C. A. Els, V. Corbiere, K. Smits, J. A. Van-gaans-van-den-brink, M. C. Poelen et al., Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis, Immunoproteome. Front Immunol, vol.5, p.361, 2014.

M. J. Canova and V. Molle, Bacterial serine/threonine protein kinases in host-pathogen interactions, J Biol Chem, vol.289, pp.9473-9479, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02282652

R. A. Festa, F. Mcallister, M. J. Pearce, J. Mintseris, K. E. Burns et al.,

H. , Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis, 2010.

, PLoS One, vol.5, p.8589

K. Y. Rhee, H. Erdjument-bromage, P. Tempst, and C. F. Nathan, S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense, 2005.

, Proc Natl Acad Sci U S A, vol.102, pp.467-472

A. Sajid, G. Arora, A. Singhal, V. C. Kalia, and Y. Singh, Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence, Annu Rev Microbiol, vol.69, pp.527-547, 2015.

H. L. Schubert, R. M. Blumenthal, and X. Cheng, Many paths to methyltransfer: a chronicle of convergence, Trends Biochem Sci, vol.28, pp.329-335, 2003.

M. T. Bedford and S. G. Clarke, Protein arginine methylation in mammals: who, what, and why, Mol Cell, vol.33, pp.1-13, 2009.

S. Lanouette, V. Mongeon, D. Figeys, and J. F. Couture, The functional diversity of protein lysine methylation, Mol Syst Biol, vol.10, p.724, 2014.

J. A. Cain, N. Solis, and S. J. Cordwell, Beyond gene expression: the impact of protein post-translational modifications in bacteria, J Proteomics, vol.97, pp.265-286, 2014.

S. Ud-din, A. I. Roujeinikova, and A. , Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea, Cell Mol Life Sci, vol.74, pp.3293-3303, 2017.

E. L. Greer and Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance, Nat Rev Genet, vol.13, pp.343-357, 2012.

M. T. Bedford, Arginine methylation at a glance, J Cell Sci, vol.120, pp.4243-4246, 2007.

X. Zhang, H. Wen, and X. Shi, Lysine methylation: beyond histones, Acta Biochim Biophys Sin (Shanghai), vol.44, pp.14-27, 2012.

M. Barbier, J. P. Owings, I. Martinez-ramos, F. H. Damron, R. Gomila et al., Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia, vol.4, pp.207-00213, 2013.

M. Zhang, J. Y. Xu, H. Hu, B. C. Ye, and M. Tan, Systematic Proteomic Analysis of Protein Methylation in Prokaryotes and Eukaryotes Revealed Distinct Substrate Specificity, 2018.

, Proteomics, vol.18

, Medecine user on, vol.12, 2020.

, You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is, Biochemical Journal

K. Pethe, S. Alonso, F. Biet, G. Delogu, M. J. Brennan et al., The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination, Nature, vol.412, pp.190-194, 2001.

K. Pethe, P. Bifani, H. Drobecq, C. Sergheraert, A. S. Debrie et al., Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis, Proc Natl Acad Sci U S A, vol.99, pp.10759-10764, 2002.

A. Singhal, G. Arora, A. Sajid, A. Maji, A. Bhat et al., Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase, Sci Rep, vol.3, p.2264, 2013.

A. Singhal, G. Arora, R. Virmani, P. Kundu, T. Khanna et al., Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase, J Biol Chem, vol.290, pp.26218-26234, 2015.

R. S. Santhosh, S. K. Pandian, N. Lini, A. K. Shabaana, A. Nagavardhini et al., Cloning of mce1 locus of Mycobacterium leprae in Mycobacterium smegmatis mc2 155 SMR5 and evaluation of expression of mce1 genes in M, 2005.

, Immunol Med Microbiol, vol.45, pp.291-302

A. Sajid, G. Arora, M. Gupta, A. Singhal, K. Chakraborty et al., Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation, J Bacteriol, vol.193, pp.5347-5358, 2011.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-675, 2012.

K. Sharma, R. C. Souza, S. Tyanova, C. Schaab, J. R. Wisniewski et al., Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling, Cell Rep, vol.8, pp.1583-1594, 2014.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., , 2011.

, Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, vol.10, pp.1794-1805

P. Sinitcyn, J. D. , and J. Cox, Computational Methods for Understanding Mass Spectrometry-Based Shotgun Proteomics Data, Annual Review of Biomedical Data Science, vol.1, pp.207-234, 2018.

J. Cox, I. Matic, M. Hilger, N. Nagaraj, M. Selbach et al., A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics, Nat Protoc, vol.4, pp.698-705, 2009.

J. M. Lew, A. Kapopoulou, L. M. Jones, and S. T. Cole, , p.10, 2011.

, Tuberculosis (Edinb), vol.91, pp.1-7

, Medecine user on, vol.12, 2020.

, You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is, Biochemical Journal

M. A. Dejesus, E. R. Gerrick, W. Xu, S. W. Park, J. E. Long et al., , 2017.

, Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis, MBio, vol.8

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Mol Microbiol, vol.48, pp.77-84, 2003.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism, PLoS Pathog, vol.7, p.1002251, 2011.

C. M. Sassetti and E. J. Rubin, Genetic requirements for mycobacterial survival during infection, Proc Natl Acad Sci, vol.100, pp.12989-12994, 2003.

N. Friedland, T. R. Mack, M. Yu, L. W. Hung, T. C. Terwilliger et al.,

M. , Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation, Biochemistry, vol.46, pp.6733-6743, 2007.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera--a visualization system for exploratory research and analysis, 2004.

, J Comput Chem, vol.25, pp.1605-1612

C. Lee and C. H. Huang, LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization, Biotechniques, vol.54, pp.141-153, 2013.

M. Fol, A. Chauhan, N. K. Nair, E. Maloney, M. Moomey et al., Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator, Mol Microbiol, vol.60, pp.643-657, 2006.

M. Rajagopalan, R. Dziedzic, M. Al-zayer, D. Stankowska, M. C. Ouimet et al., Mycobacterium tuberculosis origin of replication and the promoter for immunodominant secreted antigen 85B are the targets of MtrA, the essential response regulator, J Biol Chem, vol.285, pp.15816-15827, 2010.

M. Gupta, A. Sajid, K. Sharma, S. Ghosh, G. Arora et al., HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo, J Bacteriol, vol.196, pp.2646-2657, 2014.

G. Arora, A. Sajid, M. D. Arulanandh, A. Singhal, A. R. Mattoo et al., Unveiling the novel dual specificity protein kinases in Bacillus anthracis: identification of the first prokaryotic dual specificity tyrosine phosphorylationregulated kinase (DYRK)-like kinase, J Biol Chem, vol.287, pp.26749-26763, 2012.

Y. Ishihama, T. Schmidt, J. Rappsilber, M. Mann, F. U. Hartl et al., Protein abundance profiling of the Escherichia coli cytosol, BMC Genomics, vol.9, p.102, 2008.

, Medecine user on, vol.12, 2020.

, You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is, Biochemical Journal

A. Ojha, M. Anand, A. Bhatt, L. Kremer, W. R. Jacobs et al., GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria, Cell, vol.123, pp.861-873, 2005.

Y. Li, J. Zeng, and Z. G. He, Characterization of a functional C-terminus of the Mycobacterium tuberculosis MtrA responsible for both DNA binding and interaction with its two-component partner protein, MtrB. J Biochem, vol.148, pp.549-556, 2010.

E. Martinez-hackert and A. M. Stock, Structural relationships in the OmpR family of winged-helix transcription factors, J Mol Biol, vol.269, pp.301-312, 1997.

E. M. Hyland, H. Molina, K. Poorey, C. Jie, Z. Xie et al., An evolutionarily 'young' lysine residue in histone H3 attenuates transcriptional output in Saccharomyces cerevisiae, Genes Dev, vol.25, pp.1306-1319, 2011.

R. Plocinska, G. Purushotham, K. Sarva, I. S. Vadrevu, E. V. Pandeeti et al., Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression, J Biol Chem, vol.287, pp.23887-23899, 2012.

V. Pejaver, W. L. Hsu, F. Xin, A. K. Dunker, V. N. Uversky et al., The structural and functional signatures of proteins that undergo multiple events of post-translational modification, Protein Sci, vol.23, pp.1077-1093, 2014.

S. Ghosh, B. Padmanabhan, C. Anand, and V. Nagaraja, Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization, 2016.

, Mol Microbiol, vol.100, pp.577-588

I. Yaseen, P. Kaur, V. K. Nandicoori, and S. Khosla, Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3, Nat Commun, vol.6, p.8922, 2015.

G. Sharma, S. Upadhyay, M. Srilalitha, V. K. Nandicoori, and S. Khosla, The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding, Nucleic Acids Res, vol.43, pp.3922-3937, 2015.

S. S. Shell, E. G. Prestwich, S. H. Baek, R. R. Shah, C. M. Sassetti et al., DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis, PLoS Pathog, vol.9, p.1003419, 2013.

I. Yaseen, M. Choudhury, M. Sritharan, and S. Khosla, Histone methyltransferase SUV39H1 participates in host defense by methylating mycobacterial histone-like protein HupB, 2018.

, EMBO J, vol.37, pp.183-200

G. Purushotham, K. B. Sarva, E. Blaszczyk, M. Rajagopalan, and M. V. Madiraju, , 2015.

, Mycobacterium tuberculosis oriC sequestration by MtrA response regulator, Mol Microbiol, vol.98, pp.586-604

, Medecine user on, vol.12, 2020.

, You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is, Biochemical Journal

E. S. Witze, W. M. Old, K. A. Resing, and N. G. Ahn, Mapping protein posttranslational modifications with mass spectrometry, Nat Methods, vol.4, pp.798-806, 2007.

K. K. Singh, N. Bhardwaj, G. D. Sankhe, N. Udaykumar, R. Singh et al.,

K. , Acetylation of Response Regulator Proteins, TcrX and MtrA in M. tuberculosis Tunes their Phosphotransfer Ability and Modulates Two-Component Signaling Crosstalk, J Mol Biol, vol.431, pp.777-793, 2019.

X. J. Cao, J. Dai, H. Xu, S. Nie, X. Chang et al., High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans, Cell Res, vol.20, pp.197-210, 2010.

S. P. Gaucher, A. M. Redding, A. Mukhopadhyay, J. D. Keasling, and A. K. Singh, Posttranslational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins, J Proteome Res, vol.7, pp.2320-2331, 2008.

I. Baric, K. Fumic, B. Glenn, M. Cuk, A. Schulze et al., Sadenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism, Proc Natl Acad Sci U S A, vol.101, pp.4234-4239, 2004.

L. Mull, M. L. Ebbs, and J. Bender, A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase, 2006.

, Genetics, vol.174, pp.1161-1171

N. Radomski, C. Kaufmann, and C. Dreyer, Nuclear accumulation of Sadenosylhomocysteine hydrolase in transcriptionally active cells during development of Xenopus laevis, Mol Biol Cell, vol.10, pp.4283-4298, 1999.

M. Berney, L. Berney-meyer, K. W. Wong, B. Chen, M. Chen et al.,

J. Parkhill, J. Chan, F. Wang, W. R. Jacobs, and . Jr, Essential roles of methionine and Sadenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis, Proc Natl Acad Sci U S A, vol.112, pp.10008-10013, 2015.

M. R. Nixon, K. W. Saionz, M. S. Koo, M. J. Szymonifka, H. Jung et al., Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis, Chem Biol, vol.21, pp.819-830, 2014.

, Medecine user on, vol.12, 2020.

, You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is, Biochemical Journal