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Abstract: Mosquito-borne arboviruses are increasing due to human disturbances of natural ecosystems
and globalization of trade and travel. These anthropic changes may affect mosquito communities by
modulating ecological traits that influence the “spill-over” dynamics of zoonotic pathogens, especially
at the interface between natural and human environments. Particularly, the global invasion of Aedes
albopictus is observed not only across urban and peri-urban settings, but also in newly invaded areas
in natural settings. This could foster the interaction of Ae. albopictus with wildlife, including local
reservoirs of enzootic arboviruses, with implications for the potential zoonotic transfer of pathogens.
To evaluate the potential of Ae. albopictus as a bridge vector of arboviruses between wildlife and
humans, we performed a bibliographic search and analysis focusing on three components: (1) The
capacity of Ae. albopictus to exploit natural larval breeding sites, (2) the blood-feeding behaviour of
Ae. albopictus, and (3) Ae. albopictus’ vector competence for arboviruses. Our analysis confirms the
potential of Ae. albopictus as a bridge vector based on its colonization of natural breeding sites in
newly invaded areas, its opportunistic feeding behaviour together with the preference for human
blood, and the competence to transmit 14 arboviruses.

Keywords: Aedes albopictus; emerging diseases; vector competence; spill-over; blood-feeding; bridge
vector; arboviruses; mosquito

1. Introduction

The human alteration of Earth’s natural systems has become a great concern and a threat to human
health. Indeed, these changes are likely to drive most of the global disease burden over the coming
century [1]. During the last decades, the burden of emerging infectious diseases has increased to
represent a substantial threat to global health, security, and economy growth. About 75% of emerging
infectious diseases are zoonotic diseases, mostly of wildlife origin [2,3]. The risk of zoonotic emergences
is considered high in tropical forest regions associated with a range of facilitating factors, particularly
high vertebrate species diversity and agricultural land use changes [4]. Understanding the mechanisms
of disease emergence allows the development of early detection and control programs for reducing
disease incidence and economic burden [5].

Zoonotic pathogens can be transmitted from animals to humans directly, or indirectly when
arthropod vectors are needed to accomplish their life cycle. Zoonotic vector-borne diseases are
maintained in enzootic cycles, but can be transmitted from animal reservoir populations to sympatric
human populations or to domestic animals during “spill-over events”, and also from humans to
animals during “spill-back events” [2,6]. The global emergence of vector-borne diseases is helped
by international travel and trade, after their local emergence has been driven by a combination of
environmental changes that are not yet completely understood [7]. Therefore, research is needed to
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determine the potential of these pathogens to emerge in the future, and to identify critical geographic
areas where early warning systems must be put in place to mitigate the pathogen’s impact on human
health [8].

Here, we focused on zoonotic arboviruses (arthropod-borne viruses) transmitted by mosquitoes
that are part of enzootic cycles evolving in wildlife or domestic animals, independently of mankind.
Animals might act as amplification hosts for spill-over events to humans [9], mainly in tropical forest
environments [10]. Some arboviruses, such as those causing epidemic Aedes-borne viral diseases
(dengue, chikungunya, and zika), have adapted to epidemic cycles in which viremic humans became
the source of infection in urban areas where Aedes aegypti, and to a lesser extent, Aedes albopictus [11,12]
ensure person-to-person transmission [13]. The burden of Aedes-borne diseases is dramatic. For
instance, dengue incidence has increased by 30 times over the last 50 years, with about 390 million
infections reported annually worldwide [14,15]. Dengue and chikungunya outbreak waves have
resulted in several million cases in the Southwest Indian Ocean region, India, and the Americas [16].
Zika virus (ZIKAV) disease emerged in 87 countries (or territories) [17]. ZIKAV infection during
pregnancy can cause microcephaly in newborns and is becoming a major threat due to its long-term
sanitary and economic impacts, especially in Latin America [18]. Although these infection outbreaks are
caused by independent urban cycles, enzootic cycles still remain essential sources of pathogens and/or
vectors that can be introduced, adapt, and disperse, causing new severe threats [2], as exemplified by
the recent re-emergence of Yellow Fever Virus (YFV) in Brazil, Angola, and the Democratic Republic of
Congo [19,20]. For YFV, spill-over events from non-human primates that involve mosquito bridge
vectors have been described in tropical Africa (e.g., involving Aedes africanus or Aedes furcifer) [21]
and in America (involving mosquito species from the Haemagogus and Sabethes genera) [20]. After
its introduction in the Americas, YFV has efficiently spilled back into sylvatic cycles via bridge
vectors. In African villages or cities, YFV transmission is supported by epidemic vectors, such as
Ae. aegypti [21,22]. These data indicate that mosquito bridge vectors play key roles in the early processes
leading to the emergence of enzootic viruses, before the urban transmission cycles [6,8].

We define a bridge vector as an “appropriate hematophagous arthropod” that ensures the
biological transmission of a pathogen across different landscapes and its circulation between enzootic,
domestic animal, and human hosts. In the absence of a bridge vector, pathogen transmission generally
remains restricted to a specific area within the enzootic or epidemic cycle and among hosts/reservoirs.
Bridge vectors are the key that interconnects animal reservoirs to new vertebrate hosts, including
humans, and that allows both spill-over and spill-back events. For this study, we considered that bridge
vectors show several bio-ecological traits that influence the shifting risks of pathogen transfer and that
are mainly related to their ecological distribution, blood feeding behaviour, and vector competence.
Regarding ecological habitats, high ecological and physiological plasticity favours the vector dispersal
and its establishment (breeding in specific microhabitats) across different ecosystems, landscapes,
or habitats (e.g., forest/rural/urban, forest/savannah, ground/canopy, natural/anthropic larval breeding
and adult resting sites). Regarding blood feeding behaviour, low specificity in blood-meal sources and
opportunistic feeding behaviour involving multiple hosts increases the probability of contact between
the vector and different animal reservoirs, and thus interspecies pathogen transfer. This probability
also depends on the vector and host density and on the host’s defensive behaviour. Regarding vector
competence, for the biological transmission of a pathogen after its acquisition on an infected vertebrate,
a bridge vector must be able to ensure its replication/multiplication, dissemination, and transmission
to subsequently bitten vertebrates. Arthropod species competent for a large panel of pathogens or
with high vector competence for one pathogen represent particularly suitable candidates to act as
(bridge) vectors.

Here, we evaluated the potential role of the Asian tiger mosquito Ae. albopictus as a bridge vector.
This invasive vector species originates from Asian tropical forests, but nowadays is present in all
continents [23], and has become a major public health issue. In its native area, sylvatic Ae. albopictus
populations complete their biological cycle by exploiting wild animals as blood sources, and natural
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water collection points (e.g., tree holes, bamboo stumps, or rock holes) as oviposition sites in the
woods [24], particularly at the forest edge [24]. The capacity to colonize artificial man-made containers
(together with desiccation-resistant and diapausing eggs) led to its “domestication”. Its ecological
plasticity to several habitats, its passive dispersion through the global transport of tires and inside
cars [25], and the inefficiency of control programmes have allowed Ae. albopictus to become one of
most invasive species worldwide [23,24]. In native and newly colonized areas, it has been found in
urban, rural, and forest habitats; however, unclear information is available on its natural breeding
sites and its presence in forested environments. Moreover, its presence in natural breeding sites in the
invaded territories has not been analysed. In general, Ae. albopictus is considered an opportunistic
feeder that is attracted to mammals, particularly humans, rather than other hosts [26,27]. However,
to our knowledge, a detailed and quantified analysis of its host preferences has never been done.

In relation to epidemic virus transmission, Ae. albopictus has been considered the vector for the
chikungunya virus (CHIKV), dengue virus (DENV), and ZIKAV in Gabon and Central Africa [28,29],
for DENV and CHIKV in la Réunion island [30], and for CHIKV in Madagascar and Mayotte [30,31].
In Europe, it has been incriminated in Italy and France during CHIKV and DENV outbreaks [32,33] and
in Japan in DENV transmission [34]. Moreover, this mosquito represents a potential risk of outbreaks in
many other areas, for example, in Brazil and USA where Ae. albopictus is widespread [35–38]. Different
studies have shown that Ae. albopictus can develop infection from up to 32 arboviruses [16,23,36];
however, to our knowledge, its ability to transmit any of them has not been clearly demonstrated yet.

In this work, we hypothesized that Ae. albopictus may have an active role as a bridge vector
for the transfer from vertebrate hosts to humans (spill-over events) and therefore, in the emergence
of enzootic arboviruses. To test this hypothesis, we reviewed and quantified: (1) Ae. albopictus’
capacity to exploit natural water collections as larval breeding sites (as a proxy for its establishment in
rural/sylvatic/forested areas) in native or invaded regions; (2) its feeding behaviour with regard to
humans, domestic, or wild animals (as a proxy for the contact between vertebrate hosts and humans);
and (3) its vector competence, tested experimentally for different arboviruses and natural infections
reported from the field in mosquitoes (as a proxy for its potential for virus transmission in the field).
Finally, we discuss the potential spill-over transmission risk from vertebrate hosts to humans and the
methodological issues and knowledge gaps that need to be tackled.

2. Results

2.1. Natural Breeding Sites

Based on the literature (see Methods and Supplementary Tables S1 and S2), we found 27 articles
that quantified the number and type of natural breeding sites exploited by Ae. albopictus in areas where
the species is considered native (n = 10 articles) or invasive (i.e., colonized areas) (n = 17 articles).
Preimaginal stages of Ae. albopictus were mainly detected in coconut shells (54.7%) [37–45], bromeliads
(19%) [46–50], bamboo stumps (8.3%) [39,40,51–54], tree holes (8.2%) [37,42,43,51,53–59], palm leaves
(3.6%) [51], rock holes (3.2%) [37,42,43,51,53,57,60], leaf axils (1%) [39,40,42,61], and sporadically (<1%)
in other natural breeding sites, such as snail shells [43,53], palm bracts [53], dead leaves [37,43], cacao
pods on the ground [43], dead cow horns [43], puddles [62], ground cavities [46], and hollow logs [53]
(Figure 1).
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deviation: 92.0% ± 8), compared with birds (8% ± 8) and other animals (3.7% ± 1.7) [26,27,63–82] 
(Figure 2A). Among mammals, blood meals were mainly from humans (60%) than non-human 
species (30%). From an “interspecies risk of transfer” perspective, it is relevant to note that Ae. 
albopictus seems to be biting domestic animals (25%) more frequently than wildlife animals (10%) 
(Figure 2B). Importantly, there is huge variability in the percentage of human blood meals in the 
different studies. 

Figure 1. Natural larval breeding sites exploited by Ae. albopictus. Number of reported natural breeding
sites (black bars) and number of articles that reported natural breeding sites (grey areas).

Coconut shells and tree holes were more often reported (11 articles each), followed by bamboo
stumps, bromeliads, rock holes, and leaf axils (7 articles each), and finally, the other natural breeding
sites (1–2 articles each). In native areas, most of the reported natural breeding sites were coconut
shells (83%), followed by bamboo stumps (11%), tree holes (5%), leaf axils (1%), and rock holes (1%).
In colonized areas, a great diversity of breeding sites was reported: bromeliads (50.8%), tree holes
(13%), palm leaves (9.6%), rock holes (8.4%), coconut shells (8%), bamboo stumps (3.8%), leaf axils
(1%), palm bracts (1.2 %), snail shell (1.7%), and others (<1% each).

2.2. Feeding Behaviour

Our quantification of the feeding behaviour indicates that Ae. albopictus has been mainly reported
as a species that prefers mammals (including humans) as blood sources (mean and standard deviation:
92.0% ± 8), compared with birds (8% ± 8) and other animals (3.7% ± 1.7) [26,27,63–82] (Figure 2A).
Among mammals, blood meals were mainly from humans (60%) than non-human species (30%). From
an “interspecies risk of transfer” perspective, it is relevant to note that Ae. albopictus seems to be biting
domestic animals (25%) more frequently than wildlife animals (10%) (Figure 2B). Importantly, there is
huge variability in the percentage of human blood meals in the different studies.
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without taking into account host availability. (A) Mammals, humans, non-human mammals, and birds;
(B) Humans, domestic animals, and wildlife. Black line: median.

Among domestic and peri-domestic animals, dogs, rodents, and rabbits were reported as the main
blood sources for Ae. albopictus, followed by cats, bovines, chickens, horses, and pigs (Supplementary
Figure S1). When classified according to the biological family of blood sources, Ae. albopictus can
feed on 28 different host biological families, and preferentially on animals belonging to Hominidae
(60%), Muridae (15%), Canidae (12%), and Phasianidae (10%) (see Table 1 for detailed information and
Supplementary Table S3 for bibliographical information).
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Table 1. Mean biting frequency by Aedes albopictus in animals classified according to biological class
and family.

Biological Class Biological Family Mean Frequency (%)

Aves

Phasianidae 10.08
Passeridae 7.78
Anatidae 7.5

Columbidae 5.83
Sulidae 2.33

Thamnophilidae 1.49
Pycnonotidae 1.39

Corvidae 1.11
Ciconiidae 1.0

Mammalia

Hominidae (Humans) 59.83
Muridae 15.34
Canidae 11.6

Herpestidae 9.53
Bovidae 8.9
Felidae 8.49

Leporidae 8.27
Sciuridae 5.07

Suidae 4.99
Didelphidae 4.6

Equidae 4.39
Cervidae 4.15

Muridae/Soricidae 3.43
Phyllostomidae 2.99

Procyonidae 2.71
Furipteridae 1.49

Cricetidae 0.61

Actinopterygii Cobitidae 1.11

Amphibia Salamandridae 2.22

The mean frequencies were calculated using the data found in articles that described different Ae. albopictus
populations biting different animals in different locations. As these articles do not describe the same biological
families, the total mean bite frequency does not correspond to 100%.

2.3. Arbovirus Transmission

In the literature search, in addition to the epidemic DENV (serotypes 1, 2, 3, and 4), CHIKV and
ZIKV, we found reports on experimental infections of Ae. albopictus with the following 36 arboviruses:
Arumowot (AMTV) [83], Bujaru (BUJV) [83], Bussuquara (BSQV) [84], Cache Valley (CVV) [85],
Chandipura (CHPV) [86], Chilibre (CHIV) [83], Eastern Equine Encephalomyelitis (EEEV) [87–90],
Getah (GETV) [91], Icoaraci (ICOV) [83], Ilheus (ILHV) [92], Itaporanga (ITPV) [83], Jamestown Canyon
(JCV) [93], Japanese Encephalitis (JEV) [92,94–96], Karimabad (KARV) [83], Keystone (KEYV) [92,93],
Kokobera (KOKV) [92], Kunjin (KUNV) [92], La Crosse (LACV) [92,93,97–99], Mayaro (MAYV) [100],
Oropuche (OROV) [100], Orungo (ORUV) [101], Pacui (PACV) [83], Potosi (POTV) [102–104], Rift
Valley fever (RVFV) [105,106], Ross River (RRV) [107,108], Salehabad (SALV) [83], San Angelo
(SA) [84,92,109], St. Louis encephalitis (SLEV) [110], Tensaw (TENV) [111], Trivittatus (TVTV) [93],
Uganda S. (UGSV) [92], Urucuri (URUV) [83], Usutu virus (USUV) [112], Venezuelan equine encephalitis
(VEEV) [113–115], West Nile virus (WNV) [116–125], and YFV [108,126–130] (see Supplementary Table
S4 for bibliographical information). However, besides the addition to the epidemic DENV (serotypes
1, 2, 3 and 4) [131], CHIKV, and ZIKV [28], natural infections of Ae. albopictus were only reported
for eight viruses: CCV [85,132], EEEV [133], KEYV [133], LACV [99,132,134,135], POTV [102,132,136],
TENV [133], USUV [112], and WNV [118–120] (see Supplementary Table S5 for bibliographical
information). These infections were detected by virus isolation on cell lines, immunological or
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molecular methods (Vero cells, direct or indirect immunofluorescence, polymerase chain reaction).
These infections provide evidence of contact between Ae. albopictus and the hosts of these viruses, but
do not necessarily indicate their biological transmission by this mosquito. On the other hand, for the
BSQV, ILHV, KOKV, KUNV, and UGSV arboviruses, only intrathoracic injection experiments were
carried out to investigate transovarian transmission between different generations. Supplementary
Table S6 gives information on the taxonomic classification of these viruses, their geographic distribution,
their natural host family (i.e., vertebrate host family in which the virus was isolated or in which
serological evidence was found), the mosquito species from which the virus was isolated, and the
detection method in Ae. albopictus.

Among studies on Ae. albopictus vector competence, we found important variations concerning
the methodology used to perform the infection (intra-thoracic inoculation of viruses, oral challenge
using infected blood meals or infected animals), the mosquito strains, the viral strains and the
virus loads used, the conditions of mosquito incubation (e.g., time, temperature), and the methods
used to determine mosquito infection and transmission efficiency. Concerning the virus inoculation
methodology, intra-thoracic injection was used for 11 viruses to assess vector infection, and oral
infection was performed using infected hosts (n = 11 arboviruses), or membrane feeding methods
(n = 11 arboviruses).

The mean infection values in Ae. albopictus after infection by intrathoracic injection greatly varied
in function of the tested virus, and ranged from 100% ± 0 (AMTV, BUJV, and PACV) to 37.5% ± 17.67
(ORUV). Among these viruses, the transmission rate after intrathoracic injection was estimated only for
ORUV (37.5% ± 17.67) and RVFV (15.9% ± 7.3). The mean infection rate (IR) in Ae. albopictus that fed
directly on infected vertebrate hosts or on an infectious artificial blood-meal through a membrane also
hugely varied, from 100%± 0 for GETV to 6.6%± 5.2 for OROV. The mean Dissemination Efficiency (DE)
in Ae. albopictus varied from 89.85% ± 5.9 for POTV to 4.06% ± 1.32 for MAYV. The mean Transmissions
Rates (TR) in Ae. albopictus varied from 82.7% ± 11.5 (WNV) to 7.7% ± 0 (JCV). Finally, the mean
Transmission Efficiency (TE) by Ae. albopictus varied from 68.6% ± 18.6 (WNV) to 3.5% ± 0.69 (MAYV).

Whatever the methodology used for the experimental infection, transmission was confirmed for
14 viruses. Six displayed a mean TE higher than 30% (WNV, EEEV, RRV, JEV, VEEV, and ORUV),
and five had a mean TE between 10% and 30% (LACV, CVV, POTV, CHPV, and RVFV). The mean
TE for YFV, JCV, and MAYV was below 10%. All TE rates in Ae. albopictus (using both experimental
infections with infectious animals and infectious artificial blood meals) are summarized in Figure 3,
without taking into account the different mosquito populations used, the viral loads, or genotypes. For
more details on the infection parameters (IR, DE, TR, and TE) obtained using the different inoculation
methods, see Table 2.
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Table 2. Infection rate, dissemination rate, dissemination efficiency, transmission rate, and transmission
efficiency (mean and standard deviation) of Aedes albopictus for the indicated arboviruses, according to
the inoculation method.

Infection
Method Virus Infection or

Infection Rate
Dissemination

Rate
Dissemination

Efficiency
Transmission

Rate
Transmission

Efficiency

Mean SD Mean SD Mean SD Mean SD Mean SD

Host feeding

CHPV 25.00 0.00 ND ND ND ND ND ND 12.50 0.00
EEEV 75.36 35.35 85.19 25.66 76.99 33.58 40.00 0 57.17 20.15
JEV ND ND ND ND ND ND ND ND 37.00 9.17

LACV ND ND ND ND ND ND ND ND 23.86 6.69
MAYV 11.88 3.31 20.00 0.00 4.07 1.32 ND ND 3.46 0.69
OROV 6.67 5.20 ND ND ND ND ND ND ND ND
POTV 26.26 17.06 ND ND ND ND ND ND ND ND
RRV 80.66 23.02 ND ND ND ND ND ND 41.40 16.57

RVFV 69.26 27.24 60.04 6.34 40.72 11.96 15.00 7.07 6.54 4.67
VEEV 71.20 20.49 89.48 10.48 64.78 22.53 59.94 26.57 38.09 23.53
WNV 73.41 23.81 94.39 3.91 69.80 23.98 82.72 11.49 68.63 18.62

Intrathoracic
injection

AMTV 100.00 ND ND ND ND ND ND ND ND ND
BUJV 100.00 ND ND ND ND ND ND ND ND ND
CHIV 96.88 ND ND ND ND ND ND ND ND ND
ICOV 40.91 ND ND ND ND ND ND ND ND ND
ITPV 81.25 ND ND ND ND ND ND ND ND ND

KARV 94.12 ND ND ND ND ND ND ND ND ND
ORUV 37.50 17.68 ND ND ND ND ND ND 37.50 17.68
PACV 100.00 0.00 ND ND ND ND ND ND ND ND
RVFV ND ND ND ND ND ND ND ND 15.93 7.35
SALV 92.86 0.00 ND ND ND ND ND ND ND ND
URUV 94.12 0.00 ND ND ND ND ND ND ND ND

Membrane
feeding

CHIKV 58.92 28.23 77.58 22.60 79.06 23.45 53.49 33.98 42.68 23.78
CVV 56.50 0.00 100.00 0.00 ND ND 29.60 0.00 17.39 0.00

DENV-1 60.18 16.01 63.79 23.97 39.56 23.90 8.33 0.00 6.25 0.00
DENV-2 58.10 30.93 53.12 22.93 34.83 18.81 12.47 13.20 10.13 12.29
GETV 100.00 0.00 ND ND ND ND ND ND ND ND
JCV 96.67 0.00 89.66 0.00 86.67 0.00 7.69 0.00 6.67 0.00
JEV 91.98 10.72 90.79 14.56 84.63 19.92 ND ND 40.50 15.98

KEYV 91.89 0.00 91.18 0.00 83.78 0.00 ND ND ND ND
LACV 89.72 7.38 86.83 13.70 71.03 22.93 35.84 14.25 29.93 16.75
POTV 93.55 6.59 96.13 3.21 89.86 5.96 ND ND 14.67 7.00
RVFV 10.53 0.00 25.00 0.00 2.63 0.00 100.00 0.00 2.63 0.00
TVTV 28.00 0.00 85.71 0.00 24.00 0.00 ND ND ND ND
USUV 64.40 31.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WNV 32.61 24.53 64.59 25.58 20.33 16.96 ND ND ND ND
YFV 33.18 21.18 55.52 20.97 20.86 10.90 36.52 26.17 7.68 5.94

ZIKV 67.19 23.70 38.71 21.76 29.25 22.80 24.62 22.46 9.21 6.91

Infection rate: number of mosquitoes showing virus infection in the gut divided by the number of mosquitoes fed
with infected blood x 100. Infection: percentage of mosquitoes in which the virus was detected after 7–10 day of
incubation following intrathoracic injection of the indicated virus. For this test, the ground mosquito suspension
was inoculated in rats, or the virus presence was quantified by assays in Vero cells. ND: Not described SD: standard
deviation AMTV, Arumowot virus; BUJV, Bujaru virus; CHIKV, Chikungunya virus; CVV, Cache Valley virus; CHPV,
Chandipura virus; CHIV, Chilibre virus; DENV-1, Dengue virus serotype 1; DENV-2, Dengue virus serotype 2;
EEEV, Eastern Equine Encephalomyelitis virus; GETV, Getah virus; ICOV, Icoaraci virus; ITPV, Itaporanga virus;
JCV, Jamestown Canyon virus; JEV, Japanese Encephalitis virus; KARV, Karimabad virus; KEYV, Keystone virus;
LACV, La Crosse virus; MAYV, Mayaro virus; OROV, Oropuche virus; ORUV, Orungo virus; PACV, Pacui virus;
POTV, Potosi virus; RVFV, Rift Valley fever virus; RRV, Ross River virus; SALV, Salehabad virus; SAV, San Angelo
virus; SLEV, St. Louis encephalitis virus; TENV, Tensaw virus; TVTV, Trivittatus virus; URUV, Urucuri virus; USUV,
Usutu virus; VEEV, Venezuelan equine encephalitis virus; WNV, West Nile virus; YFV, Yellow fever virus; and ZIKV,
Zika virus. For BSQV, Bussuquara virus, ILHV, Ilheus virus, KOKV, Kokobera virus, KUNV, Kunjin virus, UGSV,
and Uganda S. virus, only transovarial transmission tests were described.

Comparison of IR, DE, and TE (see Methods and Supplementary Table S7) values calculated
for known efficient bridge vectors infected with different arboviruses, and those for Ae. albopictus
(Table 3) showed that the YFV TE rate for Ae. albopictus (7.68% ± 5.9) was similar to the rate calculated
for Haemagogus leucocelenus [127] (8.08% ± 2.0). Conversely, the TE rates varied more for WNV:
68.6% ± 18.6 for Ae. albopictus and 13.49 ± 14.8 for Culex pipiens (a primary vector of WNV in the
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field) [117,124,137–146]. Moreover, Ae. albopictus and Ae. aegypti (a recognized epidemic vector) showed
similar TE rates for CHIKV [126,147–152], DENV-1 [153–157], and DENV-2 [126,147,154,155,157–159],
but Ae. aegypti was more efficient at transmitting ZIKV [126,160–171] and YFV [127,128,172–175].

Table 3. Comparison of the infection rate, dissemination efficiency, and transmission efficiency (mean
and standard deviation) for Aedes albopictus and other mosquito vectors.

Mosquito Species Virus IR (%) DE (%) TE (%)

Aedes aegypti CHIKV NA 98.3 ± 3.8 42.92 ± 20.19
DENV-1 37.7 ± 27 34.4 ± 24.9 4.9 ± 4.6
DENV-2 44.4 ± 33.4 33.3 ± 24.2 5 ± 0

ZIKV 69.0 ± 27.4 44.0 ± 28.3 20.48 ± 26.87
YFV 46.4.0±23.6 21.3 ± 19.0 16.5 ± 17.7

Aedes albopictus CHIKV 58.9 ± 28.2 79.0 ± 23.4 42.68 ± 23.7
DENV-1 60.2 ± 16 39.5 ± 24.2 6.25 ± 0
DENV-2 58.0 ± 30.9 34.8 ± 18.8 10.13 ± 12.28

WNV 63.8 ± 29.2 58.1 ± 30.8 68.6 ± 18.6
YFV 33.1 ± 21.1 20.8 ± 10.8 7.68 ± 5.9

ZIKV 67.1 ± 23.7 29.2 ± 22.8 9.21 ± 6.9

Culex pipiens WNV 47.7 ± 33.7 30.4 ± 29.7 13.49 ± 14.8
Haemagogus leucocelenus YFV 50.9 ± 4.0 30.06 ± 1.6 8.08 ± 2.0

IR, infection rate; DE, dissemination efficiency; TE, transmission efficiency; CHIKV, Chikungunya virus; DENV-1,
Dengue serotype 1; DENV-2, Dengue serotype 2; WNV, West Nile virus; YFV, Yellow fever virus; ZIKV, Zika vírus.

3. Discussion

In the present work, we tried to understand the potential role of the Asian tiger mosquito
Ae. albopictus as a bridge vector that might favour the transfer of zoonotic arboviruses from enzootic
or domestic hosts to humans and vice-versa. To this aim, we evaluated its ability to colonize natural
breeding sites in newly invaded and native areas, its appetence for animal blood sources, and its global
efficiency for transmitting arboviruses. This mosquito species was described as capable of developing
infection from a large number of arboviruses in laboratory conditions [36]. However, based on the
published evidences of vector competence, we found that transmission by Ae. albopictus is proven only
for 14 of them, without considering the epidemic Aedes-borne CHIKV, DENV (4 serotypes), and ZIKAV.

In relation to the capacity of Ae. albopictus to establish in natural areas (rural/sylvan environments),
tree holes were described as the most common natural breeding sites, although it has been detected also
in bamboo stumps, and more sporadically in rock holes and plant axils [24]. Our analysis indicates that
coconut shells, bromeliads, and bamboo stumps might be as common as tree holes, whereas rock holes
and leaf axils of other plants are less frequently used. These results might be biased due to differences
across studies related to sampling efforts and the environmental characteristics of sampled areas.
Therefore, they should be confirmed by comparisons with larval sampling in natural and artificial
breeding sites in natural areas and forest edges. Moreover, when possible, the productivity in these
habitats should be described and compared by pupal sampling, with the same methodology used
for quantifying the productivity of anthropic containers in urban areas [176]. For example, a study
in Rio de Janeiro showed that the percentage of Ae. albopictus larvae in bromeliads corresponded to
0.18% of all sampled larva, demonstrating the low productivity of this breeding place [48]. However,
studies describing the productivity of natural breeding sites in the natural environment or at an
interface between natural and man-modified environments are lacking. In native forested areas,
natural containers of larvae (tree holes, bamboo stumps, rock holes) were observed at the forest edge,
like in a colonized forested area. Breeding sites in the deep forest have never been detected for this
species [24,27].

Our results also confirmed the opportunistic feeding behaviour of Ae. albopictus and its strong
preference for mammals, especially humans (humans = 60%, non-humans = 30%) compared with



Pathogens 2020, 9, 266 11 of 24

other groups, such as birds (4%). Ae. albopictus can feed on 28 different biological families. Reports on
Ae. albopictus biting on any primates other than man were lacking until very recently. Specifically, a study
described Ae. albopictus probing on a howler monkey that had just died due to YFV and was lying on
the forest edge in Brazil [177]. This mosquito also bites domesticated animals—Muridae, Canidae,
Phasianidae, Herpestidae, and Bovinae. Several studies suggested this opportunism. For instance,
laboratory experiments on the host choice showed that this mosquito preferentially bites humans
compared with other animals [30]. This opportunism was confirmed in studies on blood-fed mosquitoes
collected in the field [27,30,69,78]. From our literature analysis, birds appeared as a non-preferential
host group. Based on the reported proportion of blood meals, domestic and peri-domestic animals
(25%) should be considered more relevant than wildlife (10%) as sources of zoonotic pathogens for
Ae. albopictus. However, a limited number of studies were carried out in natural habitats where
wildlife is abundant. Therefore, additional research is needed in natural areas to precisely describe the
blood feeding patterns of Ae. albopictus and its interaction with wildlife. If possible, the availability
of vertebrate hosts should be taken into account by using field census procedure and by calculating
indexes of feeding preferences [178]. Such approaches should prevent the underestimation of the
Ae. albopictus’ potential to transmit pathogens from domestic/sylvatic vertebrate hosts to humans, but
also from domestic to sylvatic vertebrate hosts, and vice versa. Our analysis also highlighted a huge
variability in the proportion of human blood meals. This is a relevant factor for calculating the vector
capacity, the disease reproduction rate (Ro), and the spill-over risk that may be determined by several
parameters [178].

Concerning vector competence, this species was suggested as a potential vector for many viruses.
It is important to emphasize that the mean TE values of enzootic viruses, such as WNV (68.6% ± 18.6),
EEEV (57.16%± 20.14), RRV (41.39%± 16.5), JEV (39.3%± 13.5), VEEV (38.1%±), LACV (27.3% ± 12.87),
CVV (17.4% ± 0), and POTV(14.6% ± 7), were higher or comparable with those reported for epidemic
viruses, such as DENV-1 (6.25 ± 0), DENV-2 (10.13 ± 12.28), YFV (7.68 ± 5.9), ZIKV (9.21 ± 6.9), CHPV
(12.5% ± 0), YFV (8.2% ± 6), JCV (6.6% ± 0), RVFV (5.2% ± 3.9), and MAYV (3.5% ± 0.69). The large
difference in TE rates between enzootic and epidemic viruses is a reflection of the techniques employed
to assess parameters. Most of the analysis on enzootic viruses were performed mainly in the 1990s
and up to the beginning of the 2000s. Conversely, epidemic viruses were analysed using more precise
techniques during the last 5 years. Despite the biases of the older methodologies, Ae. albopictus
presented a high TE rate for enzootic arboviruses; therefore, it might transmit these viruses if taken
from viremic natural vertebrates.

Comparing the vector competence of Ae. aegypti and Ae. albopictus for different epidemic viruses
did not allow for a conclusion that there is a difference in their TE rates for ZIKV, CHIKV, DENV-1,
and DENV-2. However, for bridge vectors*virus pairs, WNV TE was higher for Ae. albopictus than
for Cx. pipiens, contrary to what was expected. Although the WNV transmission efficiency rate by
Ae. albopictus is high in experimental conditions, this species has never been incriminated as a WNV
vector in the field, possibly due to its low propensity to bite birds. Ae. albopictus presented similar TE
rates as Hg. leucocelenus, a primary YFV vector within and at the edges of Brazilian forests [27,179].
However, few studies have been carried out to assess Hg. leucocelenus vector competence. In general,
the contribution of laboratory studies for assessing the role of vector(s) in natural environments
is limited.

Based on vector competence and blood meal studies, we conclude that Ae. albopictus could act
as a bridge vector for many viruses (e.g., WNV, EEEV, ORUV, RRV, YFV, JEV, VEEV, LACV, RVFV,
CVV, CHPV, JCV, and MAYV) with a potential risk for disease emergence. One of our goals was to
identify in a quantitative way the viruses with a higher risk of emergence, and to develop an analysis
to quantify the relative risk of transfer to humans of each enzootic arbovirus that can be efficiently
transmitted by Ae. albopictus in laboratory conditions. The methodology used was based on two
previous published works [180,181] that quantified the risk of WNV transfer by Culex mosquitoes.
We then calculated the relative risk of Ae. albopictus-mediated virus transfer from its natural hosts to



Pathogens 2020, 9, 266 12 of 24

humans using a simplified version of Kilpatrick’s equation (see Supplementary Information for more
details concerning the methodology used and Figure S2) that takes into account Ae. albopictus vector
competence for a given virus (i.e., TE), and the mean relative feeding frequencies on humans (FHi) and
on animal hosts (FAi). Unfortunately, this analysis was hindered by the limited information available
on the enzootic/sylvatic reservoirs of several of these arboviruses (some hosts remain unknown or are
not sufficiently identified). Moreover, some viruses have many potential reservoirs, and their objective
weighting is difficult. Additionally, data on Ae. albopictus propensity to bite a given animal reservoir
species are often lacking (e.g., primates). Consequently, only biting frequencies at animal family levels
could be used, leading to overly unreliable and speculative risk transfer estimates. Therefore, we chose
not to include them here, although these estimates are crucial to better assess the risk of spill-over
and emergence of enzootic arboviruses in relation with the secondary invasion of Ae. albopictus in
forested areas.

Another important limitation of the present work is the great methodological variation and the
lack of standardization of the protocols used to assess the vector competence of Ae. albopictus. Vector
competence for arboviruses is influenced by genetic factors in the mosquito population and in the virus
strain, such as the geographical genetic origin of the vector population or the interaction between the
vector and arbovirus genotype [182,183]. Therefore, the intraspecific genetic variability in mosquito
species/populations, as well as the intra- and inter-specific variability of arboviruses can affect vector
competence and risk estimations. External factors, such as the incubation temperature, can also affect
vector competence, and consequently the transmission and analysis of the risk [184].

Other factors interfering with the vector competence results are the way of ingesting the
virus-infected blood (in vivo or in vitro), the viral load concentration, and the sensibility of the
method used to detect the virus in the mosquito body or saliva. We are aware that our study is limited
due to the methodological differences of the analysed articles, and also because the risk of arbovirus
emergence is a multifactorial process and it is actually impossible to estimate the interactions of all
factors with the limited evidences available. Thus, more standardized studies of vector competence
and blood feeding preferences are necessary. In this sense, the project Infravec2 (https://infravec2.eu) is
an important international initiative, and one of its themes is the standardization of methods.

In conclusion, data from the literature show that Ae. albopictus can colonize forest environments,
and has possible interactions with domestic animals and wildlife, suggesting a risk for interaction
with animal viruses. Such a risk is particularly high in areas that are considered to be biodiversity
hotspots, such as the Congo and Amazon Basin forests. The presence of Ae. albopictus in small
towns and hamlets in the Amazon Forest highlights the risk of spill-over of some arboviruses that
cause human diseases, such as OROV, YFV, and MAYV [27]. In Brazil, Ae. albopictus populations
are experimentally competent for YFV transmission, but this has not been confirmed by infecting
Ae. albopictus [127,185]. In Africa, many arboviruses could be investigated to elucidate their potential
transmission and emergence facilitated by Ae. albopictus, as done for CHIKV [152]. In the United
States, where this mosquito species is widespread, its potential role in LACV, EEEV, WNV, and POTV
transmission must be investigated [36,133,135]. In Asia and Oceania, the potential for inter-species
transmission of JEV and RRV must be evaluated. It is important to take into account that the risk of
arbovirus emergence is dynamic and in continuous evolution because mosquito populations, virus
genetics, and the possibility of their contact varies according to time and place, and adaptations could
be expected, particularly for invasive pathogens and vectors [186]. For instance, in the Indian Ocean
region, the interaction between Ae. albopictus and CHIKV led to the selection of a virus strain that
infects vectors and can spread around the world more easily. Studies on mutation selection for more
susceptible arbovirus strains are still limited, but can be useful for predicting spill-over events [187].
Also, vector competence must be evaluated with as many strains as possible to maximize viral diversity,
if possible using strains recently isolated from animals.

Our literature review showed that Ae. albopictus is competent for many different arboviruses, is
present in natural habitats and forest edges, and can feed on several animal groups [30]. All these
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features make of Ae. albopictus a potential bridge vector of several emerging arboviruses (at least
14 viruses [23,36]), thus increasing the risk of spill-over and spill-back events. We hope that our
approach will encourage more research to disentangle this risk in the field and the laboratory, with the
aim of preventing the emergence of zoonotic diseases and reducing potential health and economic
burdens, particularly for vulnerable populations.

4. Material and Methods

4.1. Natural Breeding Sites

First, a literature search was done in Google Scholar to identify articles reporting the presence of
Ae. albopictus in natural larval breeding sites and their types, using the keywords “Natural Breeding
sites Aedes albopictus” or “Oviposition sites Aedes albopictus” or “Larval habitats Aedes albopictus”. This
allowed for the identification of 16 articles [43,44,46,52,54,55,61,62,188–194] (Supplementary Table S1).
From these articles, the main natural breeding sites were listed: bamboo stumps, bromeliads, coconut
shells, leaf axils, rock holes, tree holes, snail shells, cacao shells, puddles, dead cow horns, dead
leaves, ground cavity, hollow log, palm bracts, and palm leaves. Then, a search on each type of
natural breeding site was carried out using PubMed, using the following words: (Aedes albopictus
[Title/Abstract] AND “Breeding type” [Title/Abstract]). The aim of this search was to quantify the
number of articles and the number of detections that described the presence of this mosquito in each
of the identified natural breeding sites (Supplementary Table S2). Articles that did not quantify the
number of times the breeding sites were found positive were excluded. The bibliographic search was
done between August and December 2018.

4.2. Feeding Behaviour

A literature search was done in Google Scholar with the key words “blood meal” and “host feeding”,
followed by “Aedes albopictus” until December 2018. Three studies were excluded because they were
considered unreliable: (i) the study by Gingrich and Williams, 2005 [67], which did not test for human
blood meals, thus bringing a potential bias into the results; (ii) the study performed in a zoo by Tuten
et al., 2012 [195]; and (iii) the study by Hess et al., 1968 [196] that was exclusively carried out in
a bird area on Hawaii Island. Finally, 22 studies were selected (see references and details for each
of them in Supplementary Table S3) to build a database of blood feeding preferences, based on the
Ae. albopictus biting frequency for each host species, biological family, or group of vertebrate hosts
(human, mammals, birds, domestic animals, wild animals). The database was used to quantify the
relative importance as a blood meal of each host group and of specific hosts, based on the reported
blood meal sources identified using different techniques (DNA sequencing, ELISA blond meal analyses,
agarose gel precipitin). Then, these preferences were analysed independently of the host availability,
which was quantified in very few studies.

4.3. Arbovirus Transmission

First, all referenced arboviruses that might be transmitted by Ae. albopictus were selected using
the arbocat database from Centers for Disease Control and Prevention (CDC) (https://wwwn.cdc.gov/

arbocat/VirusBrowser.aspx). Then, Google Scholar and PubMed were searched with the key words
“Virus name” and “Vector Competence”, followed by “Aedes albopictus”. Among the 49 articles obtained
with this search, articles containing data on virus detection/isolation from field-collected mosquitoes,
and data on vector competence parameters, including “susceptibility”, “infection, dissemination”,
or “transmission rates” were selected (see Supplementary Table S4 showing the viruses and the
bibliographic references). Data from each article were used to calculate the infection rates as the
number of mosquitoes showing virus infection in the gut divided by the number of mosquitoes fed
with infected blood x 100. Dissemination efficiency was calculated as the number of mosquitoes
with viruses disseminated in the legs, wings, or head divided by the number of mosquitoes fed with
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infected blood x 100. Transmission rates were calculated as the number of mosquitoes that could
deliver the virus with saliva (detection of virus in mosquito saliva, or demonstration of transmission
using animal hosts exposed to infected mosquito bites) divided by the number of mosquitoes with
viruses disseminated in the legs, wings, or head (body) × 100. Transmission efficiency was calculated
as the number of mosquitoes that could deliver the virus with saliva (detection of living viruses or viral
genome in mosquito saliva, or demonstration of transmission using animal hosts exposed to infected
mosquito bites) divided by the number of mosquitoes fed with infected blood [168]. In the present
work, infection performed from intrathoracic assays corresponds to mosquitoes that after intrathoracic
injection, were detected with the virus after a 7–10 day incubation period. For this detection, the ground
mosquito suspension was inoculated in rats, or the presence of the virus quantified by assays in Vero
cell cultures. After intrathoracic injection, infected mosquitoes may transmit the virus to another
animal. Some articles only described transovarial transmission tested after intrathoracic infection.
These works demonstrated Ae. albopictus susceptibility to develop infection by a given arbovirus.
However, these articles did not quantify the infection and transmission rates.

To compare the results, the same bibliographic search was performed to find the vector competence
values reported for efficient bridge vector–virus pairs, such as Culex pipiens * WNV and Haemagogus
leucocelenus * YFV, and for epidemic vector–virus pairs, such as Aedes aegypti * YFV, Aedes albopictus
*DENV_1, Aedes albopictus *DENV_2, Aedes aegypti *DENV_1, Aedes aegypti *DENV_2, Aedes albopictus
*CHIKV, Aedes aegypti * CHIKV, Aedes albopictus *ZIKV virus, and Aedes aegypti * ZIKV (Supplementary
Table S7). The bibliographic search was done between August 2018 and November 2019.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/4/266/s1,
Table S1. List of the 16 articles found by searching Google Scholar to characterize the types of natural breeding
sites exploited by Ae. albopictus, Table S2. Typology and number of reported natural containers exploited by
Ae. albopictus from articles found in PubMed, Table S3: List of references used to analyse the host feeding
preferences of Aedes albopictus, Table S4: List of references that reported infection, infections rate, dissemination
rate, dissemination efficiency, transmissions rate or transmission efficiency in Ae. albopictus for the indicated
arboviruses, Table S5: List of references used to analyse the vector competence of several mosquito-virus pairs:
Aedes aegypti*CHIKV, Aedes aegypti*DENV-1, Aedes aegypti*DENV-2, Aedes aegypti*ZIKV, Aedes albopictus*CHIKV,
Aedes albopictus*DENV-1, Aedes albopictus*DENV_2, Aedes albopictus*ZIKV, Culex pipiens*WNV, and Haemagogus
leucocelenus*YFV, Table S6: Natural detection or isolation of arboviruses in Ae. albopictus from field-collected
mosquitoes. CCV, Cache Valley virus; EEEV, Eastern Equine Encephalomyelitis virus; KEYV, Keystone virus;
LACV, La Crosse virus; POTV, Potosi virus; TENV, Tensaw virus; WNV, West Nile virus, Table S7: Geographic
distribution, vertebrate hosts and potential vectors of arboviruses isolated or tested for vector competence in Ae.
albopictus. Figure S1. Analysis of the host feeding patterns of Ae. albopictus for the different species of domestic
animals without taking into account the host availability.
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