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Abstract 

Ubiquitin defines a family of approximately 20 peptidic post-translational modifiers collectively 

called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their 

function and fate in many ways. Dysregulation of these modifications has been implicated in a 

variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3) and Nedd8 are the best-

characterized UbLs. They have been involved in the regulation of the activity and/or the stability 

of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the 

dysregulation of enzymes responsible for their conjugation/deconjugation has also been 

associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore 

constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we 

review the roles and dysregulations of Ubiquitin-, SUMO- and Nedd8 pathways in tumorigenesis, 

as well as recent advances in the identification of small molecules targeting their conjugating 

machineries for potential application in the fight against cancer.  

  



 3 

Introduction 

Ubiquitin is the founding member of a polypeptide family of approximately 20 protein post-

translational modifiers [1]. For the sake of simplicity, these, together with Ubiquitin, will be 

called the Ubiquitin-likes, or UbLs, hereafter. Among them, Ubiquitin, Nedd8 and the 3 members 

of the SUMO family (SUMO-1 to -3) are at the heart of this review. 

UbLs are small globular polypeptides of 8 to 12 kDa. They share low sequence similarity but 

high structural identity with one -helix and five -sheets (-grasp fold) followed by a C-

terminal tail [2]. In most cases, they are covalently conjugated to proteins via formation of an 

isopeptide bond between their C-terminal glycine and the  groupof lysines from 

substrates. Nevertheless, other, quantitatively minor, conjugations of Ubiquitin to other amino 

acid residues or at the N-terminus of proteins have been described.  

The mechanisms of conjugation are very similar amongst the UbLs even though each one of them 

is transferred to protein substrates using specific sets of enzymes. Yet, certain of these enzymes 

can intervene in the conjugation of more than one UbL type under certain conditions (Table 1). 

As UbL conjugation/deconjugation processes have been described extensively in a number of 

reviews [3, 4], they will only be addressed briefly below. UbLs are first activated by UbL-

activating enzymes called E1s. These use ATP to form a thioester bond between the UbL C-

terminal glycine and their catalytic cysteine. The C-terminal glycine is then trans-thiolated, 

allowing the UbL to be transferred onto the catalytic cysteine of UbL-conjugating enzymes called 

E2s. Although E1s and E2s can, in some cases, be sufficient to conjugate certain UbLs on target 

proteins, they most often require a third factor called E3 [5, 6]. More than 600 E3s have been 

proposed for Ubiquitin, but much less for the other UbLs. Certain E3s can be full-blown 

enzymes. This is the case of the E3 Ubiquitin ligases from the HECT family, which harbor 

catalytic cysteines forming thioester bonds with the Ubiquitin C-terminal glycine before transfer 

of Ubiquitin onto protein substrates. However, in most cases, E3s function as mere adaptors 

between E2s and substrates to confer reaction selectivity. Certain UbLs can be conjugated to 

themselves via the formation of isopeptide bonds between their C-terminal glycines and certain 

of their own lysines. This is especially true for ubiquitin, which can form chains involving each 

one of its seven lysines (K6, K11, K27, K29, K33, K48, K63). These chains can be homotypic or 

heterotypic due to the multiplicity of conjugatable lysines on Ubiquitin [7]. Mixed chains 

between different UbLs can also be formed. The best-known ones are those between Ubiquitin 

and SUMO or Nedd8 [8]. Importantly, UbL conjugation is reversible and highly dynamic with 



 4 

most substrates being constantly modified and demodified. Deconjugation is carried out by 

isopeptidases, which cleave the isopeptide bonds between UbLs and target lysines. This allows 

UbLs, which are highly stable polypeptides, to be recycled and reconjugated to other proteins. 

Some isopeptidases are also involved in the proteolytic maturation of UbLs, which are 

synthetized in the form of precursors displaying extra amino-acids at their C-termini. Similar to 

E3s, isopeptidases show substrate specificity or, at least, preference for particular chain linkages 

[9]. Concerning the SUMO pathway, deSUMOylases, such as SENP6 and SENP7, preferentially 

cleave SUMO-2 chains, whilst others, such as SENP-1 and SENP-2, rather deconjugate SUMO 

bound to target proteins [10]. Some deSUMOylases such as SENP-3, SENP-5 and USPL1 have 

preference for SUMO-2 over SUMO-1 [11, 12].  

The consequences of UbL conjugation are numerous. They depend on the UbL type, possibly the 

nature of UbL chains formed  and, obviously, the substrate. As they have been reviewed 

extensively elsewhere [3, 13–15], only the main physiological roles of Ubiquitylation, 

SUMOylation and Neddylation are considered hereafter.  

The biological outcomes of Ubiquitin conjugation are highly dependent on the chain linkage 

types, which, due to their diversity and complexity, create the so-called “Ubiquitin code” [14]. 

The most abundant and best-characterized Ubiquitin chains are long K48-linked ones (>4 

Ubiquitins). They constitute a protein degradation signal recognized by the 26S proteasome, 

which is the main cell proteolytic machinery [16–18]). This discovery led Avram Hershko, Irwin 

Rose an Aaron Ciechanover to be awarded the Nobel Prize in 2004. It is, however, important to 

keep in mind that K48-linked Ubiquitin chains can also be involved in signaling events and 

transcription regulation not involving protein destruction [19–21]. K63-linked chains are best-

known as involved in protein-protein interactions, signaling, inflammatory response, DNA repair 

and ribosomal function [8, 22, 23]. K11 chains were shown to play important roles in cell cycle 

regulation and the activation of the NK-B pathway [24, 25]. Moreover, Ubiquitin can also form 

linear head-to-tail chains when its C-terminal glycine is linked to the N-terminal methionine of 

another Ubiquitin [26, 27]. Such chains are formed by the LUBAC complex and play key roles in 

immune signaling [28]. Finally, Ubiquitin can also be conjugated to protein substrates as 

monomers, sometimes at multiple sites, to regulate transcription, DNA repair or membrane 

receptor internalization and possibly degradation [29–31]. 

More than 6,000 SUMOylated proteins have been identified recently thanks to proteome-wide 

mass spectrometry approaches [32, 33]. SUMOylation modifies the surface of target proteins and, 
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thereby, alter their function and fate. In particular, SUMO can recruit SUMO-interacting motifs 

(SIM)-bearing proteins. However, only a handful of such effectors of SUMOylation have been 

identified so far. This is, for example, the case of the SUMO-targeted Ubiquitin ligases 

(StUBLs). These proteins, which include RNF4 [34, 35] and Arkadia/RNF111 [36] harbor 

multiple SIMs recognizing poly-SUMO-2 chains irrespectively of the substrate they are bound to. 

As the interaction between SUMO and SIMs is of low affinity, SUMOylation most often 

stabilizes an already existing interaction rather than promotes a new one. This is typically 

illustrated by the binding of the DNA helicase Srs2 to SUMO-modified PCNA [37]. Albeit 

SUMO has been involved in many cellular processes, its best-described functions are nuclear, 

consistently with a higher accumulation of SUMOylated proteins in the nucleus. In particular, 

SUMOylation plays key roles in DNA damage repair through the modification of critical proteins 

involved in this process [38]. SUMO also modifies a high number of proteins involved in gene 

expression (transcription factors, co-regulators, histones, transcription machinery) and 

participates in the regulation of transcription [39–43]. SUMOylation often concerns protein 

complexes comprising multiple SUMOylatable subunits. In this case, the biological outcomes are 

usually thought to result from SUMOylation of the complex irrespective of the SUMOylation site 

or of the SUMOylated proteins within the complexes [44]. SUMOylation is highly regulated by 

stresses [45]. Some stresses affect limited number of SUMO substrates, while others can alter the 

activity of the whole pathway by affecting SUMO-conjugating- and/or -deconjugating enzymes. 

For example, upon proteotoxic stress induced by heat shock, SUMO-2 conjugation is 

quantitatively rewired to chromatin-bound proteins [46], which prevents protein aggregation and 

targets them for degradation by the Ubiquitin-proteasome system [47]. Oxidative stress is also a 

critical regulator of SUMOylation through its ability to induce the reversible inactivation of the 

SUMO E1 and E2 via the formation of a disulfide bond between their catalytic cysteines [48]. 

This redox regulation of SUMOylation participates in the activation of ATM kinase and is 

required for proper DNA damage response [49]. Reactive Oxygen species have also been 

involved in the regulation of specific SUMO E3 and isopeptidases [50].  

Nedd8 (Neural precursor cell-expressed developmentally down-regulated 8) is the closest kin of 

Ubiquitin, as they share 60% of homology. Cullins, which are key components of the family of 

the multimeric cullin RING Ubiquitin ligases (CRL) are, by far, the most abundant Neddylated 

proteins. Cycles of Neddylation/deNeddylation are required for their Ubiquitin ligase activity 

[51]. Nedd8 is also conjugated to many non-cullin substrates [15]. These include transcription 

factors, such as p53 [52], TAp73 [53] and E2F1 [54, 55], as well as the VHL (Von-Hippel-
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Lindau)[56], BCA3 (Breast-Cancer-Associated protein 3)[57], the chemokine receptor CXCR5 

[58] and several ribosomal proteins [59–62]. In these cases, Neddylation is involved in their 

localization, stabilization or regulation of their interaction with partners [15]. Similarly to 

SUMOylation, Neddylation has also been implicated in the response to proteotoxic stresses [63].  

Oncogenic and tumor suppressor pathways are controlled by UbLs 

UbLs, through the variety of proteins they conjugate, are involved in each one of the "Hallmarks 

of cancer", as defined by Hanahan and Weinberg [64]. For reasons of space, it is impossible to 

summarize here all cancer-relevant pathways regulated by UbLs. The reader is, therefore, 

referred to recent comprehensive reviews on this subject [65, 66]. Below, we will focus only on 

pathways that are controlled by at least two UbLs.  

The p53 pathway 

The tumor suppressor protein p53 is certainly the best-studied transcription factor in cancer 

where its major cell protection functions are most often, if not always, lost. Physiologically, p53 

participates in multiple cellular functions. They non-exhaustively include regulation of cell cycle 

and death, senescence, autophagy, DNA damage repair and metabolism. p53 is mutated in 

approximately 50% of tumors, where its mutations can be associated with oncogenic gains of 

function. In most of the other tumors, either the p53 gene is deleted or its activity, or that of its 

protein product, is inhibited following a diversity of mechanisms, which results in inability to 

control cell proliferation or to induce apoptosis or senescence [67].  

The first and best-characterized p53 modification by UbLs is Ubiquitylation [68]. The main 

cellular E3 ligase for p53 is the MDM2 protein, which maintains low p53 levels under basal 

conditions via K48-linked chain Ubiquitylation and subsequent proteasomal degradation [69, 70]. 

Upon genotoxic stress, for example, this Ubiquitylation is arrested, permitting p53 to accumulate 

and to exert its cell protection functions. On the contrary, upon hyperactivity or amplification of 

the pro-oncogenic MDM2 gene, p53 is continuously maintained at a low level, favoring 

tumorigenesis [71]. A similar pro-oncogenic p53 inactivation process occurs in human papilloma 

virus (HPV) 16/18-infected cervix epithelial cells where the p53-interacting viral protein E6 

recruits the cellular E6AP HECT E3 ligase [72, 73]. Interestingly, MDM2 can also mono-

Ubiquitylate p53, which entails nuclear export and, thereby, inhibition of transcriptional activity 

[74]. Such a cytosolic export also impacts other p53 functions, including inhibition of autophagy 

and induction of apoptosis [75]. Other E3 Ubiquitin ligases such as MSL2 [76] and WWP1 [77] 
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were shown to target p53 to the cytosol without, however, affecting its proteasomal degradation. 

Finally, the E3 ligase E4F1 was reported to Ubiquitylate p53 on chromatin. E4F1 increases p53 

ability to activate specific transcriptional programs related to cell cycle arrest without affecting its 

degradation [20](Figure 1) 

p53 activity can also be controlled by Neddylation, which involves the E3 ligases activities of 

MDM2 [52], as well as that of FBOX11 [78]. Neddylation occurs on 3 lysines (370, 372, 373) 

and reduces p53 transcriptional activity [52, 78–80]. In addition, p53 Neddylation was shown to 

limit its Ubiquitin-mediated nuclear export [79]. 

Finally, p53 can also undergo modification by SUMO on its lysine 386 [81–83]. However, the 

role of this SUMOylation is still debated and might depend on the cellular context [84]. Indeed, 

p53 SUMOylation was initially described to increase its transcriptional activity [81, 82]. 

However, other studies showed that SUMOylation is involved in neither p53 localization nor 

transcriptional activity [85]. SUMOylation was also suggested to regulate p53 subcellular 

localization. For example, SUMOylation of mouse p53 was shown to be required for nuclear 

accumulation and enhanced stability in granulosa cells [86]. However, and contrasting with the 

latter observation, androgen-mediated SUMOylation of p53 was suggested to be important for 

export of p53 to the cytosol [87] (Figure 1). 

The NF-B pathway 

The NF-B pathway is overactive in a vast majority of cancers where it is thought to participate 

in cancer cell resistance to apoptosis and sustained proliferation. This is especially true in 

hematological malignancies, where the function of various components of this pathway can be 

altered, notably by oncogenic mutations or rearrangements/translocations [88]. 

Under basal physiological conditions, the NF-B transcription factor is maintained latent in the 

cytoplasm through physical interaction with its IB inhibitor [89]. Ubiquitylation is involved in 

its activation at several steps. A typical example of NF-B pathway activation is as follows. In 

response to an appropriate extracellular stimulus, the RIPK1 (receptor-interacting 

serine/threonine protein kinase 1) kinase, is modified with non-proteolysis-inducing linear 

Ubiquitin chains by the LUBAC complex and K11- and K63-linked chains by the cIAP1 (cellular 

inihibitor of apoptosis protein-1) Ring domain-bearing Ubiquitin E3 factor. These 

Ubiquitylations serve as a platform for recruiting a downstream kinase effector complex (made 

up of TAK1, TAB2/3, IKK/NEMO), which activates another kinase complex (IKK complex 



 8 

made up of IKK and IKK. Finally, the latter phosphorylates IkB, which triggers its 

subsequent K48-linked Ubiquitylation and is followed by proteasomal degradation. The NF-B 

transcription factor is, thereby, released and can then enter the nucleus to activate its target genes 

[24].  

In the early days of the SUMO field, it was discovered that SUMOylation of IBcompetes with 

Ubiquitylation by targeting the same lysine residue (Lys 21)[90]. SUMOylation is also involved 

in the regulation of NEMO activity. In particular, NEMO gets SUMOylated upon genotoxic 

stress. This leads to its addressing to the nucleus and subsequent ATM-dependent Ubiquitylation 

and activation of the IKK complex in the cytoplasm [91].  

Finally, it has been suggested that NEMO is Neddylated, which inhibits the NF-B pathway [92]. 

Neddylation was also involved in the regulation of NF-κB-dependent transcription through 

modification of BCA3, one of its partners in chromatin. BCA3 Neddylation recruits the 

deacetylase SIRT1 and, thereby, was proposed to repress transcription of NF-κB target genes 

[57].   

The TGF pathway 

The TGF-β (Transforming Growth Factor β) pathway generally exerts tumor suppressor activity 

in normal or premalignant cells but, on the contrary, often promotes tumorigenesis at later stages, 

including metastasis. Depending on the cell/tumor type, it can be involved in the regulation of 

cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT) and cell migration [93].  

In the canonical pathway, the binding of TGF-β to its cell membrane receptor (made up of two 

subunits, TR-I and TR-II) initiates a cascade of intracellular phosphorylation events. Among 

the first phosphorylated proteins are Smad-2 and Smad-3, which are transcription factors 

maintained latent in the cytoplasm in the absence of TGF- receptor activation. Phosphorylated 

Smad-2 and -3 then assemble with the Smad-4 protein to form a trimeric complex that 

translocates into the nucleus where it binds to DNA and stimulates the expression of TGF-β 

target genes [94]. Interestingly, Ubls control this pathway at multiple and intermingled levels 

[95]. More specifically, Smad-7 is a cytoplasmic TGF-β-induced negative regulator of the 

pathway that can recruit Smurf-1 and Smurf-2 (Smad-specific E3 Ubiquitin ligase 1 and -2), two 

Ubiquitin ligases of the HECT family. These can Ubiquitylate TR-I, leading to its degradation 

and, thereby, induce a negative feedback loop on the pathway [96, 97]. TR-I Ubiquitylation, and 

consequently its degradation, can, however, be antagonized by the deUbiquitylase Usp15, which 
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associates with Smurf-2, and act as a positive regulator of the pathway [98]. Interestingly, Smurf-

1 and -2 are positively regulated by Neddylation via particular mechanisms. Indeed, Nedd8 is, 

first, transferred from the Nedd8-conjugating E2 enzyme Ubc12 to the catalytic cysteine of 

Smurf-1 via the formation of a thioester bond. It is, then, transferred to lysines of Smurf-1. This 

Neddylation increases the recruitment of Ubiquitin E2(s) and, thereby, activates the 

Ubiquitylation of Smurf-1 protein substrates [99].  Noteworthy, Smurf-1 and -2 were also shown 

to bind non-covalently to Nedd8, which also contributes to increasing their Ubiquitin ligase 

activity [100].  

Complexifying the picture, SUMO can also enter into the game at different levels, as diverse 

components of the TGF- pathway can undergo SUMOylation with implications in cancer [101]. 

For example, SUMOylation of TR-I increases the activation of Smad-3 with, as a biological 

consequence, enhancement of invasion and metastasis by Ras-transformed cells [102] and 

suppression of EMT in bladder cancer cells [103]. Smurf-2 is also SUMOylated (on lysines 26 

and 369) thanks to the SUMO ligase PIAS3, which increases its Ubiquitin ligase activity and, 

hence, the degradation of TR-I. In this case, important outcomes of TR-I proteolysis consist of 

decreased TGF-β-induced cell proliferation and reduced invasion by breast cancer cells [104, 

105]. Transcription factors downstream of the TGF-β pathway are also SUMOylated with 

sometimes antagonistic effects. For example, SnoN [106] and Sip1/Zeb2 [107] SUMOylations 

repress the pathway whereas those of Snail [108] and Slug [109] activate it. Finally, non-covalent 

SUMO binding might also be involved in the regulation of the TGF-β pathway. As a matter of 

fact, the already mentioned SUMO-targeted Ubiquitin ligase Arkadia/RNF111 can be recruited 

via its cluster of SIMs (i.e. most probably due to binding to SUMO-2 chains) to TGF- pathway-

target genes with, as a result, antagonization of the Polycomb repressor complex at the level of 

their regulatory domains [110]. 

PML-RARA in Acute Promyelocytic Leukemias 

Acute Promyelocytic Leukemias (APL) are a minor subtype (< 10%) of Acute Myeloid 

Leukemias. In most cases, their main driver tumorigenic mutations consists of a t(15;17) 

chromosomal translocation engaging the PML and RARA genes, leading to the expression of an 

oncogenic fusion PML-RAR. PML, which was initially viewed as a tumor suppressor, was one 

of the first SUMO substrates to be identified and is one of the most-abundantly SUMOylated 

proteins in the cell [111–113]. Through self-assembly, it forms the so-called membrane-less PML 
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nuclear bodies, which recruit many proteins thanks to SUMO-SIM interactions. Recruited 

proteins can undergo SUMOylation in PML bodies due to the presence of the SUMO E2 Ubc9 

within these structures (Sahin et al, 2014). Physiologically, PML bodies are seen as structures 

fine-tuning a variety of cellular activities that include responses to stresses and viral infections, as 

well as control of cell death, senescence or DNA repair. It has long been known that they are 

disrupted by the PML-RAR fusion protein in APL cells [115], which is essential for 

oncogenesis. Interestingly, the combination of arsenic trioxyde and retinoic acid has been shown 

efficient at curing APL patients. Indeed, it consists of the first successful oncogenic protein-

targeted therapy that has been described [116]. In brief, the drug combination entails the 

polySUMOylation of PML-RAR, which is followed by the recruitment of the StUbl RNF4 and, 

hence, its Ubiquitylation and degradation by the proteasome [34, 35]. An important consequence 

of PML–RARα destruction is not only induction of cancer cell differentiation into short-lived 

granulocytes but also abrogation of cancer cell self-renewal through the reformation of PML 

nuclear bodies and subsequent p53 pathway activation [117]. 

Deregulations of UbL pathways in cancer 

Many UbL enzymes are dysregulated in cancers 

Many enzymes and regulators of UbL-conjugating and -deconjugating pathways are dysregulated 

in various cancers (Table 2) and there is increasing evidence linking these dysregulations to 

tumorigenesis, cancer progression, metastasis or resistance to anticancer drugs. For reasons of 

space, it is not possible to describe all dysregulations that have been reported in the literature. 

Some illustrative examples are, however, summarized below. 

Dysregulation of the Ubiquitin pathway enzyme in cancer.  

The Ubiquitin pathway is far more complex than the SUMO and Nedd8 pathways, which 

increases the possibilities of dysregulations associated with cancer (Table 2). Two particularly 

illustrative examples of dysregulations of this pathway are presented below. 

The first one concerns the BIRC1 to -8 (baculovirus IAP repeat-containing protein; IAP standing 

for inhibitors of apoptosis proteins) family of Ubiquitin E3 ligases. These enzymes play key roles 

in the activation of the NF-B pathway and the inhibition of apoptosis. Their overexpression 

appeared associated with increased resistance to therapies and adverse prognosis [118]. This is 
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particular clear for BIRC4 (also called XIAP for X-linked inhibitor of apoptosis protein), which 

is overexpressed as early as the first stages of breast and colon carcinogenesis. This leads to 

inhibition of autophagy through the degradation of the autophagy receptor p62 and enhances 

tumor cell proliferation [119]. BIRC4 is also overexpressed in B-cell lymphomas and associated 

with weaker response to mitotic spindle poison-based chemotherapies. This is due to its increased 

stability resulting from its deUbiquitylation by the isopeptidase USP9X that is also overexpressed 

in the same tumors [120].   

The second example deals with E3 ligases from the SCF (Skp1-Cullin1-F-box protein) family, 

which are also often dysregulated in cancer [121]. This is best-exemplified by various F-box 

proteins, which are the SCF components responsible for the specificity of substrate recognition 

[122]. For example, FBXW7 is a well-characterized tumor suppressor thanks to its ability to 

recruit oncogenic proteins such as c-Myc, c-Jun, c-Myb, Aurora-A for SCF-mediated 

Ubiquitylation and subsequent proteasomal degradation [123]. Consistently, disabling mutations 

of FBXW7 are found in numerous cancers. This is, for example, the case in T-cell Acute 

Lymphocytic Leukemias (T-ALL), with up to 30% of patients presenting mutations in its gene 

[124] but also in colorectal adenocarcinoma, uterine endometrial carcinoma and bladder 

carcinoma. Skp2 is another F-Box protein dysregulated in many cancers [125]. Its substrates 

include the cell cycle inhibitor p27
Kip1

. Its overexpression in many cancers is associated with a 

bad prognosis and is generally inversely correlated to p27
Kip1

 expression [126]. The third F-Box, 

which is often dysregulated in cancer, is -TRCP (also called FBW1A). It is overexpressed in 

various cancers, including colorectal tumors where it exerts prooncogenic actions through 

activating the -catenin and NF-B pathways [127]. 

Overactivation of the Nedd8 pathway in cancer is often associated with bad prognosis 

Strikingly, most enzymes of the Nedd8 pathway are overactivated in lung adenocarcinoma and 

squamous-cell carcinoma [128]. Along the same line, high Nedd8 expression is an adverse factor 

in nasopharyngeal carcinoma [99]. Moreover, the Nedd8-activating E1 (formed of the Nae1 and 

Uba3 subunits) and -conjugating E2 (Ubc12) enzymes were found upregulated in >2/3 of a 322 

patient cohort with intra-hepatic cholangiocarcinoma, which was associated with higher global 

protein Neddylation and tumor progression [129]. Finally, the Jab1/CSN5 protein, which is 

responsible for deNeddylation of the members of the CRL family of Ubiquitin E3 ligases (see 

above), was found overexpressed in numerous cancers (breast cancer, ovarian cancer, 

hepatocellular carcinoma, non-small cell lung cancer, nasopharyngeal carcinoma, etc…) and 
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associated with adverse prognosis [130].  

Dysregulations of the SUMO pathway in cancer  

Increasing evidence suggests that both SUMO conjugation- and deconjugation machineries are 

dysregulated in various cancers (Table 2). Yet, the contributions of these alterations to 

tumorigenesis have not often been established formally in most cases [65]. Interestingly, the level 

of Uba2, the catalytic subunit of the SUMO-activating E1 enzyme, is increased in colorectal 

cancer tissues, the highest Uba2 expression being associated with both the highest colorectal 

cancer stages and the poorest prognosis [131]. The SUMO-conjugating enzyme Ubc9 is also 

overexpressed in many cancers. This is the case of hepatocellular carcinomas, where its 

overexpression participates in the resistance to chemotherapies [132]. HyperSUMOylation has 

also been described in Myc oncogene-driven lymphomas. This results from a strong 

transcriptional activation of the expression of most enzymes of the SUMO pathway and is 

essential for tumorigenesis [133]. Using synthetic lethality screens, it was also shown that Myc-

overexpressing breast cancer cells are highly dependent on a functional SUMO pathway for 

growth and survival [134], pointing to a novel therapeutic windows through targeting 

SUMOylation enzymes in this cancer type. Finally, deSUMOylases of the SENP family are either 

up- or down-regulated in cancers. SENP1 is, for example, overexpressed in prostate cancer, 

where it promotes tumor formation and metastasis [135] and downregulated in osteosarcomas, 

which is important for the maintenance of cancer stem cells [136].  

Targeting UbLs: new perspectives in cancer treatment 

Considering their critical roles and their widespread dysregulations in cancer, UbL pathways 

have emerged as promising therapeutic targets. Considerable efforts have consequently been 

made worldwide to develop strategies to inhibit their enzyme components [137]. We will focus 

here on the strategies used to target E1, E2 and E3 factors. For information on the targeting of 

deconjugating enzymes, the reader is referred to recent review [138, 139]  

E1 inhibitors 

- Ubiquitin E1 inhibitors  

PYR-41 and PYZD-4409 were the first described inhibitors of an Ubiquitin-activating E1 

enzyme. They are based on a pyrazolidine cycle and were identified during chemical library 

screenings [140, 141]. They bind to UBE1 and inhibit the formation of the thioester bond with 

Ubiquitin. Whether they inactivate UBA6, the second Ubiquitin E1, has however not been 
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determined yet. PYZD-4409 was shown to induce apoptosis of Acute Myeloid Leukemia cells, 

with minimal toxicity for normal hematopoietic cells. It also displayed anti-tumoral activity in 

vivo in mice xenografted with human AMLs [140]. A more potent inhibitor of UBE1, TAK-243 

(also known as MLN7243), was generated recently by Takeda Pharmaceuticals [142]. It forms an 

adduct with Ubiquitin and inhibits UBE1 in the nanomolar range. When used on cell lines, it 

leads to cell cycle arrest, induction of ER stress and impaired DNA damage response. 

Interestingly, TAK-243 showed (i) anti-tumor activity in vivo in immunodeficient mice 

subcutaneously grafted with various human tumor cell lines [142] and (ii) anti-leukemic activity 

on primary human AML cells both in vitro and in vivo after xenografting to immunodeficient 

mice (PDX) [143]. Finally, in a phase I dose-escalation clinical trial (clinicaltrial.gov identifier: 

NCT02045095) involving 29 patients with advanced solid tumors, it however, entailed serious 

adverse events in more than 1/3 of the individuals treated. Its in vivo efficacy could be 

demonstrated by immuno-histochemistry using antibodies directed to either polyUbiquitin chains 

or Ubiquitylated-histone H2B (uH2B; which is the second most Ubiquitylated proteins in 

mammalian cells after Ubiquitylated H2A). A second phase I trial is scheduled to start soon with 

patients undergoing relapse or suffering from hematological malignancies refractory to standard 

chemotherapies (clinicaltrial.gov identifier: NCT03816319) 

- Nedd8 E1 inhibitors  

MLN4924, also called TAK-924 or pevonedistat for its clinical form, is the first mechanism-

based inhibitor of a UbL E1 enzyme that was designed by the Millenium-Takeda company. As 

TAK-243, MLK4924 is an ATP-competitive inhibitor of the Nedd8-activating E1 enzyme NAE. 

It forms a covalent adduct with Nedd8, which is catalyzed by NAE. The adduct cannot be 

transferred to Nedd8 E2s, blocking the activity of the E1, including in vivo [144]. Initial 

experiments showed that the treatment of immunocompromized mice xenografted with HCT-116 

colon cancer cells with MLN4924 led to increased DNA-damage in cancer cells and limited 

tumor growth [145]. MLN4924 was then shown to have promising antitumoral activity in various 

preclinical cancer models, including patient-derived xenografts (PDX). Several phase I clinical 

trials in cancer patients have shown it is well tolerated [146–148] and various phase II trials have 

now been launched, in particular to treat hematological malignancies. MLN4924 was also shown 

to synergize, both in vitro and in vivo, with genotoxic drugs such as Cytarabine [149] or the 

demethylating agent Azacytidine [150] in AMLs. A phase Ib clinical trial in elderly patients unfit 

for conventional chemotherapies suggests a potential clinical benefit for the combination of 

Azacytidine and Pevonedistat [151]. A randomized phase III trial involving 450 patients with 



 14 

AML, CML (Chronic Myelomonocytic Leukemia) or MDS (Myelodysplastic syndrome) is now 

ongoing to prove the efficacy of this combination on a large scale (clinicaltrial.gov identifier: 

NCT03268954) 

- SUMO E1 inhibitors  

Ginkgolic acid was identified as an inhibitor of the SUMO-activating E1 enzyme during a 

screening using botanical extracts. This molecule, and its anacardic acid derivative, were shown 

to bind to the E1 and to inhibit the transfer of SUMO from the E1 to the E2 [152]. Anacardic acid 

was shown to inhibit cell division, to induce apoptosis and/or to inhibit migration of various 

cancer cell lines and primary samples [153–157]. It was also shown to limit tumor growth in mice 

xenografted with human KG1a AML cells [153]. However, anacardic acid is not a potent 

SUMOylation inhibitors, as it requires concentrations above 25 µM to inhibit SUMOylation 

when used on cultured cells [152] and its use in preclinical models is unfortunately limited by its 

very poor solubility. Moreover, anacardic acid has been shown to inhibit various other enzymes, 

the best characterized one being the Histone Acetyl Transferase p300 [158]. Recently, Takeda 

Pharmaceutical has developed ML-792, a mechanism-based inhibitor of the SUMO E1 with 

nanomolar potency [159]. Similarly to the other UbL E1 inhibitors developed by Takeda 

Phamaceutical, it forms a covalent adduct with SUMO that is catalyzed by the SUMO E1. 

Treatment of cell lines with this inhibitor induces strong mitotic defects, which leads to their 

apoptosis. Interestingly, ML-792 preferentially affects the proliferation and viability of cancer 

cells overexpressing the Myc oncogene in vitro [159].   

E2 inhibitors 

Few inhibitors inhibiting UbL-conjugating E2 enzymes have been discovered so far and none of 

them is used in clinical trials yet. 

The NSC697923 molecule was originally identified in a screen for molecules inhibiting the NF-

B pathway. It actually binds to the catalytic cysteine of the Ubc13-Uev1A Ubiquitin E2 that 

catalyzes the formation of K63-linked polyUbiquitin chains. Thereby, it prevents the formation of 

the thioester bond with Ubiquitin [160, 161]. This inhibitor limits the proliferation of diffuse 

large B-cell lymphoma cells in vitro [160]. BAY 11-7082, which was also initially reported as an 

inhibitor of the NF-B pathway, was subsequently shown to inhibit K63-linked polyUbiquitin 

chains formation by targeting the catalytic cysteines of Ubc13 and UbcH7 [162]. CC0651 is an 

allosteric inhibitor of the CDC34 Ubiquitin E2, which is associated with Ubiquitylation by cullin-

RING ligases. It prevents the discharge of Ubiquitin to acceptor lysines on the target proteins. In 
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particular, this molecule leads to an accumulation of the CDK inhibitor p27
kip1

, a target of the 

SCF complex, which contributes to decreased cancer cell lines proliferation [163, 164]. Using a 

virtual screening, the triazine analog SMI#9 was identified as an inhibitor of the Ubiquitin E2 

Rad6B via binding to its catalytic site [165]. This molecule was shown to enhance cancer cell 

sensitivity to platinum-based drugs, including in vivo [166]. 

Small molecules targeting the SUMO E2 Ubc9 have also been identified in various screens. 

Spectomycin B1, which was originally identified as an antibiotic, directly binds to Ubc9 and 

prevents to formation of the Ubc9-SUMO thioester bond. It inhibits ER-regulated gene 

expression and growth of ER-positive breast-cancer cell lines [167, 168]. The flavonoid 

derivative 2-D08 was found to inhibit the transfer of SUMO from Ubc9 to target proteins [169]. 

Moreover, 2-D08 also sensitized non-promyelocytic AML cells to retinoids-induced 

differentiation and death both in vitro and in vivo [170]. Unfortunately, all of these SUMO E2 

inhibitors have low potency and poor solubility, which prevents their use in therapy.   

 

E3 inhibitors 

Inhibiting E1 or E2 enzymes affects the activity of the whole UbL pathway, which may entail 

deleterious effects on normal, non-cancerous cells. Targeting E3s is consequently considered as a 

more specific and, potentially, less toxic approach in living individuals. To date, no molecule 

targeting SUMO or Nedd8 E3s has been identified. By contrast, many molecules targeting 

Ubiquitin E3s have been discovered [171], as illustrated below in the case of MDM2 and IAPs.  

- MDM2 inhibitors  

As mentioned previously, MDM2 is physiologically responsible for the Ubiquitylation of the 

tumor suppressor p53, but is overexpressed in numerous cancers, preventing p53 pathway 

activation, in particular in case of genotoxic insults. Inhibiting MDM2 pharmacologically 

therefore constitutes an intense research area with several molecules in preclinical development 

and others already in clinical trials [172]. Nutlins are imidazoline compounds, which compete 

with p53 for the binding to MDM2. Such a competition restores the p53 pathway via inhibiting 

p53 degradation and induces cell cycle arrest and apoptosis of cancer cell lines both in vitro and 

in vivo [173]. RG7112, a member of the Nutlin family, was the first MDM2 inhibitor to be used 

in phase I clinical trials, in particular for liposarcoma- [174] and hematological malignancies-

presenting patients [175]. This compound was shown to efficiently activate p53 in these tumors 

and a fraction of patients showed a clinical response. However, therapy-related adverse events 



 16 

were observed in most of treated individuals. Quite similarly to Nutlins, MI-219 mimicks p53 

primary structure motifs, binds to MDM2 and prevents its association with p53. It permits robust 

inhibition of tumor growth in vivo without affecting normal tissues in mouse cancer models 

[176]. AMG-232 is also to be added to the list of small molecules inhibiting the p53-MDM2 

interaction [177]. This molecule, which can be administered orally and is highly potent, is 

currently tested in phase I and II clinical trials [178]. Another emerging approach to target the 

p53/MDM2 interaction is the use of stapled peptides. These peptides mimick -helixes through 

side-chain crosslinking between non-natural amino acids introduced in the peptide during 

synthesis [179]. ALRN-6924 is a stapled peptide that efficiently disrupts the p53/MDM2 

interaction, activates p53-dependent transcriptional programs and shows a robust antileukemic 

activity in mouse preclinical models [180]. Phase I/II trials are ongoing in patients with solid 

tumors and hematological malignancies (clinicaltrial.gov identifier: NCT02264613, 

NCT02909972). 

- IAP inhibitors  

As presented above, IAP/BIRC family members are Ubiquitin E3 ligases, which inhibit apoptosis 

by preventing, directly or indirectly, the activation of Caspase-3 and -9. SMAC is a mitochondrial 

antagonist of IAPs binding to their BIR domain and, thereby, preventing their activation. SMAC-

mimetics mimicking the N-terminal residues of SMAC induce the dimerization of IAPs, which is 

followed by auto-Ubiquitylation and subsequent degradation [181]. These molecules were shown 

to have anti-tumoral activity as single agents or when combined with cytotoxic agents in various 

preclinical models. For example, Birinapan is a bivalent SMAC mimetic that was shown to 

activate RIPK-1-dependent apoptosis in relapsed and refractory Acute Lymphoblastic Leukemias 

(ALL) and to efficiently limit tumor growth in vivo [182]. It was also shown to synergize with 

various drugs, including the DNA-demethylating agent 5-azacytidine in AMLs [183]. A phase I 

clinical trial showed that it is well tolerated and leads to an important reduction of cIAP1 and the 

activation of cell-death pathways in the tumors and PBMCs (peripheral blood mononuclear cells) 

from the treated patients [184]. Similar results were obtained with LCL161, another SMAC 

mimetic under clinical development [185]. 

Conclusion 

In conclusion, SUMO, Nedd8 and Ubiquitin play key roles in the control of essential cellular 

pathways and functions that are often dysregulated in cancer and/or participate to cancer response 

to therapies. Moreover, enzymes of SUMO, Nedd8 and Ubiquitin pathways are also dysregulated 
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in many tumor types. They therefore constitute attractive therapeutic targets. Intense efforts by 

academic and industry laboratories have recently been made to discover small pharmacological 

agents targeting them. A number of these are now being tested in early phase clinical trials and 

others are about to enter clinical testing. This might pave the way to better cancer treatment.  
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Modifier 
Homology 

with 
ubiquitin 

E1 E2 E3 Protease Functions 

Ubiquitin 100 UBE1, UBA6 38 >600 ~100 
Multiples, proteasomal 

degradation 

SUMO1-5 15 SAE1/SAE2 UBC9 >15 ~10 
Protein/protein interaction, 
regulation of transcription 

NEDD8 58 NAE1/UBA3 
UBC12, 
UBE2F 

>10 
CSN5, 

NEDP1 
Cullins activation, cell cycle 

ISG15 27 UBE1L UBCH8 
HERC5, 

EFP, 
HHARI 

USP18 
Immune response, response 

to stress 

FUB1 36     
Unknown, immune response 

regulation 
FAT10 27 UBA6 USE2  0 Proteasomal degradation 

URM1 17 UBA4    
tRNA thiolation, oxydative 

stress response 

UBL5 25     
RNA splicing, cell 

polarisation 

UFM1 23 UBA5 UFC1 UFL1 
UFSP1, 
UFSP2 

Hematopoiesis, NF-B 
regulation 

ATG8  ATG7 ATG3  ATG4 Autophagy 
ATG12 12 ATG7 ATG10  0 Autophagy 

MAP1LC3A 9 

ATG7 ATG3 
ATG12, 
ATG5, 

ATG16L 

ATG4A, 
ATG4B, 
ATG4C, 
ATG4D 

Autophagosomes formation 

MAP1LC3B 13 
MAP1LC3C 10 
GABARAP 8 

GABARAPL1 12 
GABARAPL2 14 
GABARAPL3  

 
Table 1: Ubiquitin-like modifiers: conjugation/deconjugation enzymes and main functions 
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UbL 
Enzym

e  
Enzyme Dysregulation Cancer Reference 

Ub 
 

DUB 
 

OTUB1 Overexpression 
lung, breast, 

ovarian, glioma, 
colon, gastric 

[186] 

UCHL1 Underexpression pancreatic [187] 

USP10 Underexpression 
small intestinal 

adenocarcinoma 
[188] 

USP10 Underexpression lung [189] 
USP18 Overexpression breast [190] 

USP22 Overexpression 
Colorectal, 

breast 
[191, 192] 

USP3 Overepression gastric [193] 
USP32 Overexpression SCL [194] 
USP33 Underexpression gastric [195] 

USP34 Overepression 
Diffuse large B-
cell lymphoma 

[196] 

USP37 Overexpression Breast [197] 

USP39 Overexpression 
Renal, colorectal, 

lung 
[198–200] 

USP4 Overexpression melanoma [201] 
USP49 Underexpression pancreatic [202] 
USP5 Overexpression Pancreatic [203] 

USP7 Overexpression 
Osteosarcoma, 

medullo-
blastoma 

[204, 205]  

USP8 Overexpression cervical [206] 

USP9X Overexpression 
Pancreatic, 

breast 
[207, 208] 

E2 

UBE2D1 Overexpression 
Hepatocellular 

carcinoma 
[209] 

UBE2L3 Overexpression NSCL [210] 
UBE2S Overexpression Hepatocellular [211] 

UBE2T Overexpression 
Hepatocellular, 

gastric 
[212, 213] 

E2/E3 UBE2O 
Overexpression/

mutation 

Gastric, lung, 
breast, prostate, 
colorectal, TNBC 

[214, 215] 

E3 

cIAP2 Overexpression Gallbladder [216] 

COP1 Overexpression 
Breast, ovarian, 

leukemia, 
melanoma, lung 

[217, 218] 

CUL-1 Overexpression colorectal [219] 
CUL-2 Overexpression colorectal [219] 
CUL-3 Overexpression nasopharyngeal [220] 
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E6AP Overexpression Prostate, NSCL [221–223] 
FBXO11 Overexpression gastric [224] 
FBXO16 Underexpression Glioblastoma [225] 

FBXO17 Overexpression lung [226] 
FBXO31 Underexpression gastric [227] 
FBXO32 Underexpression breast [228] 

FBXW7 Underexpression 

Acute 
lymphoblastic 

leukemia, 
colorectal, 

esophageal, 
gastric, 

hepatocellular, 
NSCL, breast 

[229] 

HUWE1 
Overexpression 

Breast, lung, 
prostate, larynx, 
stomach, uterus 

[230] 

Underexpression brain 
ITCH Overexpression Lung, CLL, breast [231–234] 

LZTR1 Mutation 
RAS-driven 

cancers 
[235] 

MDM2 Overexpression 

Retinoblastoma, 
glioblastoma, 

colorectal, 
melanoma, 

breast 

[236–238] 

NEDD4 Overexpression 
Lung, bladder, 

pancreatic, 
colorectal 

[239–242] 

NEDD4L Underexpression 

Colorectal, 
pancreatic, 

melanoma, lung, 
ovarian, prostate 

[243–247] 

Pirh2 Overexpression 

Glioma, head and 
neck, prostate, 

lung, 
hepatocellular 

[248–252] 

RNF138 Overexpression glioma [253] 
RNF146 Overexpression colorectal [254] 
RNF185 Overexpression gastric [255] 

RNF20 Underexpression 

breast, lung, 
prostate cancer, 
clear cell renal 
cell carcinoma, 
mixed lineage 

[256] 
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leukemia 
RNF43 Underexpression gastric [257] 
RNF7 Overexpression prostate [258] 

SIAH1 Underexpression 
Hepatocellular 

carcinoma, 
gastric 

[259, 260] 

SIAH2 Overexpression 

Breast, lung, 
pancreatic, 

prostate, liver, 
melanoma 

[259] 

SKP2 Overexpression 

Hepatocellular, 
lung, oral 

squamous cell, 
glioblastoma 

[261–264] 

SMURF1 Overexpression 
Ovarian, thyroid, 
gastric, glioma, 

pancreatic 
[265–269] 

SMURF2 Overexpression 
Renal, breast, 

esophageal 
[270–272] 

TRIM11 Overexpression 
Prostate, 

hepatocellular 
[273–275] 

TRIM25 
Overexpression 

Prostate, NSCL, 
colorectal 

[276–278] 

Underexpression hepatocellular [279] 
TRIM28 Overexpression Prostate [280] 

TRIM31 Overexpression 
Gallblader, 

hepatocellular 
[281, 282] 

TRIM45 Underexpression glioblastoma [283] 

TRIM56 Underexpression 
Multiple 

myeloma, 
ovarian 

[284, 285] 

UBR5 Overexpression TNBC [286] 

WWP1 Overexpression 
AML, prostate, 
breast, gastric, 
osteosarcoma 

[287–291] 

WWP2 Overexpression 
Glioma, lung 

adenocarcinoma 
[292, 293] 

XIAP Overepression Breast, colon [119] 

SUMO 
 

DUB 
SENP1 

Overexpression 

NSCL, colorectal, 
renal, 

hepatocellular, 
prostate, breast, 

astroglioma 

[294–302] 

Underexpression osteosarcoma [303, 304] 
SENP2 Underexpression Bladder, gastric, [305–307] 
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chronic 
lymphocytic 

leukemia 
SENP3 Overexpression ovarian [308] 
SENP5 Overexpression hepatocellular [309] 

E1 SAE1/2 Overexpression 

Gastric, 
colorectal, 

breast, prostate, 
pancreatic, 

hepatocellular 

[131, 310, 311] 

E2 UBC9 Overexpression 

Breast, prostate, 
pancreatic, 

osteosarcoma, 
hepatocellular 

[310, 312, 313] 

E3 
PIAS1 

Underexpression breast [314] 

Overexpression 
Prostate, 
multiple 
myeloma 

[315–317] 

PIAS3 Overexpression colorectal [310] 

NEDD8 
DUB 

Jab1/CSN
5 

Overexpression 

Breast, ovarian, 
hepatocellular, 

NSCLC, Oral 
squamous cell, 

Laryngal, 
thyroid, 

pancreatic, 
esophageal, 
colorectal, 

gastric 

[318] 

E3 C-CBL Underexpression lung [319] 
 
Table 2: Dysregulation of UbL enzymes in cancer. This table summarizes the known 
dysregulations of these enzymes. It comprises the main enzymes in each pathway but is not 
necessarily exhaustive. 
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Figure 1: Regulation of p53 by UbL. N8: Nedd8, Ub: Ubiquitin, S: SUMO 


