The circadian clock nuclear receptor Rev-erbα is implicated in autophagy alteration and beta-cell deficit under diabetogenic conditions

Safia Costes, Damien Laouteouet, Magalie Ravier, Morgane Delobel, Gyslaine Bertrand, Orianne Villard, Christophe Broca, Julia Mathieu, Anne Wojtusciszyn, Stephane Dalle, Aleksey V. Matveyenko

Background and aims:

Type 2 diabetes (T2D) is characterized by hyperglycemia secondary to pancreatic beta-cell deficit. Circadian disruption is considered as a risk factor for T2D. At the molecular level, circadian rhythms are controlled by Clock-Bmal1 with nuclear receptor Rev-erb α as a repressor. In contrast to Clock and Bmal1, Rev-erb α has received little attention in beta-cells. Importantly, in addition to its circadian function, Rev-erb α is a repressor of the autophagy degradation pathway, the latter being crucial for beta-cell health. Nevertheless, little is known about the clock genes/autophagy interplay that may contribute to beta-cell failure in T2D. Therefore, in the present study, we set out to address whether Rev-erb α -mediated inhibition of autophagy caused by diabetogenic stress is involved in beta-cell deficit. The objectives are: 1) To evaluate the impact of Rev-erb α overexpression on beta-cell integrity and autophagy. 2) To investigate whether the negative modulation of Rev-erb α could protect beta-cells from diabetogenic stressors.

Materials and methods: Experiments were performed with pancreatic beta-cell lines (rat betacell line INS-1E, human beta-cell line EndoC- β H1) and human islets. Rev-erb α protein levels were evaluated by western blot analysis. Levels of LC3-II (marker of autophagosome number) and p62 (also known as sequestosome-1) were used to monitor autophagic degradation and evaluated by western blot. Since p62 aggregated forms/inclusions are an additional marker for defective autophagy, p62 was also detected by immunofluorescence. Apoptosis was evidenced by cleaved caspase-3 emergence. Glucose-induced insulin secretion was assessed by Homogeneous Time Resolved Fluorescence (HTRF) technology.

Results:

Exposure of INS-1E cells to either glucotoxicity (30 mM glucose for 48h) or cytokines (cytomix of IL-1 β , TNF α and IFN γ for 24h) resulted in robust induction of Rev-erb α expression (1.5-2 fold, p<0.05) and corresponded with impaired autophagy flux characterized by increased protein levels of p62 (1.5-2 fold, p<0.05). Consistent with these data, exposure of beta-cells and human islets to a Rev-erb α agonist (SR9009) was characterized by impaired autophagy/lysosomal degradation as shown by increased LC3-II and p62 levels (p<0.05). Importantly, p62-positive inclusions were almost exclusively detected in SR9009-treated dispersed human beta-cells. As a consequence, defective glucose-stimulated insulin secretion (70 % decrease, p<0.05) and increased beta-cell apoptosis (increased cleaved caspase-3, p<0.01 *vs* vehicle) were detected in SR9009-treated INS-1E cells and human islets. In contrast, pharmacological inhibition of Rev-erb α (antagonist SR8278) or its knock-down by siRNA protected beta-cells from deleterious effects of glucotoxicity (INS-1E and EndoC- β H1) or cytokines-induced inflammation (INS-1E and human islets) by attenuating beta-cell apoptosis (~30%, p<0.05).

Conclusion:

Taken together, these data reveal for the first time an underexplored link between the core circadian clock nuclear receptor Rev-erba, autophagy and beta-cell failure under diabetogenic

conditions. These data also suggest a therapeutic potential of elaborating new Rev-erb α -based strategies to preserve a functional beta-cell mass in T2D.