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Abstract  1 

Effective conservation requires prioritizing areas that are vulnerable to large, irreversible changes. 2 

Unfortunately, rigorously documenting these changes with experiments and long-term monitoring is not 3 

only costly, but may provide evidence that is too late to facilitate proactive decisions.  4 

We use a simple model to illustrate that commonly available short-term spatial, “snapshot”, data from a 5 

given ecosystem along an environmental gradient can be used to identify environmental conditions under 6 

which different ecosystem states (e.g. different species compositions) co-occur in space. These 7 

environmental conditions are those under which future perturbations have the potential for discontinuous 8 

large, sometimes irreversible, effects; and can be mapped in space to predict potential spatial hotspots of 9 

ecosystem fragility. 10 

We apply these insights to ecologically important high-elevation subalpine meadows of the Sierra Nevada 11 

(California). Our analysis reveals specific areas within meadows that may be more vulnerable than others 12 

because their plant communities have the potential to shift to a different state. These shifts can be 13 

mechanistically explained by interactions between the vegetation and the local water regimes and/or the 14 

upper soil conditions.  15 

Our study provides a simple workflow using commonly available data to help prioritize conservation areas 16 

based on their potential sensitivity to upcoming perturbations. Such an approach could be very valuable to 17 

make most efficient use of conservation and management resources in the context of ongoing global 18 

changes.  19 

 20 
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 24 

Introduction 25 

While many ecosystems respond gradually to environmental changes, others can exhibit ecological shifts, 26 

where disproportional changes in an ecosystem state occur following gradual changes in environmental 27 

conditions (Scheffer et al. 2001, Suding et al. 2004). This represents a global conservation concern, as a 28 

wide array of terrestrial and marine ecosystems have shown such large degradation events, including coral 29 

reefs (Hughes 1994), fish stocks (Sguotti et al. 2019), arid ecosystems (Kéfi et al. 2007), shallow lakes 30 

(Scheffer et al. 1993) and kelp forests (Steneck et al. 2013). In general, because these systems have 31 

attracted a large research effort, the ecological mechanisms underpinning these shifts have been identified. 32 

Yet, this knowledge does not always translate into actionable conservation directives because local factors 33 

can alter ecological dynamics in seemingly idiosyncratic ways (Suding and Hobbs 2009). For example, in 34 

rangelands, erosion and fire regimes can tip ecosystems between grass and shrub-dominated states 35 

(Suding et al. 2004). Yet, because such dynamics are altered by local factors (such as topography or 36 

grazing pressure), it remains difficult to pinpoint the ecological conditions at which a state shift will occur 37 

for a given piece of land (Bestelmeyer 2006). Such uncertainty can severely hinder effective conservation 38 

efforts, because the potential of some areas to undergo large changes and become degraded can be left 39 

overlooked. Conversely, degraded areas that would respond favorably to restoration may be left 40 

unattended. For informed land management in the current context of global changes, it is important to 41 

identify, a priori, how different zones in a given area of interest (e.g. a conservation area) may respond to 42 

perturbations. Rigorously and precisely documenting large changes after they happen is too late. 43 

Approximately forecasting its potential to occur can help prioritize resources for proactive decisions.  44 

To improve the practical forecast of large changes in ecosystems, ecologists have sought to build more 45 

operational frameworks and tools to identify from empirical data if a given ecosystem can exhibit shifts, 46 

and if so, for which environmental conditions (Scheffer and Carpenter 2003, Andersen et al. 2009, Suding 47 

and Hobbs 2009, Ratajczak et al. 2018). However, not all methods can always be applied to a focal 48 

ecosystem. Ideally, efforts to identify upcoming shifts would involve documenting temporal responses to 49 

changes in environmental conditions, or perturbations (Bestelmeyer et al. 2011, Petraitis 2013), and then 50 

applying predictions based on those observations to new locations where environmental changes have yet 51 

to occur. Such an approach relies on time-series from either observations or experiments (Scheffer and 52 

Carpenter 2003). However, for many locations, obtaining such datasets, or setting up experiments at the 53 

appropriate scales can be costly and require perturbation experiments that are often incompatible with 54 

management policies. Conservation areas more commonly have inventory data, where descriptive 55 
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attributes (e.g. abundance of species, soil characteristics, etc.) are surveyed along known environmental 56 

gradients (effectively replacing temporal sampling by spatial sampling -- a ‘space-for-time’ approach). 57 

These surveys are often not repeated, resulting in data collected from multiple locations along 58 

environmental gradients, but at a single or several close points in time (what we name hereafter ‘snapshot’ 59 

data). As an example, such data could correspond to plant surveys along altitudinal or aridity gradients 60 

during a single year. We show here how such data can help land managers prioritize their conservation 61 

efforts by predicting where perturbations may cause potentially large changes in an ecosystem. 62 

Our work focuses on ecologically important subalpine meadows in the Sierra Nevada (California, USA). 63 

Many of these meadows are located in two major national parks, Yosemite and Sequoia, and exemplify 64 

conservation areas where, due to their remoteness, it is often impractical to regularly monitor for temporal 65 

changes, and the use of snapshot data to gain insight on the potential effect of perturbations can be 66 

particularly useful. The small-scale species composition of meadow plant communities is known to be 67 

tightly linked to water availability (Benedict 1983, Allen-Diaz 1991, Lowry et al. 2011). However, this 68 

general response can be altered, for example because of local changes in soil organic matter content 69 

(Ankenbauer and Loheide 2017), or because of a locally-increased importance of erosion processes 70 

(Klikoff 1965). Due to such local effects, some meadow areas may be more fragile than others to similar 71 

perturbations. We show in this study how a novel approach to the analysis of snapshot datasets may help 72 

better prioritize conservation and research efforts to protect these habitats. 73 

Theoretically, three broad types of changes in a variable of interest (e.g. productivity) can be observed 74 

along an environmental gradient: linear, continuous non-linear or discontinuous non-linear with discrete 75 

alternative states (Box 1 panels a1, b1, c1) (Ratajczak et al. 2018). Such variable can be a population-level 76 

(e.g. abundance of a focal species), community-level (e.g. species composition) or a more ecosystemic 77 

attribute (e.g. productivity), depending on what is most relevant for management. When a linear response 78 

is observed, the observed state changes proportionally to changes in environmental conditions along the 79 

gradient (panel a1 in Box 1). In contrast, with a continuous non-linear response, small changes in 80 

conditions result in an apparent large shift as an ecological threshold is crossed (panel b1 in Box 1). A 81 

specific case arises when the response exhibits alternative states (panel c1 in Box 1), a case in which 82 

several discrete states can be observed for a range of environmental conditions along the gradient. These 83 

states can arise from differences in an environmental variable not captured by the main gradient (e.g. 84 

different local soil types), or because ecological processes make the ecosystem persist in one of several 85 

contrasted states despite similar environmental conditions. In this latter case, the discrete states are 86 

effectively alternative stable states, which can arise due to a variety of ecological mechanisms, such as 87 

priority effects, or reinforcing feedbacks (Beisner et al. 2003, Petraitis 2013). Regardless of the ecological 88 
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origin of non-linear responses along a gradient, for practical conservation purposes, the areas where such 89 

responses are observed can be considered more fragile, either because they are susceptible to larger shifts 90 

than elsewhere, or because the community types in those areas strongly depend on a specific, narrower set 91 

of environmental conditions not reflected in the main gradient. Finding ways to identify where they occur 92 

is thus essential for informed management.  93 

Previous studies have suggested approaches to identify the ranges of external conditions where discrete 94 

states are observed, based on detecting distinct ecosystem states in time series (Livina et al. 2010, 95 

Vasilakopoulos and Marshall 2015) or ecosystem data along spatial gradients (Hirota et al. 2011, Scheffer 96 

et al. 2012). These approaches have mostly been used for cases where a single, well-known index (e.g., 97 

tree cover), characterizes the observed ecosystem state. When the latter cannot be adequately 98 

characterized by a single index, it is more challenging to visualize discontinuous changes in data 99 

(Magurran et al. 2010), and fewer statistical tools are available to identify discrete states. Yet many cases 100 

of interest to both conservation and ecological theory require identifying discontinuous changes in 101 

complex multi-species communities. For example, when focusing on changes in species compositions, the 102 

observed state is accurately characterized by a set of species abundances, which cannot be reduced into a 103 

single index without losing information (Barros et al. 2016). We show here how non-linear responses can 104 

be detected along environmental gradients by applying such previous approaches to inventory data. We 105 

apply our work to detect areas in subalpine meadows that could be more fragile to upcoming 106 

perturbations, and discuss the implications of such fragility for the local conservation of habitats and 107 

species.  108 

109 
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Box1: Identifying non-linear responses along a gradient from the modality of observations 110 

 111 

Proof of concept model: to illustrate the link between multimodality in observations and the type of 112 

response of an ecosystem along a gradient, we can consider a simple model of ecosystem dynamics (Noy-113 

Meir 1975, May 1977), which can produce different types of deterministic ecosystem responses (red lines) 114 

along an environmental gradient. When a linear response is observed (a1), the average ecosystem state 115 

(which could here represent the vegetation biomass; red line, y-axis) changes proportionally to the 116 

changes in environmental conditions (x-axis). This is not the case for non-linear responses (b1, c1), where 117 

large changes in the observed state can arise following small changes in the environmental conditions 118 

captured by the gradient (blue arrows), or between alternative states after a perturbation (green arrow).  119 

We modified the model to have similar dynamics, but subjected to typical sources of ecological noise. We 120 

retained the final state of a set of independent simulations with varying parameters to simulate a sampling 121 

scheme that would lead to snapshot data (i.e. sampling independent instances of the same system in 122 

different environmental conditions, but at a single point in time). This dataset is represented by the black 123 

points in panels a1, b1, c1, each point corresponding to one observation. Using a moving-window 124 

approach, we can investigate how the distribution of these observations changes along the grazing 125 

gradient, and thereby characterize how their ‘modality’ relates to the type of ecosystem response (panels 126 

a2-c2). Wherever the observations tend to exhibit two modes along the gradient, their distribution is better 127 

described by a density with two modes, and thus the frequency of counts for two modes increases (see 128 

Methods for details about this approach). As this arises in the vicinity of non-linear responses (panels b2 129 

and c2), modality can be used as a criterion to identify ranges of environmental conditions where apparent 130 

non-linear responses occur.  131 

It is important to note that a non-linear response along a gradient does not mean that intrinsic ecological 132 

processes drive the response: external variables not captured by the main gradient could also explain such 133 

a pattern (e.g. different soil types producing alternative states). More information about the model is 134 

provided in Supplementary Material S2. 135 
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2  Methods 136 

2.1  Data source 137 

We used a dataset resulting from a study documenting meadow plant communities in 47 meadows located 138 

in Yosemite and Sequoia National Parks in 2011 and 2012 (Lee et al. 2017). Meadows were situated 139 

between 2517m and 3355m a.s.l. and had an area between 0.42ha and 22.1ha. Data were collected for 140 

each meadow from 2x2m plots, regularly spaced (20 m intervals) along belt transects that were oriented 141 

perpendicularly to the main meadow drainage, spaced 40 m apart and ran from meadow edge to meadow 142 

edge. Volumetric water content of the top 12 cm of soil was obtained for all plots using a handheld TDR 143 

soil moisture probe. In every third plot, ocular cover estimates of all plant species were recorded in 8 144 

25x25cm sub-plots, and averaged to estimate the relative abundance of each species in the plot. In 145 

addition, ocular estimates of the cover of 28 variables describing the local water regime, upper soil 146 

characteristics and disturbance by herbivores were measured (e.g. cover of bare ground, rock bed, etc., see 147 

Supplementary Material S1). Overall, sampling resulted in 2860 plots with soil moisture and local 148 

environmental conditions; of these, 1287 also had species composition recorded.  149 

We focused on the variations of a community-level attribute, the species composition of vegetation 150 

communities, along the natural moisture gradient in the meadows. Decades of work show that moisture is 151 

a key factor in determining meadow species composition, as within a meadow, plant species sort along the 152 

gradient (Allen-Diaz 1991, Lowry et al. 2011). We checked that this aspect of meadows was also captured 153 

by our dataset (Supplementary Material S2, section 2), and used water content as the main gradient. We 154 

attenuated the effect of year-to-year variations in precipitation on the measurements of the moisture 155 

gradient by standardizing the measured water content within year. As a result, in what follows, water 156 

content values are given in standard deviations (s.d.) to the annual mean.  157 

2.2 Analyzing changes in modality along a gradient 158 

When a set of observations is unimodal, observations tend to cluster around a single mean. For example, a 159 

unimodal set of observations of a given species’ abundance can be effectively characterized by a mean 160 

abundance, from which most observations would deviate only slightly (Figure 1a). When a set of 161 

observations is multi-modal, observations cannot be well-summarized by a single mean and instead, 162 

several, different clusters are present in the data. This could for instance be the case when a species is 163 

either locally very rare or very abundant (these abundances being modes, Figure 1b), but rarely observed 164 

with intermediate abundances.  165 
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Characterizing the multimodality for a set of observations can be done using the density of observations. 166 

The density is a function that captures the relative frequency of different observed values: those that are 167 

more frequent in a given set of observations will have higher density values. Conversely, values that are 168 

scarcely observed correspond to lower density values. This results in local peaks (‘modes’) in the density 169 

around values that are frequently observed in a given set of observations. A unimodal set of observations 170 

will tend to have a single peak in its density, i.e. most observations cluster around a single, average value 171 

(Figure 1 a, c). A multi-modal set of observations will have a density with multiple well-defined peaks 172 

(Figure 1 b, d). Computing the density of a given set of observations, and estimating the number of well-173 

separated peaks in it is thus a natural way to characterize the number of modes in a set of observations (its 174 

modality, Silverman (1981), Müller and Sawitzki (1991)).  175 

For each subset of observations, we computed its density, and considered n
cut

 thresholds regularly spaced 176 

between zero and the maximum value of the density. For each threshold, we considered a "horizontal 177 

slice" of the density and counted the number of observed disjunct parts of the density above the threshold 178 

(λ-clusters sensu Müller and Sawitzki (1991), see Figure 1). This number of clusters provides an estimate 179 

of the number of well-separated modes in a given density above a certain threshold (Müller and Sawitzki 180 

1991, Fisher 2001, Scott 2015). For a given density, i.e. a set of observations, this process yields a set of 181 

n
cut

 integer values, each corresponding to an estimated number of modes. How these counts vary along an 182 

environmental gradient informs about changes in the modality of the distribution of states. A typical 183 

example could be that of a density switching from unimodal to bimodal around a certain value of the 184 

environmental gradient, which would be reflected in a higher number of counts for two well-separated 185 

modes.  186 

This non-parametric method can be applied to univariate densities (Figure 1, top; Box 1), which 187 

corresponds to the case where the state of the system is defined by a single value. It can also be applied to 188 

multivariate densities, obtained through multi-dimensional kernel density estimation (Figure 1b), which 189 

makes it applicable to cases where each observation is multi-dimensional (e.g. when each observation 190 

consists of abundances of individual species). It only depends on a single parameter (the density 191 

bandwidth) and it is more robust to outliers than previous approaches for the detection of multimodality 192 

(Fisher 2001). n
cut

 only affects the precision of computations, and was set to a large value to identify 193 

differences in height of the density (we used 512 here, which was enough to detect changes in modality 194 

along the gradient).  195 

Given a fixed set of observations, this procedure allows estimating the number of modes in the density, 196 

but it needs to be adapted to investigate change in this number along a gradient. To do so, we adopted a 197 
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moving-window approach. We chose a window size w, here corresponding to a range of water content 198 

values, and estimated the number of modes for each subset of observations falling within this range, each 199 

time ’moving’ the window by a small amount along the gradient. This allows determining how the 200 

number of modes (i.e. the modality) of observations change along an environmental gradient.  201 

 202 

Figure 1: Principle of the measure of modality based on synthetic data. With univariate observations (i.e. 203 

that are described by a single variable such as the abundance of a single species), the density can be 204 

represented as a one-dimensional function of that variable (a1, b1). This function may have one peak, and 205 

thus be unimodal (a1) or two and be bimodal (b1). When an observation is multivariate (c1, d1), i.e. when 206 

two or more variables are used for each observation, such as abundances of several species, the density is 207 

represented as a two-dimensional plot (c1, d1) along these variables, where red values represent high 208 

density values. Again, multivariate densities can be unimodal (c1) or multi-modal (d1). To estimate the 209 

number of modes, we can consider the number of disjunct parts of a given density with values above a 210 

certain threshold (dashed lines, a1, b1 and continuous lines in c1 and d1). Doing so for a range of 211 

thresholds between zero and the maximum value of the density yields a majority of counts for one mode 212 

for unimodal densities (red area in panels a2, c2). For bimodal densities, the same analysis yields an 213 

increased number of counts for two modes (yellow areas, b2, d2). Note that very low thresholds identify 214 

spurious clusters because of outliers in the density, but this effect only concerns a reduced number of 215 

threshold values, so the influence of outliers on this estimate of modality is minimal. Data was generated 216 
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by drawing samples out of a univariate or multivariate Gaussian distribution (a,c), or a mixture of two 217 

Gaussian distributions (b,d; see Supplementary Material S2 section 5 for the distribution parameters).   218 

2.3  Empirical data analyses 219 

Classical univariate synthetic indices (e.g. total species richness or total cover) fail to capture the response 220 

of meadow vegetation communities to environmental parameters (Lee et al. 2017). We thus defined the 221 

state of meadow vegetation communities as the set of relative abundances of all species in a given plot 222 

(Barros et al. 2016). Each single observation had thus a dimension equal to the total number of species in 223 

the dataset (257). Because carrying kernel density estimation cannot be done on data with this many 224 

dimensions (typically, computational costs become too high after 5-10 dimensions (Blonder et al. 2014), 225 

we summarized the variations of vegetation species compositions to a few axes using an ordination. In 226 

principle, using Principal Coordinate Analysis (also named metric Multi-Dimensional Scaling) is the 227 

method of choice as it preserves dissimilarities between sites in the resulting axes. However, empirically it 228 

often produces strong arch artefacts on vegetation data, in particular when species turnover is high along a 229 

gradient (Legendre and Legendre 2012). Non-metric multidimensional scaling could be considered as an 230 

alternative but, because it preserves only the ranks of the original dissimilarities between sites, the 231 

resulting axes summarizing species turnover cannot be used quantitatively. We therefore chose a 232 

Correspondence-analysis-based method – Detrended-Correspondence Analysis – which (i) produces axes 233 

that can be used as quantitative variables and (ii) is less subject to arch-like artifacts. We carried out 234 

sensitivity analyses to confirm that our results were robust to the choice of dimensionality reduction 235 

method (Supplementary Material S2, section 4). 236 

We used the two first axes of the DCA and measured changes in the modality of observations along the 237 

moisture gradient using the previously-described approach. We set the window size to 1 and used the 238 

bivariate diagonal density estimation kernel [0.70, 0; 0, 0.62], as obtained from automatic bandwidth 239 

selection (function bw.nrd in R). Because the sample size affects the shape of the density (and thus the 240 

counts of modes), we always computed densities using a fixed number of observations (150). Because 241 

there were often more samples falling within a window of water content, we repeated the analysis 100 242 

times for each window, using a random subsample of 150 observations.  243 

Based on results from the previous analysis, patterns identified two ranges of water content with increased 244 

support for two well-separated modes, dry areas and wet areas. We extracted these subsets from the 245 

dataset and investigated soil attributes that could underpin their more bimodal distributions. We refer to 246 

dry areas for sites where water content was below -1 s.d. and wet areas for those where water content was 247 

above 1 s.d. Because the multimodality analysis suggested a dominance of two discrete plant community 248 
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types, we clustered each subset into two groups based on species composition, using hierarchical 249 

clustering with a Ward distance on a Bray-Curtis distance matrix. We contrasted the environmental 250 

covariates of each group to discuss possible underlying mechanisms for this apparent non-linear response 251 

along the water-content gradient. We used two-sample Mann-Whitney tests (wilcox.test in R) to contrast 252 

the distribution of each plot’s characteristics across groups, adjusting p-values for multiple tests using the 253 

Benjamini-Hochberg correction.  254 

Because the sampling was regularly spaced in meadows, we computed for each meadow an estimate of 255 

the proportion of area with increased multimodality as the proportion of plots laid in that meadow with a 256 

measured standardized water content above 1 or below -1. To map in space where this increase of 257 

modality occurred, we interpolated the standardized soil water content within meadows over a regular grid 258 

of points using ordinary kriging (using a spherical variogram for each meadow separately). We then 259 

modelled the empirical relationship between water content and the proportion of counts for more than one 260 

cluster as a one-dimensional generalized additive model. We used this empirical relationship to infer from 261 

the interpolated water content the proportion of counts for more than one cluster, and used it as an index 262 

of meadow areas with apparent non-linear responses (Supplementary Material S2, section 6). Analyses 263 

were conducted in R (version 3.6.1, R Core Team 2019), along with the R package ’vegan’ v2.5 (Oksanen 264 

et al. 2018), ‘gstat’ v2.0.3 (Pebesma 2004) and ‘mgcv’ v1.8.28 (Wood 2004).  265 

266 
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Results 267 

We used a proof-of-concept model (Box 1) to investigate how the modality of observations, i.e. how many 268 

peaks in the distribution are identified, changes along gradients for different types of ecosystem responses: 269 

linear, non-linear continuous and discontinuous. Simulations show that, in the case of a single ecosystem 270 

state along a gradual/linear ecosystem response, the distribution is predominantly characterized by a single 271 

mode, while multimodality arises when the state changes non-linearly with environmental conditions (Box 272 

1, panels b2, c2).   273 

The vegetation composition of the sites of our data set was summarized to the two first axis of a 274 

Detrended-Correspondence Analysis (Figure 2). The analysis of changes in modality in DCA scores along 275 

the moisture gradient highlighted ranges of the moisture gradient with an increased modality in the species 276 

composition of the meadows (Figure 2): dry areas and wet areas. In these two ranges of the water gradient, 277 

we found an increased count for two well-defined modes (Figure 3b), highlighting an apparent non-linear 278 

response of species composition to changes in water content.  279 
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 280 

Figure 2: Detrended Correspondence Analysis results on the subalpine dataset (a). The distribution of each 281 

point in the two axes is based on similarity of species composition (two close points tend to have a more 282 

similar composition). Species labels indicate points (plots) where a given species is the most abundant, 283 

with font size being proportional to the overall abundance of the species in the dataset (see supplementary 284 

materialS2 for a list of species codes). The bottom panels (b1-4) show the same graph, but only with 285 

points comprised within different ranges of water content. Increased modality (i.e. multimodality) can be 286 

observed for water contents below -1 s.d. and above +1 s.d. 287 

 288 
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 289 

Figure 3: (a) Moving averages (window width: 0.4 s.d.) of the relative covers of the ten most abundant 290 

species in the subalpine meadow dataset along the gradient of soil water content. (b) results of modality 291 

analysis along the same gradient. (c) Changes in the first axis values of the Detrended Correspondence 292 

Analysis (DCA) along the water moisture gradient (each point corresponds to a summarized species 293 

composition), and density contour highlighting local modes. 294 

 295 

 296 
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 297 

Figure 4: (a) Detrended Correspondence Analysis results on the wet meadow subset. Species labels 298 

indicate where individual species are dominant, with label size proportional to the total abundance of the 299 

species in the subset (see supplementary material S2). A density estimate is added on top of the points. (b) 300 

Differences in species composition, number of species S, and in plot attributes between the two groups 301 

(only attributes with significant differences are shown). Stars represent the significance of a Mann-302 

Whitney test (one star for P < 0.05 and two for P < 0.01). The grey bars show the estimated difference in 303 

medians between the two groups. 304 

305 
  306 
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Figure 5: (a) Detrended Correspondence Analysis results on the dry meadow subset. Species labels 307 

indicate where individual species are dominant, with label size proportional to the total abundance of the 308 

species in the subset. (b) Differences in species composition, number of species S, and in plot attributes 309 

between the two groups (only attributes with significant differences are shown), stars represent the 310 

significance of a Mann-Whitney test (one star for P < 0.05 and two for P < 0.01). The grey bars show the 311 

estimated difference in medians between the two groups. 312 

 313 

In wet areas (plots with water content above 1 s.d.), the two groups defined based on species composition 314 

were contrasted. One was dominated by Carex vesicaria (CARVES), while the other was a more mesic 315 

community that included Oreostemma alpigenum (Figure 4a, b-top). The C. vesicaria-dominated group 316 

represented 25% of all the plots in wet areas and had different water regime-related attributes: a more 317 

saturated and less moist soil, as well as a higher observed cover of silt and bare ground (Figure 4b). The 318 

covers of dry and flooded soils were significantly different between the two groups but the estimated 319 

effect size was close to zero.  320 

In dry areas (plots with water content below -1 s.d.), one of the two groups was dominated by Carex 321 

filifolia (CARFIL) (10% of plots in dry areas), while the other was dominated by more mesic plants (e.g. 322 

Vaccinium caespitosum (VACCAE); Calmagrostis brewerii (CALBRE); Figure 5a). The C. filifolia-domi-323 

nated group had a higher ocular cover of coarse particles (sand, pebble) and bare ground (Figure 5b). It 324 

also showed a significant difference in water-regime attributes (cover of dry and moist soil), and 325 

disturbance attributes (stock prints, rodent mounds), although they had a very small estimated cover 326 

difference (below 10-4).  327 

Overall, the proportion of area with increased multimodality in meadows represented on average 22% of a 328 

given meadow area of (across surveyed meadows, this number reached from 0 to 77%) and could be 329 

identified on maps based on the spatial interpolation of soil moisture (Figure 6).   330 
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 331 

Figure 6: Example of spatial use of a multimodality index (the empirical support, between zero and one, 332 

for more than one community type for a given soil moisture level, see Methods). Zones in red represent 333 

areas where non-linear responses to changes in soil water content are present, and could thus be more 334 

fragile to perturbations.   335 

 336 

Discussion 337 

Our analysis revealed that in wet and dry areas of meadows, there was no smooth response of vegetation 338 

composition to the moisture gradient but instead, discrete vegetation types were present. These types were 339 

associated with contrasted local soil characteristics. As a result, current and upcoming perturbations may 340 

have an unexpected effect in these areas because general changes in moisture regime may alter the 341 
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specific environmental factors on which vegetation states depend.  Reviewing the factors that co-varied 342 

with species composition (Figure 4 and 5) helps identify specific environmental variables and potential 343 

ecological processes that are critical to the conservation of these habitats, and provide informed possible 344 

scenarios for their response to current perturbations in the Sierra Nevada. 345 

Flagging potentially fragile meadow regions. 346 

In wet areas of the meadows, a Carex-vesicaria-dominated community contrasted with a more diverse 347 

mesic-wet meadow community. While both communities co-occurred in regions of similar average 348 

surface soil moisture (as measured by 12 cm TDR probes); the C. vesicaria-dominated community had a 349 

larger amount of flooded or saturated soil and more silt, which are typical characteristics of streamside 350 

flooded pools where Carex spp. dominate  (Baldwin and Hickman 2012). The mesic-wet community had 351 

a more diverse species composition, and occurred more frequently outside of areas with standing water. 352 

Here, the discrete vegetation states seemed to depend on the absence or presence of standing water, 353 

despite the fact that average, empirically measured surface soil moisture was similar. Local changes in 354 

water regimes could thus have a strong effect on species composition – or vice versa. These local changes 355 

can arise following changes in regional climate (see below), but may also be caused by local factors. 356 

Grazing for example has been shown to increase run-off through compaction of the soil (Kauffman and 357 

Krueger 1984, Ostoja et al. 2014), which could diminish the probability of creation of areas of standing 358 

water in meadows. However, given the overall low levels of grazing, and the relatively small importance 359 

of stock disturbance in our dataset (Figure 4, 5), their potential impacts are most likely minor within parks 360 

compared to regional-scale perturbations (Holmquist et al. 2014, Lee et al. 2017).  361 

In dry meadow areas, our analysis identified a Carex filifolia-dominated community contrasting against a 362 

more diverse mesic community which both occur in areas of similar empirically measured soil moisture. 363 

The C. filifolia community was observed to have coarser upper soil particles (sand, pebble), and a higher 364 

amount of bare ground. The two vegetation states differed significantly in visible disturbance by 365 

herbivores and water regime. This difference is consistent with the fact that dry communities are known to 366 

respond to external parameters such as rodent disturbance, erosion processes and soil nutrients (Klikoff 367 

1965). Differences in local soil surface conditions that are not captured by the main gradient could thus 368 

explain the presence of different discrete states. However, these local soil conditions are likely tied to the 369 

vegetation state as plant-soil feedbacks have been shown to exist in these areas. For example, sods formed 370 

by mesic meadow species can improve local microhabitat conditions by trapping smaller soil particles 371 

which hold nutrients and water during the dry season (Wood 1975, Ankenbauer and Loheide 2017). These 372 

plant-soil feedbacks could be strong enough to impair a rapid regrowth of the vegetation after soil 373 

disturbance, so that an acute disturbance of dry areas could have much longer-term effects than expected 374 
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(e.g. through trampling). It is unknown whether such feedbacks could be strong enough to impair the 375 

vegetation regrowth completely following disturbance (effectively underpinning alternative stable states). 376 

However, the evidence as a whole highlights the need to adopt a conservation perspective that takes into 377 

account the possibility of long-term, poorly-reversible degradation: based on the available evidence, mesic 378 

communities in dry areas are likely to be very fragile to upcoming changes in conditions and recovering 379 

from acute degradation following an extreme event would likely take decades, if possible at all without 380 

restoration efforts (Ratliff and Westfall 1992).  381 

More broadly, in both wet and dry areas, soil water-related parameters stood out as possible drivers of 382 

vegetation shifts. With the increase in frequency and intensity of drought events associated with climate 383 

change, snow to rain ratios and total spring snowpack are decreasing across the Sierra Nevada (Knowles 384 

et al. 2006, Barnett et al. 2008). These long-term changes in climate dynamics have the potential to 385 

extensively alter meadow hydrology, to which the wet and dry plant communities appear to be the most 386 

sensitive. As these communities represent on average 20% of meadow areas (up to 77%), this could 387 

constitute a significant concern for subalpine meadows across the central and southern Sierra Nevada. The 388 

Sierra Nevada has recently experienced an intense drought event (Belmecheri et al. 2015), which included 389 

the four driest years (2012-2015) of the last 2000 years (Adams et al. 2015). While the repercussions of 390 

the drought have clearly manifested across Sierra Nevada forest ecosystems (Potter 2016), the impacts on 391 

meadow ecosystems have yet to be thoroughly evaluated. Monitoring changes and setting up experimental 392 

research in potentially fragile areas occur could inform us greatly about such events. Our approach allows 393 

planning this next step by creating maps identifying these areas.  394 

A workflow to identify and map fragile areas  395 

With this work, we showed that investigating snapshot data for changes in modality of ecosystem states 396 

can provide information on the potential fragility of specific meadow areas. Importantly, our results show 397 

that we may identify these areas more accurately by taking into account the full state of the community 398 

(here, species composition) as we would not have detected changes in modality based on simple indices 399 

such as richness or total plant cover (Supplementary Material S2). It is a relatively simple analysis that can 400 

be carried out on commonly-available inventory data to investigate the possible dynamics of the 401 

ecological system under focus. An example workflow could be the following:  402 

1. Gather a dataset of observations describing how the state of an ecosystem varies along known 403 

influential environmental gradients. This can be done over a relatively short period of time, but the sample 404 

size of observations must be sufficiently large (at least 10-50 points per level of the environmental 405 

gradient). If no prior knowledge is available to identify main environmental gradients, this can be done 406 
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based on redundancy analysis or canonical correspondence analysis (Supplementary Material S2, section 407 

2). 408 

2. When the state is described using a high number of variables (e.g. species abundances), reduce 409 

the dimensionality of the dataset (e.g. using Detrended Correspondence Analysis) to 1-5 dimensions 410 

(variables). It is noteworthy that reducing the dataset to 2 dimensions or less drastically speeds up the 411 

numerical computations.  412 

3. Analyze the dataset for changes in modality along the main gradient, to identify areas along the 413 

gradient with increased modality, i.e. where apparent non-linear responses are present  414 

4. For these areas, use local environmental data to identify the source of increased multimodality. 415 

Such increase may arise as a combination of (1) effects of secondary environmental drivers of plant 416 

community composition (e.g. different soil types) and (2) intrinsic ecological processes driving non-linear 417 

responses (e.g. reinforcing feedbacks, Wilson and Agnew 1992). For conservation purposes, in both cases, 418 

these areas may be considered fragile because the local state (e.g. species composition) depends on a 419 

narrower set of environmental conditions and/or the response to perturbations may be non-linear (possibly 420 

exhibiting ecological shifts). 421 

5. Use spatial data to map where these areas are present, i.e. where the effect of perturbations may 422 

be larger. It is important to note that identifying the ranges of environmental conditions where non-linear 423 

responses occur only requires a reduced subset of data. For example, in our work, only 45% of the plots 424 

had a recorded species composition. However, the measurement of water content was carried out for a 425 

much higher number of plots, which allowed for higher resolution in our maps of community fragility.  426 

The measurement of modality is an open area of statistical research (Scott 2015), and other approaches, 427 

not based on the use of a density, could be useful to evaluate multimodality in a set of observations 428 

(Clarke et al. 2008) and determine the statistical significance of patterns. Computing multivariate densities 429 

can be computation intensive, although approximate numerical methods may help (Blonder et al. 2014). 430 

Comparing different methods is beyond the scope of this article, but it is important to carry out sensitivity 431 

analyses to test for the robustness of the result (e.g. to the bandwidth used, or the method of ordination to 432 

reduce dimensionality, Supplementary Information S2, section 4).  433 

Detecting large ecological changes for conservation 434 

The observation of discrete community states does not mean that a given ecosystem necessarily exhibits 435 

irreversible shifts between alternative stable states. For example, discrete states can be also due to changes 436 

in an environmental parameter not captured by the ones measured. This is probably the case for the 437 
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different community states observed on the wetter end of the gradient in the data set studied here. 438 

Nonetheless, complementing this approach with other sources of evidence can suggest where non-linear 439 

and/or poorly-reversible degradation may be possible in a given ecosystem of interest. Such additional 440 

knowledge can come from previously-known ecological mechanisms which drive irreversible shifts (e.g. 441 

known reinforcing feedbacks between vegetation and soil quality like here), historical information about 442 

shifts that occurred in the past and appear irreversible, or evidence from independent approaches (e.g. 443 

experiments, or based on indicators of ecosystem shifts; Dakos et al. 2012, Kéfi et al. 2014, Nijp et al. 444 

2019). While no approach by itself is likely to prove the existence of irreversible shifts, from a 445 

conservation perspective it is particularly important to consider this possibility when the alternative 446 

community is considered to be degraded (e.g. because it is poorer in species or because it represents a loss 447 

of conservation-critical habitat). It is better to imprecisely predict a poorly-reversible shift than to 448 

precisely document it after it happens. 449 

As the conditions for the emergence of alternative stable states are quite restrictive, ecosystems probably 450 

respond more often to gradual changes in a gradual way than in an abrupt way (e.g. because of spatial 451 

heterogeneity that favors gradual responses (van Nes and Scheffer 2005)). Cases of irreversible shifts have 452 

however been shown to be possible in a broad range of ecosystems and in a response to a number of 453 

drivers (lake eutrophication due to increase nutrient loading, coral reef degradation due to warming and/or 454 

water pollution, dryland desertification due to increased grazing and/or droughts). Because abrupt 455 

ecosystem responses can happen in about any ecosystems and their occurrence depends on a joint set of 456 

conditions which are not straightforward to monitor, it is extremely useful to find approaches that allow 457 

rapid predictions of where they are most likely to happen. The approach proposed here is promising 458 

because it provides a way to do so for species-rich communities (where most theoretical developments so 459 

far focus on species-poor models), and because it can be based on data typically gathered in 460 

conservation/protected areas.  461 

462 
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