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Abstract

Ion separation processes using polymer-enhanced ultrafiltration (PEUF) have

many advantages because they are solvent free and low energy consuming. In

order to design a new free solvent process for separation of natural actinides

and rare earth elements from ores, the selective sorption properties of two

valuable carbamoylmethylphosphonated-based polymers regarding to Th/U/Gd

mixtures were studied. This work highlighted the different selectivities between

the carbamoylmethylphosphonate and carbamoylmethylphosphonic diacid func-

tions. It showed the great interest of this kind of macromolecules for the design
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of a new process with lower environmental impact for hydrometallurgical treat-

ments of rare earth ores.

Keywords: Natural actinides, Rare earth elements, Thermosensitive and

flocculant polymers, Selective sorption, Th,U/Ln separation,

Carbamoylmethylphosphonated polymers

Introduction

Rare earth elements (REE) were discovered during the 18th and 19th centuries.[1,

2] They include the 14 lanthanides (Ln), scandium (Sc) and yttrium (Y).[3]

Since the sixties and with technological advances, use of REE was gradually

expanded.[4] REE have become much more important for industrials using

high technology owing to their unique magnetic, phosphorescent, and catalytic

properties.[5] These elements are critical for technologies involving magnets,

catalytic converters, batteries, optical lenses and electronic compounds.

Rare earths are not really rare. This name was given on the basis of some

assumptions made at the time of their discovery in the 18th century.[2] Since a

long time, it has been demonstrated that REE are really quite widely distributed
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in minerals. REE can be found with large amounts in various minerals such as

monazite and xenotime (phosphates), samarskite, euxenite and uranite (oxides),

and bastnaesite (carbonate-fluorides).[6, 7, 8, 9, 10, 11, 12, 13] Although REE

are mainly found in these minerals, a significant amount of natural radioelements

such as thorium, uranium, and their decay products are also present in ores.

These later have to be removed and recovered for their specific use in the nuclear

industry or for their specific conditioning. Monazite is a phosphate based min-

eral containing REE as well as Th and U ((REE,Th,U)PO4). Monazite is the

most radioactive mineral after uraninite (UO2), thorianite (ThO2) and uranoth-

orites ((Th,U)SiO4) due to the large amounts of thorium and uranium (from 2%

to 14% and from about 0.05% to 10% for Th and U, respectivelyy).[14, 15, 16]

Thus, large amounts of thorium and uranium can be removed from monazite and

may be recovered as by-products. Because thorium and uranium are of great

interest for nuclear industry since they can be used as nuclear fuel, recovery

processes of such by-products from REE industry were also considered.[17, 18]

Currently, after mechanical grinding then pretreatments steps, the cations
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present in the acidic liquor (REE(III), Th(IV), U(VI) and impurities) are sep-

arated by ion separation process such as chemical precipitation, solvent extrac-

tion, or solid phase extraction.[19] Although it was the most economical and the

simplest way to implement, precipitation process was not the most efficient. In-

deed, the drawback of this process is mainly due to co-precipitation phenomena

(partial precipitation of untargeted cations), which made this process less selec-

tive and could induce the use of expensive successive steps to reach satisfying

final purity.

Solvent extraction (SX) is currently the main method to separate REE, and

allowed reaching high degree of purity of each element.[20, 17] SX consists in

separating metal ions contained in the aqueous phase (liquor) by the use of an

organic phase. Organic phase is a mixture of a diluent and extractant molecules

with selective ligands such as carboxylic acids, amines, amides, organophos-

phorus, amidophosphonated or calixarenes.[21, 16, 22, 23, 24, 25, 26, 27, 28]

However, even if it was proven its efficiency for many years, solvent extraction

requires a large amount of aliphatic solvents such as dodecane, hydrogenated
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tetrapropene (THP) or kerosene. These solvents showed several risks as they

are flammable and harmful for health and environment.[29, 30, 31] To avoid the

use of aliphatic solvent, some processes using supercritical CO2 as diluent were

recently developed.[32]

Another alternative to avoid solvent was the use of sorbent materials as

resins, inorganic materials and hybrid materials in solid phase extraction pro-

cesses (SPE).[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] Organic or hy-

brid (inorganic-organic) materials are generally functionalized with ion exchange

or solvating sites with selective complexing groups. Unfortunately, in the case

of solid sorbents, the accessible complexing sites are located on porous surface

only,[47] the total accessible porous volume being dependent on cation diffu-

sion in the porosity. As a result, sorption capacity are in general low whereas

sorption kinetic is slow.

Since the last decade, low energy consuming processes have emerged such as

polymer enhanced ultrafiltration or polymer assisted ultrafiltration (PEUF/PAUF)

associating a sorption step on a hydrosoluble polymer with a separation step by
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Figure 1: Chemical structures of the poly(diethyl-6-(acrylamido)hexyl-
carbamoylmethylphosphonate) (P(CPAAm6C))[51] and the poly(diethyl-6-
(acrylamido)hexylcarbamoylmethylphosphonicdiacid) (hP(CPAAm6C))[53]

filtration.[48, 49, 50] The use of hydrosoluble sorbent allows making accessible

all complexing sites. In recent years, Graillot et al. developed thermosensitive

polymer enhanced filtration (TEF) process for wastewaters treatment.[48] TEF

enables an easier filtration step through thermosensitive polymers. In order to

design new process of lanthanides recovery from electronic waste, two hydrosol-

uble phosphonated based polymers were developed for PEUF like process: the

poly(diethyl-6-(acrylamido)hexylcarbamoylmethylphosphonate) (P(CPAAm6C))

and the poly(diethyl-6-(acrylamido)hexylcarbamoylmethylphosphonic diacid) (hP(CPAAm6C)

(Fig. 1).[51, 52, 53, 54] Several works demonstrated that phosphonate and car-

bamoylphosphonated ligands had selective properties for actinides +IV and +VI

respectively.[55, 56, 57, 26, 58]
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This paper deals with the phase separation of P(CPAAm6C) and hP(CPAAm6C)

in acidic media and their selective sorption properties regarding to Gd(III)/Th(IV)/U(VI)

solutions. In order to reduce the environmental impact of separation process,

polymer enhanced filtration process is planned for thorium and uranium sepa-

ration from REE.

1. Material and methods

1.1. Chemicals

1.1.1. Hydrosoluble polymeric sorbent

Poly(diethyl-6-(acrylamido)hexylcarbamoylmethylphosphonate) (P(CPAAm6C))

was synthesized according to the procedure detailed in a previous paper, [51]

whereas poly(diethyl-6-(acrylamido)hexylcarbamoylmethylphosphonic diacid (hP(CPAAm6C))

was obtained from P(CPAAm6C) hydrolysis as already described.[52] In supple-

mentary materials are presented the structural characterization of P(CPAAm6C)

and hP(CPAAm6C).
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1.1.2. Gd(III)/Th(IV)/U(VI) synthetic solutions

Caution! Thorium and uranium are α-emitting radioelements; precautions

should be followed for handling these nuclear matters.

Crystallized gadolinium(III) nitrate hexahydrate (Gd(NO3)3·6H2O, Aldrich,

metal basis trace, 99.99%), thorium nitrate (Th(NO3)4) and uranyl nitrate

(UO2(NO3)2) commercial standard solutions (10000 mg·L−1 in 4% HNO3) were

used for the preparation of synthetic solutions.

In order to model mineral leachates, synthetic mixtures containing 0.82 mol%

Gd, 0.10 mol% Th and 0.04 mol% U solution were used.[59, 6, 7] Gadolinium

was chosen as representative of all lanthanide elements. Solutions were prepared

in mQ water (resistivity ≤ 18.2 MΩ·cm) and pH was adjusted to 1 by slow drop

addition of concentrated HNO3 (68.0 - 70.0 %, Alfa Aesar).

1.2. Cloud point (CP) measurements

Thermosensitivity of the polymers was determined from the change in the

transmittance value through the polymer solution with temperature. The mea-
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surement of the transmittance was carried out using a 5 g·L−1 polymer solu-

tion with a Perkin Elmer Lambda 35 UV-Visible spectrometer equipped with

a Peltier temperature programmer PTP-1+1. A wavelength of λ = 500 nm

was selected for the analysis. The temperature ramp was fixed at 0.1 ◦C·min−1

between 20 ◦C and 50 ◦C. The thermosensitivity was characterized by a sudden

slope change in the transmittance curve. The cloud point (CP) values of the

polymer thus corresponded to the minimum of the derivative curves.

1.3. Dynamic light scattering (DLS)

Dynamic light scattering (DLS) measurements were recorded on a Malvern

Zetasizer Nano Series equipped with a He-Ne laser (λ = 632.8 nm). Samples

were introduced into the cells (pathway: 10 mm) after filtration through 0.45

µm PTFE microfilters to determine the hydrodynamic radius of polymer objects

in aqueous solutions. The correlation function was analyzed via the general

purpose method (NNLS) to obtain the distribution of diffusion coefficients (D)

of the solutes. For the dynamic study, the Stokes-Einstein equation allowed
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obtaining the apparent equivalent hydrodynamic radius (RH) from the Contin’s

method as described in Eq. 1:

RH =
kB · T

6π · η ·D
(1)

where T is the sample temperature sample (K), kb is the Boltzmann constant

(1.38·10−23 m2 · kg·s−2 ·K−1), η is the viscosity of the fluid (kg·m−1 ·s−1) and

D is the translational diffusion coefficient at infinite dilution (m2 ·s−1).

1.4. Sorption experiments

Sorption experiments were carried out using a dialysis tubular membrane

as described in previous papers.[52, 53] A 2 kDa membrane cut-off was cho-

sen to keep the polymer solution in the membrane tube, which was dipped in

cation solutions (see Supplementary Material). The solution was stirred during

the sorption experiment using magnetic stirring at room temperature (approx.

20◦C).

The concentrations of cations were checked before and after experiment in
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the bulk solution. When thermodynamic equilibrium was reached, the concen-

tration of free ions in dialysis were considered to equal the concentration in

the bulk, i.e. Ce,bulk = Ce,dial = Ce. The initial concentration of cation C0

(mmol·L−1) was considered in the total volume of experiment and was calcu-

lated from Eq. 2:

C0 =
Cbulk × Vbulk
Vbulk + Vdial

(2)

where Cbulk (mmol·L−1) and Vbulk (L) are the concentration and volume of the

bulk solution (out of dialysis), respectively. Vdial (L) is the volume of solution

contained in dialysis membrane.

After 24 h of stirring (optimized from kinetic experiments), the elemental

concentrations in solution at equilibrium, Ce (mmol·L1) were measured and the

sorption capacity at equilibrium, Qe (mmol·L1) was determined from the mass

balance (Eq. 3).

11



Qe =
(C0 − Ce) × V

m
(3)

where C0 (mmol·L1) is the initial concentration of the metal, m (g) is the

mass of polymer and V (L) is the total volume of solution.

Elemental concentrations were determined in solution by Inductively Cou-

pled Plasma Optical Emission Spectrometry (ICP-OES) with a Spectro Arcos

ICP spectrometer. The spectrometer was calibrated with 0; 0.5; 1; 5; 10 and 15

mg·L−1 standard solutions (prepared by dilution of 1000 commercial standards

of Gd, Th and U). All samples were diluted in 4% HNO3 to be within this

reference range.

2. Results and discussions

2.1. Phase separation properties of polymers

Previous work showed that the P(CPAAm6C) exhibited thermosensitive

behavior which resulted in a difference of solubility with the temperature as
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Figure 2: Thermosensitive behavior of P(CPAAm6C) in solution (A) photo obtained below
(left) and above (right) the cloud point (CP). (B) Variation of the transmittance vs. the
temperature for several pH values.

shown in Fig. 2A.[51] This property was due to the temperature dependency

of polymer-water and polymer-polymer interactions. Below the cloud point,

polymer-water interactions were favored and the P(CPAAm6C) was soluble

in aqueous solution. For temperatures higher than the cloud point, polymer-

polymer interactions became more stable than the polymer-water interactions,

leading to a phase separation of P(CPAAm6C). The variation of the transmit-

tance vs. the temperature θ was plotted in Fig. 2B for solutions containing

P(CPAAm6C) without acid and for several pH values (4, 3, 2 and 1) adjusted
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by addition of HNO3. P(CPAAm6C) in water exhibited a CP value of 42 ◦C

but a decrease of pH by an addition of HNO3 led to a sharp decline of the CP

down to 32 ◦C at pH = 1. Also, others important differences were observed.

In the case of polymer solution without acid and at pH = 4, the transmittance

decreased to reach 0 and remained null until temperature reached 50 ◦C. How-

ever, for pH values equal to 3, 2 and 1, the transmittance did not reach 0% but

increased again after being at 15%. This was due to the strong sedimentation,

which occurred during the measurement when temperature was higher than the

CP. It was confirmed by the simple visual observation of spectrophotometric

cuvettes for pH = 1, 2 and 3. In order to understand the different behaviors,

DLS measurements were performed at CP + 10 ◦C (Fig. 3).

For θ < CP, the polymer was soluble and hydrodynamic radius RH were

below 30 nm (see Supplementary Material). After heating, the phase separation

led to an increase of particle size when temperature was above the CP. The RH

of P(CPAAm6C) without nitric acid addition at θ = CP + 10◦C was about 171

nm while at pH = 1, the RH value was more than 11 times higher (about 1940
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Figure 3: Dynamic light scattering measurements at θ = CP + 10 ◦C for P(CPAAm6C) 5
g·L−1 without nitric acid (θ = 52 ◦C) and at pH = 1 (θ = 42 ◦C).

nm). These results explained the stability of polymer particles above the CP

value. Indeed, the sedimentation velocity varied as a function of the size and

thus, the smaller the particles, the lower the sedimentation velocity was.[60]

In contrast, hP(CPAAm6C) did not exhibit thermosensitive properties due

to hydrophilic phosphonic diacid moiety borne by each subunit. However, it

showed flocculation properties when it complexed lanthanides.[53] This property

was also of interest to develop an easy separation step.
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2.2. Selective sorption in Gd/Th/U mixed solutions

2.2.1. Sorption with P(CPAAm6C)

Previous works demonstrated the P(CPAAm6C) selectively with the pre-

ferred complexation of Gd(III) ions in the presence of Ni(II) in nitric conditions.[52]

Infrared spectroscopy confirmed that the sorption occured by solvation mech-

anism from the P=O and C=O oxygens of the carbamoylmethylphosphonate

function (cmp). In order to study the selective sorption behavior of the P(CPAAm6C)

towards actinides and lanthanides, sorption experiments were performed in mix-

ture containing 86 mol% of Gd(III), 10 mol% of Th(IV) and 4 mol% of U(VI).

The molar ratio of each cations was chosen in accordance with an averaged

stoichiometry determined in natural monazite minerals. In this work, the pH

was fixed to 1 by addition of HNO3 to model the solutions after the dissolution

process.

The sorption capacities Qe(Gd), Qe(Th) and Qe(U) with P(CPAAm6C)

chains vs. the global concentration of free cations
∑
Ce(cation) were determined
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Figure 4: Selective sorption of the P(CPAAm6C) obtained for Gd/Th/U mixtures: (A)
sorption capacity of each cation Qe(cation) in (mmol·g−1) vs. total concentration of
cations at equilibrium (mmol·L−1) and (B) partition diagram of each sorbed cation on the
P(CPAAm6C). Initial operating conditions: 50 mg of P(CPAAm6C), pH = 1, mixture
containing 86 mol%, 10 mol% and 4 mol% of Gd(III), Th(IV) and U(VI), at room temperature.

at equilibrium (Fig. 4A).

Sorption results showed that Qe(Th) increased continuously from 1.04×10−2

to 1.46 mmol·g−1 when increasing
∑
Ce(cation) from 9.56×10−2 to 11.82 mmol·L−1.

SimultaneouslyQe(Gd) increased from 3.50×10−3 to 1.53×10−2 mmol·g−1 when

∑
Ce(cation) ranged from 9.56×10−2 to 1.76 mmol·L−1 and then decreased

until 0.10 mmol·g−1. The Qe(U) value remained null, which demonstrated no

affinity of the P(CPAAm6C) for uranium. Thus, in the range of this study,

Qe(Th) was higher whatever the
∑
Ce(cation) values. Qe(Th) was approxi-
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mately equal to Qe(total) and the maximum capacity was not reached because

no plateau was observed. Hence, the maximum capacity Qmax(Th) should be

higher than 1.6 mmol·g−1 while Qmax(Gd) previously determined was about 0.6

mmol·g−1.[52]

From sorption data, the distribution of each cation χsorb(i) on polymer chain

was determined (χsorb(i) = Qe(i)/
∑
Qe). As shown in Fig. 4B, the distribu-

tion of thorium χsorb(Th) on the polymers chains increased from 72.5 mol% to

99.9 mol% between the lowest and highest concentrations while χsorb(Gd) and

χsorb(U) both decreased to reach 0.10 and 0 mol% respectively.

Selectivities are generally characterized by a separation factor (SF) between

two ions in di-component solutions. But since the initial solution contained

three different cations with non-equimolar distributions, it was chosen in this

work to quantify the selectivity using a selectivity index Si determined from the

initial concentrations and sorption capacities of each metals and defined by the

Eq. 4:
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Polymer
∑
Ce(cation) (mmol·L−1) SGd STh SU

P(CPAAm6C) 9.56×10−2 0.28 7.2 0.82
1.96 0.082 9.3 0.00
5.09 0.023 9.8 0.00
11.82 0.0012 10 0.00

hP(CPAAm6C) 1.92×10−2 0.90 0.75 3.8
1.58 0.78 0.64 6.7
4.46 0.41 0.59 14
11.18 0.028 0.056 24

Table 1: Selectivity index Si in Gd: 86 mol%, Th: 10 mol% and U: 4 mol% at pH = 1 for
various

∑
Ce(cation) in the case of P(CPAAm6C) and hP(CPAAm6C).

Si =
χsorb(i)

χini(i)
=
Qe(i) ×

∑
C0∑

Qe × C0(i)
(4)

where χsorb(i) is the molar distribution of a cation i on the polymer after

sorption and χini(i) is the initial distribution in solution. For Si = 1, the

distribution of sorbed cations is the same than the one of the solution which

meant that there is no significant selectivity i.e. there is not any cation favored.

On the reverse, for Si > 1, the cation i is selectively sorbed.

Calculated Si are listed in table 1 for
∑
Ce(cation) equal to 9.56×10−2,

1.96, 5.09 and 11.8 mmol·L−1.

The STh value was higher than 1 in all range of the study and increased

with
∑
Ce(cation). In contrast, SGd and SU remained lower than 1 and tended

19



toward 0 at higher cation concentrations. Although the Gd(III) was in a large

excess (86 mol%) compared to others, the STh remained the highest value even in

very small amounts and clearly highlighted the high selectivity of P(CPAAm6C)

for Th(IV) in these conditions.

2.2.2. Sorption with hP(CPAAm6C)

To compare the properties of hP(CPAAm6C) and P(CPAAm6C), the same

initial conditions than that used in part 2.2.1. Previous work has demonstrated

that the hcmp site allowed to obtain a better Qmax(Gd) value in Gd(III)/Ni(II)

mixture and both solvation and ion-exchange mechanisms were involved.[53]

Sorption capacities Qe(i) and cation partition sorbed on hP(CPAAm6C)

(χsorb(i)) when contacting with Gd/Th/U mixtures are represented in Fig. 5A

and B, respectively.

Results showed that Qe(U) continuously increased from 2.85×10−2 to 2.63

mmol·g−1 when increasing the
∑
Ce(cation) from 1.92×10−2 to 11.20 mmol·L−1.

However, in the same range of
∑
Ce(cation), Qe(Gd) increased from 1.41×10−1
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Figure 5: Selective sorption of the hP(CPAAm6C) obtained for Gd/Th/U mixtures: (A)
sorption capacity of each cation Qe(cation) in (mmol·g−1) vs. total concentration of cations at
equilibrium (mmol·L−1) and (B) partition diagram of each sorbed cation on hP(CPAAm6C).
Initial operating conditions: 50 mg of P(CPAAm6C), pH = 1, mixture containing 86
mol%, 10 mol% and 4 mol% of Gd(III), Th(IV) and U(VI), at room temperature.

to 7.21×10−1 mmol·g−1 and then decreased to reach 6.62×10−2 mmol·g−1. The

maximum Qe(Gd) = 7.21×10−1 mmol·g−1 was reached for
∑
Ce(cation) = 4.46

mmol·L−1. Qe(U) andQe(Gd) crossed for a
∑
Ce(cation) between 1.58 and 4.46

mmol·L−1. Qe(Th) weakly increased from 1.36×10−2 to 1.20×10−1 mmol·g−1

and then decreased to reach 1.53×10−2 mmol ·g−1.

The saturation of polymer with cations was not reached because no plateau

was observed in the range of the study. Hence, in view of the results, the
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maximum capacity Qmax(U) should be higher than 2.5 mmol·g−1.

In the same manner, from sorption data, the distribution of uranium χsorb(U)

on the polymer chains increased from 15.0 mol% to 97.0 mol% between the low-

est and highest concentrations while χsorb(Gd) and χsorb(Th) both decreased

to reach 2.4 and 0.6 mol%, respectively.

The selectivity indexes for uranium SU (Table 1) was higher than 1 in all

range of the study and increased from 3.8 to 24 with increasing the
∑
Ce. In

contrast, SGd and STh remained lower than 1 and they reached 0.03 and 0.06 at

higher cation concentrations, respectively. Although the amount of U(VI) was

the lowest (4 mol%) compared to Gd(III) (86 mol%) and Th(IV) (10 mol%) in

the starting mixture, the SU value remained the highest obtained. It clearly

evidenced the high selectivity of hP(CPAAm6C) regarding to U(VI).
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Figure 6: Schematic representation of proposed Th(IV),U(VI)/Ln(III) separation process by
thermosensitive polymer enhanced filtration (TEF) and polymer enhanced filtration (PEF)
applied for REE treatments.

2.3. Perspectives of the process coupling TEF and PEUF process units for U,Th/Ln

separation

All the results obtained in previous works and in this study concerning the

phase separations and selective sorption in Gd/Th/U mixtures together allowed

designing an innovative process for Th(IV),U(VI)/Ln(III) separation in REE

industry (Fig. 6).

(i) Th separation from Gd(III)/Th(IV)/U(VI) mixtures by thermosensitive

polymer enhanced filtration. The first separation unit would consist of

using both selective complexation for Th(IV) and thermosensitive behav-

ior of P(CPAAm6C). The successive sorption, aggregation and filtration
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steps should allow removing selectively Th(IV), and leaving uranium and

gadolinium in solution. The separation by filtration will be easy thanks

to the large hydrodynamic size of the particles - higher than 3800 nm in

diameter - generated in acidic conditions at a temperature above the cloud

point.

(ii) U separation from Gd(III)/U(VI) mixtures by polymer enhanced filtration.

The second separation unit would consist in using the selective complex-

ation/precipitation of hP(CPAAm6C) regarding to U(VI). Consecutive

sorption/precipitation and filtration should allow eliminating the U(VI)

from solution, leaving only trivalent lanthanides in solution. Precipitated

particles with sizes higher than 3800 nm would be easily filtered by con-

ventional filtration (> 10 µm) instead of ultrafiltration (commonly used

in the PEUF process).

Regeneration-filtration steps have to be further studied in order to achieve

both thorium and uranium species recovery and polymeric sorbent regeneration
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for reuse in additional sorption-filtration multi-cycles. Such developed process

will represent an important evolution in separating processes, allowing the re-

placement of the solvent extraction or conventional SPE processes.

Conclusions

In this work, two hydrosoluble polymeric sorbents bearing carbamoylmethylphos-

phonated moieties (P(CPAAm6C) and hP(CPAAm6C) allowed suggesting a

new solvent free sorption-separation process to perform the specific recovery

of Th(IV) and U(VI) from REE. By this way, it allows to purify REE from

radioelements

P(CPAAm6C) exhibited thermosensitive behavior: an increase of temper-

ature above the CP led to the insolubility of P(CPAAm6C). In acidic condi-

tions, the generated particles above the CP were characterized by sizes higher

than 3800 nm, making them easy to separate from the solution. Although

hP(CPAAm6C) was not thermosensitive, it showed selective flocculation prop-

erties in the presence of targeted ions and could be easily filtered by conventional
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filtration (PEF) (> 10 µm) instead of ultrafiltration (commonly used in PEUF

process).

Sorption results clearly confirmed that P(CPAAm6C) polymer had a stronger

affinity for Th(IV) compared to Gd(III) and U(VI) while hP(CPAAm6C) poly-

mer showed stronger selectivity for U(VI). The saturation conditions of each

polymer were not reached and higher concentrations of cations were not studied

because of the limitations in terms of radioactivity in the laboratory. Other

studies in concentrated solutions could be performed for the determination of

Qmax(Th) and Qmax(U) in the case of P(CPAAm6C) and hP(CPAAm6C),

respectively.

In order to implement both process units, it will be necessary to study

the regeneration-filtration steps for reuse in additional sorption-filtration multi-

cycles. Resulting Th(IV),U(VI)/Ln(III) separation process would be an original

and low energy consuming process allowing the removal and the specific recovery

of thorium and uranium. It could be considered as a very valuable alternative

of the solvent extraction process in REE industries.
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