed primary pinnae inserted in a pedate head. More recently, [START_REF] Sender | New reconstruction of Weichselia reticulata (Stokes et Webb) Fontaine in Ward emend. Alvin, 1971 based on fertile remains from the middle Albian of Spain[END_REF] published a new reconstruction of this species based on a fertile pedate head from the Albian of Teruel (Spain).

They represented a vegetative frond at the apical end of the stipe and a fertile frond at the end of a lateral ramification of the stem. Finally, Poyato-Ariza and Buscalioni (2016) suggested another reconstruction, based on material from Las Hoyas (upper Barremian, Cuenca, Spain). In this case, the general appearance of the plant is that of an extant tree fern, with a wide, tall, upright stem and a crown of fronds with petiole heads bearing radially disposed pinnae at the top.

To provide new information on Weichselia, we undertake here a revision of the external morphology and anatomy of the specimens studied by Alvin (1971) using µCT-scan imaging and we calculate parameters for the reconstruction of the plant's habit. A comparison with extant and fossil ferns allows us to propose (1) new insights about the possible systematic affinities of Weichselia, (2) additional clues about its autecology, and (3) guidelines for an accurate reconstruction of its habit.

GEOLOGICAL SETTING

Bernissart is located 25 km west of Mons, in southwestern Belgium, in the northern part of the Mons basin (Baele et al., 2012) (Fig. 2 A). This basin corresponds to an east-west subsiding zone where Meso-Cenozoic sediments accumulated. Rather small, the subsiding area (40 by 15 km) is mainly controlled by intrastratal dissolution of deep evaporite beds in the Mississippian (Carboniferous) basement. This dissolution process also led to the creation of several sinkholes, or natural pits (Spagna et al., 2012;Quinif & Licour, 2012). The natural pits acted as traps for the sediment, fauna, and flora present there at that time.

Three sinkholes have been recognized around Bernissart (Fig. 2B). They are the North, the South, and the Iguanodon sinkholes. The latter yielded the famous Bernissart Iguanodons.

They were found in a Barremian/Aptian lacustrine clay, attributed to the Sainte-Barbe Clays Formation (Cornet & Schmitz, 1898;[START_REF] Cornet | L'époque wealdienne dans le Hainaut[END_REF]. The age of this formation has been determined based on palynologic data, based on sediments from the Iguanodon Sinkhole, as ranging from the middle Barremian to the earliest Aptian (Dejax et al., 2007).

The North Sinkhole was encountered in 1906 during the digging of a connecting gallery at a depth of 160 m. It started from the pit n°1 (called Négresse) in direction of the north. The gallery entered the sinkhole on its southern part and continued north for 164 m. The Wealden sediments are represented by dark grey to blue clays containing abundant charcoalified plant remains between 109 and 126 m from the south margin of the sinkhole [START_REF] Cornet | L'époque wealdienne dans le Hainaut[END_REF][START_REF] Buscalioni | Répertoire des puits naturels connus en terrain houiller du Hainaut[END_REF]. The exact position of the specimens is unknown but appear to originate from lithological unit δ (see arrow on Figure 2C) that corresponds to a dark clay with abundant charcoalified and lignified plant remains.

No detailed sedimentological analysis has been performed but the occurrence of sandy layers interbedding the clays as well as the occurrence of larger plant fragments could indicate a slightly more riverine environment than for the Iguanodon pit of Bernissart that is interpreted as lacustrine [START_REF] Van Den | Les coupes du gisement de Bernissart. Caractères et dispositions sedimentaires de l'argile ossifere du cran aux Iguanodons[END_REF] or lacustrine to swampy (Yans, 2007;Schnyder et al., 2009;Spagna et al., 2012).

MATERIAL AND METHODS

Material

The material studied consists of stems, petioles, and rachises preserved as lignite that were assigned to Weichselia reticulata. They were collected in the Cran du Nord locality (Bernissart colliery, Négresse mine shaft, Belgium) and are housed in the Royal Belgian Institute of Natural Sciences (RBINS) in (Brussels, Belgium). In most cases, the specimens are only slightly compressed. We follow Alvin (1971) in his distinction between the different organs (stems, petioles, roots) and surface features (e.g. crater-like marks, tubercles) for these specimens.

Material examined: IRSNB b 0229, 8424, 8425, 8426, 8427;RBINS-PBOT-935, 936, 955, 976, 1073, 06846-0024. Additional material used in the comparisons: Paradoxopteris material figured by [START_REF] Edwards | On the Cretaceous fern Paradoxopteris and its connexion with Weichselia[END_REF]; Matonia R.Br. Ex Wall thin-sections from the Cornell University Plant Anatomy Collection; Danaea Sm. material figured by Rolleri (2004); Angiopteris evecta (Forst.) Hoffm. material figured by [START_REF] Blomquist | Vascular anatomy of Angiopteris evecta[END_REF]; Osmunda cinnamomea L. thin-sections from the Cornell University Plant Anatomy Collection; Cyathea Sm. material figured by [START_REF] White | The Comparative Anatomy of Hymenophyllopsis and Cyathea (Cyatheaceae): a Striking Case of Heterochrony in Fern Evolution[END_REF];
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Platycerium aethyopicum Hook. material figured by [START_REF] Allison | On the vascular anatomy of the rhizome of Platycerium[END_REF]; Psaronius Cotta material figured by [START_REF] Palaeontology | The morphology and anatomy of American species of the genus Psaronius[END_REF][START_REF] Rothwell | Psaronius magnificus n. comb., a marattialean fern from the Upper Pennsylvanian of North America[END_REF][START_REF] Rothwell | Psaronius magnificus n. comb., a marattialean fern from the Upper Pennsylvanian of North America[END_REF]. 

Methods

CT-Scan data acquisition and image processing. For the anatomical study of Weichselia reticulata two specimens of stems of this species collected from the locality of Négresse, IRSNB b 8424 and 8425, and housed at the RBINS, were imaged by µCT-scan at the RBINS (Brussels, Belgium). Scanning was completed using a RX EasyTom 150, with copper filter. For IRSNB b 8424, images were generated at a voltage of 145 kV and a current of 231 μA, with a set frame rate of 12.5 and 8 average frames per image. This generated 1440 images and a voxel size of 0.0609096 μm. For IRSNB b 8425, images were generated at a voltage of 139 kV and a current of 480 μA, with a set frame rate of 12.5 and 7 average frames per image. This generated 1440 images and a voxel size of 0.0816001 μm. Reconstructions, were performed using 3X-Act software from RX Solutions. The images obtained were reduced with the "binning" plugin in ImageJ 1.49v [START_REF] Schneider | The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits[END_REF]. Segmentation, visualization and analysis were performed using Avizo software on the reduced images: 3D models were produced from the µCT images, and from these, models of the vascular system via segmentation by contrast thresholds. The central strands of the stem in both specimens, and the petiole in IRSNB b 8425, were isolated by further segmentation by hand in order to more clearly observe the course of the central strands, and better identify the organ insertions. Posteriorly, the models were uploaded in Meshlab [START_REF] Cignoni | Meshlab: an open-source mesh processing tool[END_REF] and 3D-Slicer [START_REF] Fedorov | 3D Slicer as an image computing platform for the Quantitative Imaging Network[END_REF] where sections of the models were performed.
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Despite the obvious advantages of µCT-imaging in terms of non-destructive methods, several limitations may exist and are related to the preservation of the material and the actual contrast existing between different structures. The preservation of the material studied here was not always ideal for scanning, and the differences in contrast of the different tissues were sometimes very small, making it difficult to observe minute anatomical details (Fig. 3D).

Additionally, the chosen resolution was not sufficient to study the bundle morphology and structure in detail (Fig. 3D-E). These details have been observed on existing historic thin sections (Fig. 3A-C; Alvin, 1971).

Variables for reconstruction and comparison with other ferns. Stem diameter, bundle size and cortex thickness were measured on the specimens mentioned in the material section, except for Angiopteris evecta which was obtained from [START_REF] Blomquist | Vascular anatomy of Angiopteris evecta[END_REF], and Psaronius from [START_REF] Rothwell | Psaronius magnificus n. comb., a marattialean fern from the Upper Pennsylvanian of North America[END_REF]. The largest measurement was recorded for each category. General information on the anatomy and morphology was observed on the specimens mentioned in the materials section, and from the literature. Growth habit categories, leaf area, and leaf mass per area (LMA) were obtained from [START_REF] Peppe | Biomechanical and leaf-climate relationships: A comparison of ferns and seed plants[END_REF] except for Leaf area of Cyathea (from [START_REF] Arens | Responses of leaf anatomy to light environment in the tree fern Cyathea caracasana (Cyatheaceae) and its application to some ancient seed ferns[END_REF]. The largest measurement was recorded for each category and data were consulted at the generic (not specific) level.

Three variables with biomechanical implications and interest for the reconstruction of the plant habit were also calculated using the measurements obtained in Table 1 andin Once the maximum area of foliage the stem can bear is obtained, the number of possible leaves can be calculated based on the mean area of a single leaf (estimated in [START_REF] Blanco-Moreno | A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns[END_REF].

The work by [START_REF] Brouat | Corner's rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[END_REF] is based on spermatophytes, so we applied the method to other fern taxa with enough information on the number of leaves per node (Matonia, Cyathea and Psaronius) in order to test it.

RESULTS

The stem surface is always covered with millimetric tubercles and is sometimes irregularly creased (Figs 4A-B, 5G-H, and6A). Alvin (1971) observed 5 types of scars on the Belgian material of Négresse identified as: petiole bases, radicular organs, sclerenchymatous tubercles, crater like marks, and large elliptical scars (interpreted as aerophores). We here redescribe these structures with the help of the new information provided by the µCT-scan imaging, including their size and anatomy.

Petiole bases. Material. IRSNB b 8424, 8425; RBINS-PBOT-935

There is no difference between the surface of the stem and the petiole, they are all covered by the same creases and tubercles (Fig. 4B). The maximum width of the petiole ranges from 1.57 cm in RBINS-PBOT-935 up to 4.7 cm in IRSNB b 8425. Two petioles were observed on specimen IRSNB b 8424 measuring 2.4 and 2.3 cm in maximum width. Petioles depart at a 40° to 50° angle from the stem. This angle increases distally due to the curvature of the stem (Fig. 4C). Additionally, all specimens have elliptical scars associated with the base of the petiole that will be described in detail later.

Anatomically, petioles are formed by many meristeles from the stem's central rings. The meristeles in the petiole are placed in rows near the insertion (Fig. 6C) and become concentric distally, with up to of 10 concentric rings in IRSNB b 8425 (Fig. 4A). The anatomy of specimen IRSNB b 8424 shows some strands that are orientated in the direction opposite to the petioles. This could be interpreted as a possible radicular organ (Fig. 4D). The preserved width is 3.5 cm and it is inserted at a 50° angle. Similarly to the petioles, the surface is ornamented and there is an elliptical scar associated to the base of the organ (Fig. 3B).

The anatomy is also very similar and formed by many meristeles from the stem's central rings, with a semi-circular transverse section (Fig. 4D). The only difference between petioles and the putative rooting organ in IRSNB b 8424 is the direction of the vascular strands, which is opposite to each other.

Tubercles. Material. IRSNB b 8424, 8425, 8426, 8427, RBINS-PBOT-935, 936, 955, 976, 1073, 06846-0024. Tubercles are present at the surface of most stems and petioles present in the collection (Fig. 4A-B). They cover the whole length of petioles up to the petiole heads, where they are especially found on the adaxial side. This ornamentation is also observed on the abaxial side of the broader primary rachises. When present, they completely cover the surface of the plant.

They are clearly visible in specimens without creases, but are also present in very irregular, creased ones. They are millimetric, but variable in size and shape. When imaged by the µCT-scan they present the same density as the rest of the surface.

Crater like marks. Material. IRSNB b 8426. These structures have only been observed on one specimen already figured by Alvin (Pl. II, fig. 2, 1971). The specimen is very deformed, and it is not possible to determine the part of the plant it belongs to. The surface is covered by tubercles, which are disrupted by these marks (Fig. 4A). They are slightly depressed in relation to the rest of the layer and are elliptical to more Palaeontology Palaeontology or less circular. The surface is smoother, lighter in colour, and shows no identifiable structures. They measure 0.19 by 0.17 to 0.34 by 0.15 cm. Large elliptical scars. Material. IRSNB b 8424, 8425, 8427; RBINS-PBOT-935.

These structures have been observed on three stem fragments, and two disarticulated scars are present in the collection (Figs 5A andG-H). Their outline is clearly defined, and they are slightly depressed in relation to the rest of the stem, they measure 0.64 to 2.8 cm by 0.73 to 1.54 cm. Two differentiated zones can be observed: a central elliptical to circular rugose protruding area measuring 0.49 to 1.49 cm by 0.862 to 0.35; and a peripheral area that surrounds the central zone, which has more or less linear yet irregular marks that radiate from the central zone towards the margin of the scar (Fig. 5A, andG-H). The internal face of the scars, which can be observed in the disarticulated specimens, shows no signs of the two zones previously described. The surface is flat but rugose and covered by tubercles, their appearance is similar to the outer part of some of the stems but the tubercles are smaller (Fig. 5A). These structures are not connected to the vascular system. Indeed, where the scars are present the vascular tissue is cut off and there is an area with no vascular tissue at all just underneath these structures (Fig. 5B-E, andI-J).

These scars are present at the base of possible petioles and rooting organs, laterally oriented towards the abaxial side, only on one of the sides in specimens RBINS-PBOT-935 and IRSNB b 8424 (Fig. 5B), and one on each side in the case of the best preserved specimen (IRSNB b 8425, Fig. 5G-I). In specimens RBINS-PBOT-935 and IRSNB b 8425 a smaller scar is also present directly above (distally) the other scar mentioned. The internal anatomy of the plant consists of a highly dissected polycyclic dictyostele, organized in 9 concentric rings of irregularly shaped vascular bundles, which are generally C shaped, and measure 0.15 cm to 0.22 cm (Fig. 6). The density of vascular tissue is very high, bundles are present from the centre to the cortex. Alvin (1971) mentioned the presence of secretory canals in the stem of Weichselia reticulata, alternating with the bundles. These structures were observed in the thin sections but are not clearly identified in the µCT-scans due to the lack of resolution, although specimen IRSNB b 8424 does show some very dense spots in a similar position to the possible canals observed in the thin sections (Fig. 3D). The possible secretory canals observed in the thin sections consist on circular structures measuring up to 0.05 cm, with a single layer of cells in the periphery with a similar preservation to the vascular tissue of the plant, and a dark centre (Fig. 3C).

The disposition of petioles and putative roots in the specimens studied (Fig. 7) could be helicoidal or alternate in IRSNB b 8424. Lateral organ production observed in IRSNB b 8425 is less frequent, and there is only one petiole, so the phyllotaxy can not be inferred.

Calculations for reconstruction

In order to attempt a reconstruction of the whole plant, certain characters dealing with the morphology, architecture, and anatomy of Weichselia reticulata have to be analysed (Table 1). Important variables for plant reconstruction can be then calculated using approximations obtained from living plants: the leaf mass, and maximum height of the plant, and the number of fronds per node (constrained by Corner's Rules).

Leaf mass. The LMA for Weichselia is 317.2g/m 2 to 352.5 g/m 2 , calculated following [START_REF] Peppe | Biomechanical and leaf-climate relationships: A comparison of ferns and seed plants[END_REF] based on measurements on the specimens published in [START_REF] Blanco-Moreno | A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns[END_REF]. This value could be an overestimate, as fronds with a large relationship between petiole width and leaf area (PW 4 /LA) have a lower LMA than expected by the model, and in the case of Weichselia PW 4 /LA is larger than all other ferns in the sample from [START_REF] Peppe | Biomechanical and leaf-climate relationships: A comparison of ferns and seed plants[END_REF]. However, it must be noted that the architecture of the Weichselia frond, with a pedate head, is mechanically more similar to palmate fronds than pinnate fronds [START_REF] Niklas | Flexural stiffness allometries of angiosperm and fern petioles and rachises: evidence for biomechanical convergence[END_REF], and the results in [START_REF] Peppe | Biomechanical and leaf-climate relationships: A comparison of ferns and seed plants[END_REF] show that the largest LMA correspond to palmate or simple fronds.

Height of the plant. The results calculated from the model are within the maximum height measurements in the literature (Table 2), bearing in mind they are first order of magnitude approximations. This supports the validity of the model for the estimate of the height in Weichselia, which would be up to 8.57 m according to the model.

Phyllotaxy and number of leaves per node. Estimation of the number of fronds in the crown

following [START_REF] Brouat | Corner's rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[END_REF] results in a possible number of leaves that is similar to the values recorded for each taxon in the literature (Table 3). The number of leaves estimated for Weichselia by this method is therefore accepted as a valid estimate until more information can be obtained and would be of 1 to 2 leaves (Table 3).

DISCUSSION

Morpho-anatomical comparison of Weichselia with other ferns

In order to better understand the affinities, autecology, and habit of Weichselia reticulata, the fossil material analysed here is compared with extant and fossil fern taxa selected because of previously suggested systematic affinities [START_REF] Edwards | On the Cretaceous fern Paradoxopteris and its connexion with Weichselia[END_REF]. It includes (1) Paradoxopteris which was suggested by [START_REF] Edwards | On the Cretaceous fern Paradoxopteris and its connexion with Weichselia[END_REF] as the stem of Weichselia reticulata, (2)
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Marattiales due to the affinities proposed mainly by [START_REF] Edwards | On the Cretaceous fern Paradoxopteris and its connexion with Weichselia[END_REF] and [START_REF] Silantieva | Weichselia Stiehler from Lower Cretaceous of Makhtesh Ramon, Israel: new morphological interpretation and taxonomical affinities[END_REF], and (3) Matoniaceae which is the most accepted sister group to Weichselia (e.g. Alvin 1971;[START_REF] Sender | New reconstruction of Weichselia reticulata (Stokes et Webb) Fontaine in Ward emend. Alvin, 1971 based on fertile remains from the middle Albian of Spain[END_REF]. We also include two other genera: Cyathea (Cyatheaeceae), for a comparison with an arborescent fern with a tall upright stem as has been suggested for Weichselia in some reconstructions (e.g. Poyato [START_REF] Poorter | Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[END_REF], and Platycerium Desv.

(Polypodiaceae), which was found to be the only fern with a stele organisation more or less comparable to the here studied specimens.

External morphology and scars

The here observed ornamentation of the stems of Weichselia is very similar to what is seen in the Cyatheaceae and some Marattiaceae. The stem surface of the Cyatheaceae is covered by a hard and impervious sclerotic cortex. The gas exchanges are only made possible by the presence of small lenticel like tubercles filled with spongy tissue that act as pneumatodes [START_REF] Bower | The ferns (Filicales). Analytical examination of the criteria of comparison[END_REF].

Another characteristic feature of this family is the presence of scales borne upon sclerenchymatous outgrowths that cover leaves and stems while young. Although the scales tend to fall in later ontogenic stages, the sclerenchymatous outgrowths tend to remain and are responsible for the characteristic ornamentation of the stem (Fig. 8B). The tubercles observed on Weichselia are devoid of spongy tissue and rather appear as solid structures. They are nevertheless much smaller than the epidermal outgrowths of Cyatheaceae to which they do not compare favourably. Some fossil and extant Marattiaceae also present similar surface features to the ones observed in Weichselia. Angiopteris Hoffm. and Danaea present scales associated to persistent structures at the base of the petioles that resemble the tubercles here described, although they are more dispersed (Fig. 8A).

The crater-like marks are only present in one specimen and don't have a set morphology or size. They were probably produced by an external agent that damaged the plant's outermost layer.

Palaeontology Palaeontology

In contrast, the elliptical scars have a constant morphology and a specific position in the stem. Similar structures have however been described in other fern taxa. Their organisation is like that of some aquatic and wetland plant roots with radial lysigeny and wheel-shaped type aerenchyma [START_REF] Jung | Anatomical patterns of aerenchyma in aquatic and wetland plants[END_REF]. The lack of vascular tissue in the area however led us to discard this possibility. Alvin (1971) discussed these scars and proposed that they could represent aerophores. In ferns, there are two types of aerating structures: linear aerophores, sometimes termed pneumathodes, and nonlinear aerophores, sometimes termed pneumatophores or lenticels in the Marattiaceae [START_REF] Davies | A brief comparative survey of aerophore structure within the Filicopsida[END_REF]. In respect to this, the elliptical scars on Weichselia would rather be described as lenticels or nonlinear aerophores, which are also present in the Cyatheaceae [START_REF] Bower | The ferns (Filicales). Analytical examination of the criteria of comparison[END_REF] and the Marattiaceae [START_REF] Smith | A classification for extant ferns[END_REF]. Lenticels are generally very simple in ferns (Fig. 8C-D) with some exceptions such as in Cyathea horrida (L.) Sm. [START_REF] White | The anatomy and occurrence of foliar nectaries in Cyathea (Cyatheaceae)[END_REF]. In this species lenticels are more complicated and are similar to the ones observed in Weichselia. Additionally, some lenticels found on spermatophytes, with filling tissue and closing layers (Evert, 2006) very much resemble the structure observed in Weichselia. The existence of gas exchanging structures at the base of the petioles is frequently observed in ferns e.g. Marattiaceae, Plagiogyraceae, Cyatheaceae or Thelypteridaceae. In all these cases, as observed in Weichselia, the hypodermis is not interrupted [START_REF] Davies | A brief comparative survey of aerophore structure within the Filicopsida[END_REF]. Pneumathodes in Cyatheaceae and Saccoloma Spreng. (Dennstaedtiaceae) are related to involutions (i.e., curving of the vascular system towards the centre of the axis) in the leaf traces (Bower, 1923 fig. 161, 162;Bower 1926 fig. 560). By contrast, in Weichselia they only create gaps in the vascular system directly below them, and they don't seem to be related with involutions in the petiole or the putative roots (Fig. 5E andG). Another organ that can be found at the base of fern pinnae that somewhat resembles the elliptical scars observed in Weichselia are nectary glands, which are for example present in the Cyatheaceae, in Angiopteris, and in Platycerium [START_REF] White | The anatomy and occurrence of foliar nectaries in Cyathea (Cyatheaceae)[END_REF]. In such structures, the vascular tissues do not enter the gland [START_REF] White | The anatomy and occurrence of foliar nectaries in Cyathea (Cyatheaceae)[END_REF] Large radicular organs are not very frequent in ferns, although the Marattiaceae have large roots [START_REF] Bower | The ferns (Filicales). Analytical examination of the criteria of comparison[END_REF]. The anatomy of the putative root observed in Weichselia reticulata has not been observed in any other fern. Other structures with negative gravitropism that could be similar to those observed in Weichselia are lateral ramifications described in the Cyatheales that grow into stolons that stabilize the tall trunks and permit the vegetative reproduction of the plant (Hallé 1965(Hallé , 1966)). These buds are situated under the leaves in the Cyatheales, the same position of the putative root in Weichselia. Additionally, the scarce record of fertile remains of Weichselia reticulata could be related to a dominant vegetative reproduction of the plant.

Anatomy. The anatomy of Weichselia reticulata is particularly divergent and appears to be different to all ferns that have been published so far. The results of the comparison of the Belgian material with a selection of fern taxa are summarised in Table 1, and Figures 9 and10.

Firstly, the type of stele apart (which is a polycyclic dictyostele), it is clear that the anatomy of Weichselia reticulata is very different from that of Paradoxopteris. The main differences reside in the size of the vascular bundles and the presence of auxiliary strands with round morphology that are alternate with the C-shaped meristeles in Paradoxopteris (Fig. 9G). [START_REF] Koeniguer | Étude paléophytogéographique du Continental Intercalaire de l'Afrique Nord-Équatoriale. Sur de nouveaux échantillons du genre Paradoxopteris[END_REF] separates Paradoxopteris stromeri Hirmer into two varieties. One with large vascular bundles which are more than 2.5 times larger than in Weichselia. A second with smaller bundles that have a mean size of 0.22 to 0.28 cm, which fits within the size range of the bundles in Weichselia.

However, although not clearly visible in the µCT-scan images of Weichselia, vascular strands are more or less C-shaped in all rings observed in the thin sections. There is thus no evidence of the auxiliary strands typical of Paradoxopteris (Fig. 3A).

While Matonia has a curved rhizome (Fig. 8E) that could be compared to the curved axes of specimens IRSNB b 8424 and 8425, it can be distinguished easily in terms of anatomy by its polycyclic solenostele. Phanerosorus, the second genus of the Matoniaceae, also presents a polycyclic solenostele (Kramer, 1990).

Marattiaceae in general is one of the groups that most resembles Weichselia. They share a similar stele organisation with small bundles and many strands arising from the central ones going to the petioles and putative roots (Fig. 9). The extinct genus Psaronius, related to the Marattiaceae, has a similar anatomy to Weichselia (Fig. 10). The polycyclic dictyostele is also very fragmented, and is spirally arranged, presenting up to 6 cycles. However, the bundles are much larger, and the external part of the stem of Psaronius is surrounded by a thick layer of adventitious roots. The secretory canals observed in Weichselia have a clear epithelium and are similar to the mucilage canals found in the petioles of Angiopteris evecta [START_REF] West | On the structure and development of the secretory tissues of the Marattiaceae[END_REF].

Osmunda L. and Cyathea are not polycyclic, and strands are larger than in Weichselia for both taxa (Figs 9B andF). Finally, the general appearance of the anatomy of Platycerium is similar to Weichselia, with a very fragmented polycyclic dictyostele and many strands forming the petiole (Fig. 9C). However, Platycerium roots are not produced by the central strands and the bundles are smaller than in Weichselia. It thus appears that Weichselia has a unique stellar anatomy among known fossil and extant ferns.

Systematic affinities

The systematic position of Weichselia has been discussed since its discovery. It is quite clear from the results herein obtained that it presents a unique combination of characters that could suggest a relation with groups as distinct as the Marattiales or the Matoniaceae.

On the one hand, they present characters that are considered exclusive to the Marattiales such as the roots originating from the central bundles, the possible secretory canals, the sclerenchymatous tubercles on the surface and the apparent absence of endodermis (it has not been observed in this work and was not identified by Alvin (1971)). However, Marattiales do not generally share the same stem and frond organisation as Weichselia. Stems are generally massive in the Marattiales whereas in Weichselia they are more elongated, and Marattiales do not present pedate fronds.

On the other hand, the similarities with the Matoniaceae are mostly architectural. They share similar curved stems, dichotomous branching and frond organisations [START_REF] Blanco-Moreno | A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns[END_REF]. Their anatomy however is rather different, Weichselia presenting a polycyclic stele while Matoniaceae have solenostelic steles. However, [START_REF] Allison | On the vascular anatomy of the rhizome of Platycerium[END_REF] studying Platycerium has argued that its polycyclic dictyostele could derive from the fragmentation of a polycyclic solenostele such as the one present in Matonia. Moreover, their size is not comparable, as the stems of Matonia have a mean thickness of 0.6 cm (Kato, 1993) and pinnae measure around 35 cm, whereas the rhizome width of Weichselia is around 7 cm and pinnae can measure more than 100 cm.

The very peculiar organisation of Weichselia renders comparison with other extant or fossil ferns difficult. The here obtained results unfortunately do not allow for a definite systematic assignation. Even if, at the end of this comparison, a relation with the Marattiaceae and Psaroniaceae seem to be possible, we believe that the inclusion of Weichselia within the Marattiales would be very doubtful considering the many specimens of this plant that have been studied and published so far. A comprehensive analysis of all organs must be performed.

Autecology

The external morphology and the LMA provide some insights to the possible autecology of Weichselia reticulata. Firstly, the presence of large elliptical scars at the base of the petioles, if interpreted as aerophores, indicates that the stem and petiole was in need of extra ventilation. This could be seen as an indicator of a partially submerged plant. However, most ferns have aerophores [START_REF] Davies | A brief comparative survey of aerophore structure within the Filicopsida[END_REF]. Large aerophores at the base of the petioles or stems in fact facilitate gaseous exchange when the epidermis is protected by a hard sclerotic layer (e.g. Cyatheaceae)

and/or when the petioles of the juvenile fronds are covered by mucilage while they unfurl (e.g. Palgiogyraceae). In this case, when the fronds are mature, leaf stomata take over the gas exchanges and the aerophores cease to be functional [START_REF] Davies | A brief comparative survey of aerophore structure within the Filicopsida[END_REF]. The morphology of the elliptical scars of Weichselia, similar to lenticels with closing layers, suggests that it might have had the function of a temporary aerophore. The presence of possible mucilage canals and the large size of the fronds further justify for the need of extra ventilation while the frond unfurled.

The tubercles of the outer, probably sclerotic, layer of the stems, petioles and primary rachises of Weichselia are similar to those covering the Cyatheaceae. They indicate that the plant might have been covered by scales or hairs. This sclerotic outer layer might also be the cause of the presence of aerophores.

If, on the other hand, the elliptical scars are interpreted as nectaries, an association with insects in order to avoid herbivory can be suggested. Nectaries in ferns seem to indicate an association with ants, which protect the fronds against herbivores [START_REF] Koptur | Nectaries in some neotropical species of Polypodium (Polypodiaceae): preliminary observations and analyses[END_REF][START_REF] Arens | Cyathea planadae, a remarkable new creeping tree fern from Colombia, South America[END_REF][START_REF] Koptur | Nectar secretion on fern fronds associated with lower levels of herbivore damage: field experiments with a widespread epiphyte of Mexican cloud forest remnants[END_REF]. The fact that ants most probably appeared in the Albian, ca 110 mya [START_REF] Grimaldi | A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants[END_REF], would rule out the association with these animals, at least in the early records of Weichselia. However, others such as spiders, parasitoids, predatory wasps, beetles, mirids or mites also feed on extrafloral nectar [START_REF] Heil | Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs[END_REF]. Insects from Bernissart have not been thoroughly studied, although they are present [START_REF] Godefroit | Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems[END_REF].

Terrestrial Hemiptera, beetles, wasps, and dipterans were present in the Upper Barremian locality of Las Hoyas (Delclòs and Soriano, 2016), where Weichselia is the most common fern remain.

Another explanation for the existence of fern nectaries has been suggested by [START_REF] Koptur | Nectaries in some neotropical species of Polypodium (Polypodiaceae): preliminary observations and analyses[END_REF], related to the elimination of metabolic by-products without an excessive loss of water in xerophytes. Weichselia has previously been interpreted as a xerophyte (e.g. Alvin, 1974;[START_REF] Watson | An English Wealden floral list, with comments on possible environmental indicators[END_REF].

High LMA is found in plants under high irradiance [START_REF] Poorter | Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[END_REF], and the position of the fronds in Weichselia suggests the sun would have fallen directly upon the leaves [START_REF] Blanco-Moreno | A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns[END_REF]. Fern fronds live around 2 to 3 years at most (literature cited by [START_REF] Karst | Are correlations among foliar traits in ferns consistent with those in the seed plants?[END_REF], and a high LMA generally indicates the fronds were especially long-lived (Tanner, 1983;[START_REF] Karst | Are correlations among foliar traits in ferns consistent with those in the seed plants?[END_REF]. This suggests Weichselia fronds were not shed regularly and grew at a lower relative rate [START_REF] Poorter | Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[END_REF]. This strategy is not very concordant with the interpretation of Weichselia as an early successional plant [START_REF] Barral | Local-scale analysis of plant community from the Early Cretaceous riparian ecosystem of Hautrage, Belgium[END_REF], but more so to a plant tolerant to fire [START_REF] Watson | An English Wealden floral list, with comments on possible environmental indicators[END_REF]. Weichselia was most probably a re-sprouter like Pteridium Gleditsch as suggested by Scott et al. (2000), and some tree-ferns that are fire-tolerant and re-sprout from buds in their fibrous trunks after a fire [START_REF] Ough | Decline in tree-fern abundance after clearfell harvesting[END_REF].

The environmental conditions of the habitat of Weichselia reticulata have been much discussed. Some authors suggest this fern was adapted to extreme drought conditions and attribute its presence in aquatic environments to transport from its natural habitat to fluvial ecosystems via flooding (Alvin, 1974). Others suggest these adaptations are related to high salinity habitats, and that Weichselia inhabited dune regions in marine areas [START_REF] El-Khayal | Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development[END_REF], or even that it was trophophyte in coastal wet ground that dried periodically [START_REF] Daber | A Weichselia-Stiehleria-Matoniaceae community within the Quedlinburg Estuary of Lower Cretaceous age[END_REF]). This study does not provide keys to the environment where Weichselia grew, however, it must be noted that some of the traits traditionally interpreted as xeromorphic might not be so. For example, the thick cuticles in ferns do not correlate with low humidity, instead they seem to be associated to cold and nutrient-poor environments (Kessler et al., 2007). Also, the presence of scales or hairs discussed in this paper, which were probably covering the stem and rachis of Weichselia, are related to protection from high insolation and not to aridity (Kessler et al., 2007).

Guidelines for reconstruction

We consider that the data herein obtained on the morphology, anatomy, and architecture of Weichselia reticulata does not allow for a complete reconstruction of the habit of the whole plant with enough confidence. However, it does shed new light on existing reconstructions and allows us to discuss which aspects are accurate or not.

Previous reconstructions of W. reticulata (Bommer, 1911;[START_REF] Daber | A Weichselia-Stiehleria-Matoniaceae community within the Quedlinburg Estuary of Lower Cretaceous age[END_REF]Alvin, 1971;[START_REF] Sender | New reconstruction of Weichselia reticulata (Stokes et Webb) Fontaine in Ward emend. Alvin, 1971 based on fertile remains from the middle Albian of Spain[END_REF]Poyato-Ariza & Buscalioni, 2016; Fig. 1A) are mainly based on the external morphology and on some thin sections of very fragmentary material. The CT-scan models herein analysed provide additional information on the anatomy and allow for a more accurate description of the stems. Although the illustrations provided in the previous reconstructions are artistic, if both these representations and the comments provided by the authors are analysed together, they can be discussed in the light of the new information obtained in this study.

The general habit of the plant, represented by the stem and organ insertions, differs from one reconstruction to another. The stem is however always represented straight, upright and aerial. The analyses here performed nevertheless do not provide direct evidence for the stem being upright. Both specimens studied by µCT-scan are incomplete and one side of the stem is in each case missing. However, the results allow us to conclude that: (1) It is not possible to know if the stem is dorsiventral or radial. (2) The presence of the elliptical scars, either if they are aerophores or nectaries, in the basalmost part of the petioles suggests that the stem was not buried. (3) The fact that both specimens show a curvature of the stem argues against an upright or tall stem.

There are however arguments supporting the reconstruction of Weichselia with an upright stem. These are: (1) the high density of the vascular system similar to the vascular system Palaeontology Palaeontology in monocots such as Dracaena marginata Aiton (Fig. 11; [START_REF] Haushahn | Branching morphology of decapitated arborescent monocotyledons with secondary growth[END_REF][START_REF] Hesse | Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree[END_REF] and (2) the orientation and origin of the vascular system in the acroscopic part of the petiole of IRSNB b 8425. Indeed, the analogy with Dracaena marginata can be further applied to the organisation of the petiole vascularisation that does not arise directly from the central strands and is perpendicular to the stem (Fig. 6B, 7B, and11A). In this plant, the perpendicular vascular strands act as "tensile cables" that transfer bending loads (Fig. 11B; [START_REF] Haushahn | Branching morphology of decapitated arborescent monocotyledons with secondary growth[END_REF]. If the large fronds of Weichselia reticulata are inserted in a plagiotropic position, as it has been previously suggested [START_REF] Blanco-Moreno | A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns[END_REF], on an upright stem the vasculature of the petiole bases could similarly act as "tensile cables". Fronds were large and most probably heavy (according to high LMA) and would need a good mechanical support at the petiole insertion. The asymmetric disposition of the "tensile cable-like" vascularization in the petiole could support an upright position of the stem. Nevertheless, even if the stems were upright, the plant would not have reached the height of the highest arborescent ferns (Recent tree ferns and Psaronius) according to the calculations following Niklas' formula (1994) (see results section).

Roots are present in all reconstructions, but their organisation does not fit what is seen on the specimens. Root insertions are always too small. They are inserted at very large angles in comparison to the possible rooting organ observed in specimen Pbot-00000-0127. [START_REF] Bommer | Contribution à l'étude du genre Weichselia[END_REF] and [START_REF] Sender | New reconstruction of Weichselia reticulata (Stokes et Webb) Fontaine in Ward emend. Alvin, 1971 based on fertile remains from the middle Albian of Spain[END_REF] draw them in a different position than observed in this study.

Petioles, although inserted at an excessively large angle, show a correct proportion in [START_REF] Bommer | Contribution à l'étude du genre Weichselia[END_REF]. This is also the case for Alvin (1971). They are too small in relation to the stem width in Poyato-Ariza and Buscalioni (2016). [START_REF] Sender | New reconstruction of Weichselia reticulata (Stokes et Webb) Fontaine in Ward emend. Alvin, 1971 based on fertile remains from the middle Albian of Spain[END_REF] suggest in their reconstruction that the fronds occur at the end of branches. Set aside that a possible branching of the stem has been described, petioles have definitely been observed, the pedate heads are thus not borne directly as the termination of branches. Finally, the Cycas like reconstruction of [START_REF] Daber | A Weichselia-Stiehleria-Matoniaceae community within the Quedlinburg Estuary of Lower Cretaceous age[END_REF] does not fit any of the here discussed results and is considered as the less accurate of all proposed reconstructions.

Palaeontology Palaeontology

The exact disposition of the plant fronds could not be ascertained from the studied specimens. The fronds are not opposite and the anatomy shows that there could be two petioles close to each other, possibly three if the stem is interpreted as dorsiventral and the putative root as a petiole. It is however impossible to know whether they are disposed in a half helix arrangement (more plausible if the stem is dorsiventral) or in a complete helix. The calculations performed following [START_REF] Brouat | Corner's rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[END_REF] suggest there could be up to two fronds per node, possibly ruling out the complete helix disposition. On the other hand, the position of the putative radicular organ, alternating with the petioles, and apparently associated with the younger petiole in specimen IRSNB b 8424, is similar to the root disposition in upright stems with helicoidally disposed leaves of the Marattiaceae (Bower, 1926), especially of the genus Danaea.

CONCLUSIONS

The revision of the material from Négresse that provided the first whole plant reconstruction of the emblematic, yet mysterious fern Weichselia reticulata, has yielded interesting results. No evidence has been found to refute the assignation of the material to Weichselia reticulata. Although anatomically distinct to all consulted fossil and extant ferns, this study suggests some affinities with the Marattiales. This link is further supported by the surface morphology of the stem. Similarities with the Cyatheales are interpreted as evidencing similarities in their autecology. Further analysis including thin sections of this and other material are necessary in order to study the secretory canals, and corroborate the absence of endodermis, two characters that would more clearly link Weichselia reticulata to the Marattiales.

A whole plant reconstruction is not possible with the material at hand, but a more precise description of the external "scars" and stem anatomy has been obtained. Some of the inferences by Alvin (1971) have been corroborated, such as the presence of aerophores (or Palaeontology Palaeontology nectaries) and "rooting organs". Additionally, the variables calculated for the reconstruction have provided some insights on the possible habit of Weichselia, which will be very valuable for future reconstructions based on more data and material. The new data obtained from the stems and fronds also allows for further interpretations of the autecology of this cosmopolitan fern.

Palaeontology Palaeontology

The slides of the CT-scan must be requested to the curator of the RBINS Collections of Paleontology, from the RBINS Scientific Survey of Heritage, currently Annelise Folie (annelise.folie@naturalsciences.be).

[please note that the data for this paper are not yet published and these temporary links should not be shared without the express permission of the author] 

FIGURE AND TABLE CAPTIONS

  Institutional abbreviations: MCCM-LH, Las Hoyas collection housed at the Museo de Paleontología de Castilla-La Mancha (Cuenca, Spain); IRSNB b and RBINS-PBOT, Palaeobotany collection of the Royal Belgian Institute of Natural Sciences (Brussels, Belgium); NHMUK PB V, Palaeobotany collection of the Natural History Museum (London, UK).

  leaf mass per area (LMA) was calculated following Peppe et al. (2014): Log LMA frond = 4.207 + 0.252*log (Petiole width 4 /Leaf area) Palaeontology Palaeontology

  Stem anatomy. Material. IRSNB b 0229, 8424 and 8425. The preserved diameter of the stem is 7.14 cm in IRSNB b 8425, and 3.64 cm in IRSNB b 8424. The stems are curved in both specimens, at a 115° angle in IRSNB b 8425 and at a 145° angle in IRSNB b 8424. The curvature in IRSNB b 8425 occurs at the level where a petiole is borne, and in IRSNB b 8424 where a possible root is borne (Fig. 4C-D and 6B). No branching has been directly observed, however, at the apical-most part of specimen IRSNB b 8424 the disposition of the vascular bundles could suggest dichotomous branching (Fig. 6D-G).

  , this corresponds to what is observed in Weichselia. Generally, nectary glands are found at the Palaeontology Palaeontology base of second or third order pinnae and pinnules and are recurrent in the different orders of ramification of the frond (White and Turner, 2012). No such disposition has been observed in Weichselia. Figure 8B shows a possible nectary or large protruding aerophore at the base of the petiole in Sphaeropteris intermedia (Mett.) R.M. Tryon, in a very similar position to the ones observed in Weichselia.
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 17 FIG. 1. A, Representation of all the reconstructions of Weichselia reticulata to date. B, fragment

  

  

  

  

  

  

  

  

  

  

  

Palaeontology

  ZEILLER, R. 1914. Sur quelques plantes wealdiennes recueillies au Pérou par M. le Capitaine Berthon. Revue générale de Botanique, 25, 647-674.

	Palaeontology

Acknowledgements. We would like to acknowledge the team managing the µCT-scan at the RBINS (Brussels, Belgium), especially Ulysse Lefevre for scanning and reconstructing the Y-Slices, and all his valuable help with all technical matters in this paper. We also acknowledge the Institut des Sciences de l'Evolution (Montpellier, France) and the labex CEMEB (ANR-10-LABX-0004) for the assistance in the use of the Avizo Software, and for allowing us to work on their installations. C.B.M. is supported by a FPI-UAM 2015 grant from the Universidad Autónoma de Madrid, and benefitted from a grant from the same organisation for the work in Montpellier. Collections in the Royal Belgian Institute of Natural Sciences, Brussels, were studied with the support of a grant from the SYNTHESYS Project (http://www.synthesys.info/), financed by the European Community Research Infrastructure Action under the FP7 Integrating Activities Program. Cyrille Prestianni is funded by the BRAIN project BR/143/A3/COLDCASE in the framework of which this research has been done. Anne-Laure Decombeix is funded by AMAP (Botany and Computational Plant Architecture), a joint research unit which associates CIRAD (UMR51), CNRS (UMR5120), INRAE (UMR931), IRD (R123), and Montpellier University (UM).

DATA ARCHIVING STATEMENT

Data for this study are available in the Virtual Collections of the RBINS: Specimen IRSNB b 8424: http://virtualcollections.naturalsciences.be/virtualcollections/paleontology/paleobotany/weichselia-sp Specimen IRSNB b 8425: http://virtualcollections.naturalsciences.be/virtualcollections/paleontology/paleobotany/weichselia

 Niklas (1994)and maximum height from the literature. TABLE 3. Variables used in the calculations of Corner's Rules following [START_REF] Brouat | Corner's rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[END_REF]. f data: [START_REF] Rolleri | Caracteres diagnósticos y taxonomía en el género Angiopteris Hoffm. (Marattiaceae Bercht. & JS Presl): I, Los caracteres[END_REF]Rolleri, 2004).