The first shoots of a modern morphometrics approach to the origins of agriculture

To cite this version:

HAL Id: hal-03036669
https://hal.umontpellier.fr/hal-03036669
Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The first shoots of a modern morphometrics approach to the origins of agriculture

V. Bonhomme1,2, E. Forster3, M. Wallace3, E. Stillman1, M. Charles4, and G. Jones3
1School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
2UMR 5554 Institut des Sciences de l’Evolution, équipe Dynamique de la biodiversité, anthropo-écologie, Université de Montpellier, CNRS, IRD, EPHE Place Eugène Bataillon, 34095 Montpellier, CEDEX 05, France
3Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET, UK
4Institute of Archaeology, 36 Beaumont St, Oxford, OX1 2PG, UK
Correspondence to: V. Bonhomme (v.bonhomme@sheffield.ac.uk)

Received: 12 October 2015 – Revised: 4 December 2015 – Accepted: 9 December 2015 – Published: 18 January 2016

1 Introduction

The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in the development of human society (Lev-Yadun et al., 2000). The establishment of agricultural economies, emerging initially in the Fertile Crescent of the Near East (Nesbitt, 2002), required the domestication of crops; ancient plant remains recovered from early farming sites provide direct evidence for this process of domestication. Archaeobotanical remains are typically preserved through charring (partial to complete carbonisation through exposure to heat) and recovered during archaeological excavation (Charles et al., 2015). Seeds of the same species, recovered from different sites and periods, can sometimes be seen to exhibit morphological differences, which may have arisen owing to variations in cultivation practices, climate, soils and altitude, etc. To explore these possibilities, morphological variation in seeds of wheat and barley between archaeological sites was recorded and mapped both in time and space. Results presented here suggest that modern morphometric approaches may help to test some long-debated hypotheses and pave the way for new insights into the evolutionary origins of agriculture in western Asia.

2 Material and methods

Grains of the “primitive” glume wheats einkorn (Triticum monococcum) and emmer (T. dicoccum), domesticated barley (Hordeum vulgare) and their wild progenitors (T. boeoticum, T. dicoccoides and H. spontaneum respectively), dating from ca. 13 000 to 9000 years before present, originating mainly from the Fertile Crescent region and now archived in various European institutions, were sampled. Three orthogonal views were photographed and grain outlines were converted into x–y coordinates. The three views of each grain were processed independently and later combined for analysis. Traditional measurements were obtained directly (length, breadth, thickness) or estimated (ellipsoid volume) based on these outlines. Outlines were then centred, scaled and aligned, and elliptical Fourier transforms were calculated (Kuhl and Giardina, 1982). The number of harmonics was chosen to encompass 99 % of the harmonic power for each view. Elliptical Fourier transforms turned the grain shapes into quantitative variables that were further treated using classical multivariate approaches, mainly ordination and classification. All calculations and analyses were performed with the MASS package (Venables and Ripley, 2015). Linear discriminant analyses were performed with the R environment (R Development Core Team, 2015) and the modern morphometrics package Mmocs (Bonhomme, 2015; Bonhomme et al., 2014).

3 Results and discussion

A total of 1378 grains were photographed in three orthogonal views, with 554 being of the genus Hordeum and 824 from Triticum. Grains were sampled from 14 prehistoric archaeological sites across southwest Asia (Fig. 1a). This, to our
knowledge, is the largest photographic database of ancient grains ever collected. Increase in grain size has previously been associated with domestication of cereals (e.g. Fuller et al., 2011), and this trend can be seen clearly in our data set. For instance, for einkorn and emmer grains there is a 50% increase in volume between 10 000 and 5000 BC when considering all sites together (Fig. 1b).

Principal component analysis on the whole data set (Fig. 1c) illustrates the difference between *Hordeum* and *Triticum* taxa. Cross-validation (leave-one-out) at the genus level with a linear discriminant analysis suggests this can be feasible with a high confidence level in the classification (95 and 98% of correct attribution for *Hordeum* and *Triticum* grains, respectively). Whilst an automated classification system remains some way off, such analyses may prove a valuable tool for aiding the identification of crop remains by archaeobotanists. Although it is unlikely that this would be used for the most commonly identified taxa, morphometric analysis may help to separate types that are difficult to distinguish by eye, such as wild and domesticated forms of a species or taxa that are traditionally grouped as indistinguishable (e.g. wild einkorn (*Triticum boeoticum*) and rye (*Secale* spp.)). For instance, 86% of wild and 75% of domesticated einkorn (*Triticum boeoticum* and *T. monococcum*) grains are correctly classified when species information is removed.

To conclude, these first results of a modern morphometric approach on the largest photographic database of ancient grains ever collected are promising, and they pave the way for exploration of changes in grain size and shape through time and across geographic regions.

**Acknowledgements.** This research is funded by the European Research Council project “Evolutionary origins of agriculture” PI: Glynis Jones, grant number 269030. This is publication ISEM 2015-254.

Edited by: D. Montesinos
Reviewed by: two anonymous referees

**References**


