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Gaël D. Maganga1,2., Mathieu Bourgarel1,3,4*., Peter Vallo5,6, Thierno D. Dallo7, Carine Ngoagouni8, Jan

Felix Drexler7, Christian Drosten7, Emmanuel R. Nakouné8, Eric M. Leroy1,9, Serge Morand3,10,11.
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Abstract

The rising incidence of emerging infectious diseases (EID) is mostly linked to biodiversity loss, changes in habitat use and
increasing habitat fragmentation. Bats are linked to a growing number of EID but few studies have explored the factors of
viral richness in bats. These may have implications for role of bats as potential reservoirs. We investigated the determinants
of viral richness in 15 species of African bats (8 Pteropodidae and 7 microchiroptera) in Central and West Africa for which we
provide new information on virus infection and bat phylogeny. We performed the first comparative analysis testing the
correlation of the fragmented geographical distribution (defined as the perimeter to area ratio) with viral richness in bats.
Because of their potential effect, sampling effort, host body weight, ecological and behavioural traits such as roosting
behaviour, migration and geographical range, were included into the analysis as variables. The results showed that the
geographical distribution size, shape and host body weight have significant effects on viral richness in bats. Viral richness
was higher in large-bodied bats which had larger and more fragmented distribution areas. Accumulation of viruses may be
related to the historical expansion and contraction of bat species distribution range, with potentially strong effects of
distribution edges on virus transmission. Two potential explanations may explain these results. A positive distribution edge
effect on the abundance or distribution of some bat species could have facilitated host switches. Alternatively, parasitism
could play a direct role in shaping the distribution range of hosts through host local extinction by virulent parasites. This
study highlights the importance of considering the fragmentation of bat species geographical distribution in order to
understand their role in the circulation of viruses in Africa.
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Introduction

Bats are linked to a growing number of emerging infectious

diseases (EID) [1,2] such as Ebola or Marburg Haemorrhagic

fevers [3–5], SARS Coronavirus [6] and the newish Middle East

respiratory syndrome coronavirus (MERS-CoV) [7]. This trend is,

inter alia, linked to biodiversity loss, changes in habitat use and

increased habitat fragmentation [8].

Few studies have investigated parasite species richness in bats

[9–11]. However, Turmelle and Olival [12] showed viral richness

in bats correlates with IUCN status and population genetic

structure. The distribution range of hosts has been often

considered as a potential determinant of parasite species richness

[13–15]. Hosts distributed over large areas are more likely to

encounter new parasites that may infect them [14,16]. However,

the shape of the distribution has received little attention [12,13]

but may have implications on the role of bats as pathogen

reservoirs. Distribution shape and habitat fragmentation were

observed at two different scales and Fahrig [17] suggested that the

processes affecting changes in distribution and habitat preference

of a species are independent. The shape of the distribution being

mostly the products of speciation, extinction and range expansion

[18]. Area shape is an important aspect of the distribution of

animals and plants, which is strongly linked to population

demographics and the subsequent contraction and expansion of

their distribution [19,20]. Therefore, area shape must be taken
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into account together with phylogenetic information in any

comparative analysis of parasite diversity. Two alternative

explanations can be proposed on the potential link between host

distribution shape and parasite species richness: a longer border,

due to fragmentation, may entail higher habitat diversity which

would intensify contacts with various sources of parasites leading

an overall increase in parasite diversity. Alternatively, a longer

border may increase host species vulnerability due to area

fragmentation and reduced host population size, hence pathogen

transmission.

The first comparative analysis was performed to test the

hypothesis that distribution shape and more specifically the

fragmentation of the distribution area, correlates with viral

richness in bats. We investigate the determinants of viral richness

in 15 species of African bats, on which we found new information

on virus infection and bat phylogeny. Body weight, roosting

behaviour and migration [10,21] were also included in our

analysis because of their potential influences on parasite or viral

species richness.

Materials and Methods

Ethic statements
All the capture events, animal handling, euthanasia and

transfer of samples across country borders were performed in

accordance with the guidelines of the American Society

of Mammalogists (http://www.mammalsociety.org/committees/

animal-care-and-use) [22]:

Bats were captured following recommendations by Kunz and

Parsons [23]. Captured bats were removed carefully from nets as

soon as possible to minimize injury, drowning, strangulation, or

stress. Safe and humane euthanasia was achieved through the use

of inhalant anaesthetic (halothane) prior to autopsy.

All work (capture, euthanasia and autopsy) was carried out with

authorization from the respective wildlife authorities of each

country. Capture and sacrifice Permit in Gabon: Nu0021/MEFE-

PA/SG/DGEF/DCF (2009) and Nu0031/MEFDD/SG/DGEF/

DFC (2010 and 2011), and from the Direction de la Faune et de la

Chasse, Ministère des eaux et forêts, de l’environnement et du

développement durable, Gabon. Capture and sacrifice permit in

Central African Republic (CAR): Nu038/MENAESR/D.CAB/

DGESR/DRS/SCGPRS. 08, and from the Ministère de l’Edu-

cation Nationale, de l’Alphabétisation, de l’Enseignement Supér-

ieur et de la Recherche, CAR. Sample collection in Senegal and

Republic of Congo: we used samples collected by previous studies

on filovirus in bat populations [4,24,25].

Study animals
Our study on the correlation of viral richness in bats was

conducted using 15 bats species from Central and West Africa. We

selected only the species for which we had enough samples and

information on viral richness to carry out analysis. Bats were

caught in the Republic of Congo, Gabon, Central African

Republic (CAR) and Senegal [4]. In the Republic of Congo, bats

were caught in 2005 and 2006 at Mbomo (0u25N; 14u41E) and

Lebango (0u399 N; 14u219 E). In Gabon captures occurred at four

sites in 2005, 2006, 2009 and 2010: the first one was located near

Franceville (1u37S; 13u36E) the largest town of the Haut-Ogooué

province in south-eastern Gabon; the second site was located close

to Lambarene (0u41S; 11u01E), the largest town of the Moyen-

Ogooué province in western Gabon; the third one was near

Tchibanga (2u51S; 11u01E), the main town of the Nyanga

province in south-western Gabon; and 3 caves (Faucon Cave:

1u07 N; 13u20 E, Zadié Cave: 0u98 N; 13u19 E and Batouala

Cave: 0u82 N; 13u45 E) situated in the Belinga Mountain in

Northeastern Gabon. In CAR, samples were collected in 2008 and

2009 at 3 localities: Lobaye (3u469 S; 18u349 E), Ombella-Mpoko

(4u339 S; 18u309 E), and Bangui (4u21 N; 18u33 E), the capital. In

Senegal, captures took place at Mbour in 2006 (14u259 N; 16u579

E) located about 80 km from Dakar, capital of Senegal (Figure 1).

Figure 1. Geographic location of field sites where bats were captured.
doi:10.1371/journal.pone.0100172.g001
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Bats were captured using mist-nets or harp traps. Mist-nets

(1262.4 m) were hoisted either in the tree canopy (defined as

‘‘foliage’’) or at the entrance of the small roosting caves (defined as

‘‘cave’’) just before twilight. Harp Traps were used at the entrance

of big caves known to harbor large population of bats. Following

capture, bats were identified on site by trained field biologists and

individually euthanized under sedation in a field laboratory. Bats

were weighed using a spring scale prior to autopsy and selected

internal organs were collected during autopsy and stored at 2

80uC for future virological analysis. Data on the ecological traits of

the 15 different bat species captured (i.e., roost type, body weight,

migratory behaviour and colony size) was gathered from published

literature (Table 1, see Annex 1 for references).

Bat phylogeny
In order to improve the quality of the comparative analysis, a

phylogenetic tree was built using 14 new molecular sequences of

the bat mitochondrial cytochrome b gene (Table 2). Total genomic

DNA was extracted from ethanol-preserved tissue samples

(muscle, liver or spleen) with Genomic DNA Tissue Mini Kit

(Geneaid Biotech) according to the manufacturer’s protocol. We

amplified the mitochondrial gene for cytochrome b (cytb) using

primer pairs F1 (modified; 59- CCACGACCAATGACAY-

GAAAA-39) and R1 from Sakai et al. [26] in most microbats,

L14724 and H15915 from Irwin et al. [27] in hipposiderids and

fruit bats, LGL765F and LGL766R from Bickham et al. [28,29] in

long-fingered bats (Miniopterus inflatus). The volume of PCR

reaction was 25 ml, it contained 12.5 ml Combi PPP Master Mix

(Top-Bio, Prague, Czech Republic), 200 mM of forward and

reverse primers respectively, and 2.5 ml of extracted DNA. PCR

protocol consisted in an initial denaturation at 94uC for 3 min, 35

cycles of denaturation for 40 s at 94uC, annealing for 40 s at 50uC,

and extension for 90 s at 65uC, and a final extension at 65uC for

5 min. Resulting PCR products were inspected on 1.5% agarose

gel and purified with Gel/PCR DNA Fragments Extraction Kit

(Geneaid Biotech). If multiple bands appeared, the one of

appropriate length was excised and purified from gel using the

same purification kit. Purified PCR products were sequenced

commercially (Macrogen, Seoul, Korea) with the respective

forward primer using BigDye Terminator sequencing chemistry

(Applied Biosystems, Foster City, CA, USA) on ABI 3730xl

sequencer. Sequences were edited in Sequencher 4.6 (Gene Codes,

Ann Arbor, MI, USA), manually checked for correct base reading

and protein coding frame, and aligned by eye in BioEdit 7.0 [30].

Sequences of two artiodactyl taxa, Bos taurus (D34635) and Ovis

ammon (AJ867276) were added to the alignment as outgroup taxa

for rooting the bat phylogeny. Phylogenetic tree including branch

lengths was inferred from aligned nucleotide sequences in

PAUP*4.0b (Sinauer Associates, Sunderland, Massachusetts,

USA) under maximum likelihood (ML) criterion and general

time-reversible model of evolution with a portion of invariable sites

and gamma distributed variation rates (GTR+I+C), which was

suggested as the best evolutionary model and whose parameters

were estimated in Modeltest 3.7. Topological constraints were set

before computation of the ML tree, as corresponding to

acknowledged phylogenetic relationships among genera, families

and higher taxonomic ranks of bats as referred by Teeling et al.

[31] and Almeida et al. [32]. Due to a priori definition of the tree

topology, analysis of nodal support was not performed. The

constrained ML tree was, however, compared to unconstrained

ML tree using a Shimodaira-Hasegawa (SH) test, in order to assess

possible significant difference, which might indicate unreliability of

the constrained tree. Sequences generated in this study were
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deposited in the EMBL/DDBJ/Genbank databases under acces-

sion number (JQ956436-JQ956449).
Viral richness

Two methods were used to document viral richness of the

studied bat species. First, we tested our bat samples for viruses. We

Figure 2. Two examples of bat geographical distribution showing contrasted distribution shape or fragmentation (from [69]).
doi:10.1371/journal.pone.0100172.g002
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used (i) nested Reverse-Transcription polymerase chain reaction

(RT-PCR) assay targeting the RNA-dependent RNA polymerase

gene using generic consensus primers for the genus Coronavirus

[33]; (ii) hemi-nested RT-PCR targeting the N terminal end of the

NS5 gene by using degenerate primers for the genus Flavivirus

[34,35]; and (iii) filoviruses (Marburg virus and Ebola virus) as

previously described [4,36] (Table 3). Then, additional virological

data were drawn from literature. In published papers, the methods

used to detect viruses directly were mouse inoculation, cell culture,

electron microscopy and PCR; indirect methods utilised to detect

markers of replication and viral infection in bats from organs,

tissues or blood were direct fluorescent antibody, indirect

fluorescence antibodies, radio immuno assay, rapid fluorescent

focus inhibition test, fluorescent antibody test, and seroneutraliza-

tion. The serological detection of arbovirus antibodies alone

(particularly genus Flavivirus and Alphavirus) was not considered as

evidence of a viral association because of some degree of cross-

reaction within the virus family, rendering it difficult to

differentiate viruses. Viruses forming distinct clusters within the

same genus were recorded as a unique viral species. For example,

in Rousettus aegyptiacus, bat gammaherpes viruses (Bat GHV) 1, 2, 4,

5, 6 and 7 were recorded as one unique viral species and Bat GHV

3 as another viral species [37]. For Ebola virus, different viral

species of this genus were considered as a single virus. For each bat

species, we calculated the viral richness as the total number of

different viruses described for the given bat species.

Geographical distribution size and shape
To test the impact of the fragmentation of the distribution area

on viral richness in bats, we used the geographic range maps of

each studied bat species provided by the ‘IUCN Red List of

Threatened Species’ web site, one of the biggest databases

available on mammalian distribution, based on international

experts’ knowledge. The maps were imported in a GIS using

MapInfo professional V 5.5. We then drew polygons following

species distribution to obtain area and perimeter measures for all

drawn polygons. The shape of the geographic range was estimated

using the ratio of the total perimeter to the total surface area

following the approach used by Kauffman cited in Fortin et al.

[38]. The higher the ratio, the greater is the fragmentation of the

distribution (Figure 2).

Table 4. List of viruses found in this study and completed with data from the literature.

Species Virus References

Eidolon helvum Lagos bat virus (LBV), Mokola virus, West Caucasian (WC) virus, Zaire Ebola virus (ZEBOV),
Ife virus (Orbivirus), Hendra virus, Nipah virus (NPHV), Rubulavirus, Coronavirus, Rotavirus
related, Simplexvirus, Parvovirus

[44–56]

Micropteropus pusillus LBV, Coronavirus, ZEBOV, Marburg virus (MBGV), Rift Valley Fever virus (RVF) This study; [4,57,58]

Rousettus aegyptiacus LBV, Bat Gammaherpesvirus (1, 2, 4, 5, 6, 7), Bat Gammaherpesvirus 3, Betaherpesvirus,
MBGV, Coronavirus, ZEBOV, Yogue virus, Kasokero virus, Chiropteran Papillomavirus,
Henipavirus, Rubulavirus, Flavivirus

This study; [4,5,36,37,47,48,54,57,59–63]

Miniopterus inflatus MBGV, Coronavirus, Rubulavirus [48,54,60,61]

Hipposideros cf. Ruber RVF, Rubulavirus, Morbillivirus unclassified, Coronavirus, This study; [54,58,64]

Hipposideros gigas Rubulavirus, Morbillivirus unclassified, Flavivirus, Shimoni bat virus, SARS-like CoV This study; [54,62,65]

Epomops franqueti ZEBOV, Reston Ebola virus, MBGV, Flavivirus This study; [2,4,24,66]

Coleura afra Morbillivirus unclassified [54]

Myonycteris torquata ZEBOV, Coronavirus (SARS-CoV), Henipavirus [2,4,24,54,61,66]

Hypsignathus monstrosus ZEBOV, Reston Ebola virus, MBGV, Coronavirus (SARS-CoV), NPHV [2,4,24,45,46,54,61,66]

Megaloglossus woermanni Rubulavirus [54]

Neoromicia tenuipinnis No virus found

Taphozous mauritianus No virus found

Mops condylurus Bukalassa bat virus, Dakar bat virus, Entebbe bat virus, Coronavirus (SARS-CoV) [61,67,68]

Epomophorus gambianus LBV, NPHV, ZEBOV, Reston Ebola virus [45,46,52,66]

West, East and Central Africa, Europe (species from zoo, unspecified origin), South Africa, USA (species from zoo, unspecified origin).
doi:10.1371/journal.pone.0100172.t004

Figure 3. Phylogeny of the African bat species investigated in
this study.
doi:10.1371/journal.pone.0100172.g003
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Comparative analyses of the determinants of viral
richness

Using information on bat phylogeny described above, we

calculated the independent contrasts for each of the investigated

variables with the package APE [39] implemented in R (R

Development Core Team 2013). To confirm the proper

standardization of contrasts, we regressed the absolute values of

standardized contrasts against their standard deviations. Contrasts

were then analysed using standard multiple regressions, with all

intercepts forced through the origin [40]. We tested the

importance of the phylogenetic signal on each variable using the

parameter K (which is the ratio of observed phylogenetic

covariance divided by the expected covariance under Brownian

motion), with the package picante [41] implemented in R (R

Development Core Team 2013).

As in previous studies [12,13], we performed standard multiple

regressions using independent contrasts, with the intercept forced

at zero and viral richness as the dependent variable. Independent

variables were geographical range, fragmentation of the distribu-

tion, roost type (foliage vs cave), average body weight and

migratory behaviour (yes vs no) (Table 1). We did not include

colony size as variable as information was missing for two species.

Number of sampled hosts or sampling effort (number of samples

we tested added to the number of samples reported in published

papers) ware also considered as an independent variable. The

analysis was conducted on 14 of the 15 captured species for which

sample size was considered sufficient (.30). We then selected the

best subset selection of variables using AIC criteria.

Results

Viral richness
We detected coronaviruses from Hipposideros cf. ruber (accession

numbers JX174638-JX174640) and Micropteropus pusillus

(JX174641 and JX174642). Flaviviruses were detected from

Rousettus aegyptiacus (JX174643), Hipposideros gigas (JX174644) and

Epomops franqueti (JX174645 and JX174646) (Table 3). We

compiled our results with the data found in the literature. We

found information on viruses for the 15 selected bat species except

for Neoromicia tenuipinnis and Taphozous mauritianus (Table 4).

Bat Phylogeny
We reconstructed the phylogenetic tree of the bat species

investigated in this analysis using 15 sequences under the

constraint of acknowledged taxonomic relationships (Figure 3).

The constrained tree (2lnL = 6439.91045) did not differ signifi-

cantly from the unconstrained tree (SH test: diff. lnL = 7.89267,

Table 5. Levels of phylogenetic signal in the variables investigated using the parameter K and the parameter lambda.

Variables K P (no signal)

Viral richness 0.519 0.044

Host sample size 0.071 0.529

Host weight (body weight) 0.089 0.433

Distribution size 0.164 0.302

Distribution shape 0.474 0.072

Roosting site 0.023 0.478

Migration 0.014 0.732

doi:10.1371/journal.pone.0100172.t005

Figure 4. Partial relationship between viral richness and
distribution fragmentation, assessed by a measure of distri-
bution shape using (A) phylogenetic independent contrasts, or
(B) raw values (and using residuals from the general regression
modelling in Table 7).
doi:10.1371/journal.pone.0100172.g004
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P = 0.126), and was thus considered as a reasonable depiction of

bat phylogeny.

Determinant of the viral richness
Only viral richness showed statistically significant level of

phylogenetic signal using estimates of K among all the traits

investigated (Table 5). However, distribution shape showed a level

of phylogenetic close to significance (Table 5).

Four variables were retained in the preferred model, which was

back-selected, based on the AIC criterion, and using the raw data

(non corrected for phylogeny) (Table 6). Using the independent

contrasts (variables controlled for phylogeny), the best model had

the same four independent variables (Table 6). Taking into

account host sampling, we found that viral richness in bats was

greater in large-bodied and widely distributed bats and when their

geographical distribution was fragmented (Tables 5 & 6). There

were no significant relationships between viral richness and

migratory behaviour or roosting behaviour. Finally, greater

fragmentation of the geographic distribution was highly associated

with increased viral richness (Table 7, Figures 4A & 4B).

Discussion

This is the first comparative analysis investigating the effect of

distribution shape, i.e. geographical range fragmentation or edge

range density, on viral richness in bats. Our first hypothesis was

that bats living in caves in sympatry with other species with

increased promiscuity and high population density of susceptible

individuals, would generate opportunities for cross-species trans-

mission of viruses and their rapid spread. However, our study does

not support this hypothesis. Our results showed a significant

influence of host body weight, distribution size and shape on viral

richness; viral richness increases with larger distribution areas and

fragmentation of bat distribution, according to the measure of

their distribution shape. Before discussing this correlation, the

difference between habitat fragmentation and habitat loss should

be considered since Fahrig [17] suggested that the two processes

are independent. An ecological explanation of the correlation

between viral richness and distribution could be interpreted in the

light of the historical biogeography of African bats, which falls

within the domain of phylogeny and phylogeographic studies [31].

Range distributions and shapes are the product of speciation,

extinction and historical displacements [18]. The accumulation of

Table 6. Comparison of models used to test the effects of several independent variables (weight, size and shape of distribution,
migration, roosting and sample size) on viral richness of bats (using the independent contrasts), using phylogenetic regression
(Independent contrasts) or non-phylogenetic regression (raw values).

Analysis Model ranks AIC

Phylogenetic regression (Independent contrasts) Weight + distribution size + distribution shape + sample size 19.93

Weight + distribution size + distribution shape + roosting + sample size 20.67

Weight + distribution size+ distribution shape + migration + roosting + sample size 22.66

Non-phylogenetic Weight + distribution size + distribution shape + sample size 17.91

Weight + distribution size + distribution shape + roosting + sample size 19.51

Weight + distribution size+ distribution shape + migration + roosting + sample size 20.87

Models are ranked from the least to the most supported according to corrected Akaike information criteria (AIC).
doi:10.1371/journal.pone.0100172.t006

Table 7. Best model explaining viral richness in bats using independent contrasts (initial model is given in Table 6), using the
phylogenetic regression (independent contrasts) and non-phylogenetic regression (raw values’ and independent variables are
ranked according to their contributions to the models using F values).

Analysis Independent variables Slope (SD), P F-test P R2,

F-total (P)

Phylogenetic regression (Independent contrasts) Distribution shape 10.25 (2.18), 0.001 35.8 0.0002

Host weight 3.12 (0.63), 0.0008 6.6 0.031

Host sample 1.59 (0.65), 0.037 5.9 0.03

R2 = 0.89

F4,9 = 17.9

(0.0003)

Non-phylogenetic Host weight 2.82 (0.87), 0.009 31.95 0.0002

Distribution shape 6.71 (2.38), 0.02 12.66 0.005

Host sample 3.17 (0.78),0.002 16.51 0.002

Distribution size 0.001 (0.0001), 0.01 7.16 0.02

R2 = 0.87

F4,10 = 17.1 (0.0002)

doi:10.1371/journal.pone.0100172.t007
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parasite species, viruses in the present study, could be related to

the historical expansion and contraction of bat species’ distribution

ranges, with potentially strong effects of distribution edges on virus

transmission. Indeed, the marginal effect of phylogenetic signal on

the distribution shape of the investigated bats (Table 5) suggests

that both history and current ecological drivers may have shaped

their distribution. For a given distribution area, the most

fragmented distributions contain more edges than the less

fragmented ones. Positive edge effects could be responsible for

the positive effects of distribution shape on either the abundance

or distribution of some bat species that may have facilitated virus

host switches. However, critical information to explore this issue

further is lacking due to the limits of current knowledge on African

bats’ phylogeography as well as the geographic distribution and

phylogeny of their viruses (such as bats and rabies-related viruses

[42]). Furthermore, it should be noted that the use of the

distribution area obtained from ICUN Red List might not

accurately describe the distribution shape of bat species. More

accurate and precise distributions would definitively improve the

robustness of the study.

An alternative explanation produced by a theoretical study,

attributes a direct role of parasitism in limiting the distribution

range of hosts through the extinction of local hosts by virulent

parasites [43]. However, this hypothesis has not been tested using

empirical data.

As previously emphasized, we must differentiate the fragmen-

tation of the distribution from habitat loss, as the consequences on

bat species of the habitat loss are likely to be different to the

consequences of the range fragmentation. Habitat loss following

land use changes has been perceived as a major threat to biological

diversity, whereas fragmentation may be positive or negative [42].

Habitat losses may increase species losses and, in turn, induce

changes in ecosystem functions, including parasitism. Several

studies have shown that parasites suffer more from habitat loss and

isolation than their hosts, but other studies emphasize that habitat

loss may increase the abundance of some hosts, and consequently

their parasite loads, through an increase of host density-dependent

transmission [13]. The consequences in terms of surveillance, spill-

over and emergence in human populations are then species

specific, in relation to their historical biogeography, actual range

size and shape, and on-going loss of habitat. As already

emphasized by Turmelle and Olival [12], while biogeography

can help to identify macro-ecological determinants of pathogen

richness, and potentially epidemiological processes, control strat-

egies need to be carried out at local geographic scales.

The number of viruses found in bats in our study added to the

viruses described in bats in the literature is certainly an

underestimation. Indeed, bats are reservoirs for many viruses

and have the peculiarity to maintain viral replication at relatively

low levels. Thus, chronicity of viral infections in bats requires the

use of highly sensitive detection tools. However, in our study,

samples were tested by Reverse-Transcription PCR assay using

generic consensus primers, known to decrease sensitivity. The

detection of these viruses may be improved by more sensitive

methods, such as high-throughput sequencing and viral isolation

yet much more expensive than PCR.
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