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Abstract 

Background:  Investigating malaria transmission dynamics is essential to inform policy decision making. Whether 
multiplicity of infection (MOI) dynamic from individual infections could be a reliable malaria metric in high transmis-
sion settings with marked variation in seasons of malaria transmission has been poorly assessed. This study aimed at 
investigating factors driving Plasmodium falciparum MOI and genetic diversity in a hyperendemic area of Burkina Faso.

Methods:  Blood samples collected from a pharmacovigilance trial were used for polymerase chain reaction geno-
typing of the merozoite surface proteins 1 and 2. MOI was defined as the number of distinct parasite genotypes 
co-existing within a particular infection. Monthly rainfall data were obtained from satellite data of the Global Precipita-
tion Measurement Database while monthly malaria incidence aggregated data were extracted from District Health 
Information Software 2 medical data of the Center-West health regional direction.

Results:  In the study area, infected people harboured an average of 2.732 (± 0.056) different parasite genotypes. 
A significant correlation between the monthly MOI and the monthly malaria incidence was observed, suggesting 
that MOI could be a good predictor of transmission intensity. A strong effect of season on MOI was observed, with 
infected patients harbouring higher number of parasite genotypes during the rainy season as compared to the dry 
season. There was a negative relationship between MOI and host age. In addition, MOI decreased with increasing 
parasite densities, suggesting that there was a within-host competition among co-infecting genetically distinct P. falci-
parum variants. Each allelic family of the msp1 and msp2 genes was present all year round with no significant monthly 
fluctuation.

Conclusions:  In high malaria endemic settings with marked variation in seasons of malaria transmission, MOI rep-
resents an appropriate malaria metric which provides useful information about the longitudinal changes in malaria 
transmission in a given area. Besides transmission season, patient age and parasite density are important factors to 
consider for better understanding of variations in MOI. All allelic families of msp1 and msp2 genes were found in both 
dry and rainy season. The approach offers the opportunity of translating genotyping data into relevant epidemiologi-
cal information for malaria control.
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Background
Malaria is the most common life-threatening disease and 
nearly half of the world’s population is exposed to malaria 
infection [1]. Each year, Plasmodium falciparum, the 
most prevalent and most dangerous Plasmodium spe-
cies infects about 228 million people causing 400,000 
deaths worldwide [1]. In Burkina Faso, malaria remains 
endemic with over 10 million clinical episodes and 4294 
deaths annually [1]. In spite of the several control inter-
ventions that have been implemented such as seasonal 
malaria chemoprevention, distribution of treated mos-
quito nets, intermittent preventive treatment for preg-
nant women, the number of clinical episodes still remain 
high though a drop in the related mortality has been 
observed since 2015 [1]. Restricting the measurement of 
the effectiveness of malaria control interventions to vari-
ation of morbidity and related mortality would consid-
erably underestimate their real impact. Factors such as 
the reporting system and health care attendance greatly 
affect the assessment of these indicators. For example, 
in Burkina Faso, the free healthcare policy for children 
under five years of age and pregnant women adopted by 
the government in 2016 increased the population attend-
ance to public health services [2]. This partially explains 
the increasing number of malaria reported cases thereaf-
ter and the relatively low related mortality [2].

New malaria metrics are needed to complement the 
assessment of malaria transmission dynamics in a context 
of multiple control interventions. Multiplicity of infec-
tion (MOI), the number of different parasite genotypes 
co-existing within a particular infection, has been sug-
gested as a useful malaria metric describing transmission 
dynamics [3–6]. Whether MOI dynamic from individ-
ual infections could be a reliable malaria metric in high 
transmission settings with marked variation in seasons of 
malaria transmission has been poorly assessed. Existing 
malaria genotype data in Burkina Faso are usually limited 
to particular time points which do not allow the assess-
ment of the year-round trend of the MOI dynamic.

Furthermore, factors driving the MOI remain poorly 
understood with controversial findings though this 
elucidation is crucial to justify its epidemiological sig-
nificance. For instance, MOI correlation with age and 
parasite density was reported either positively [7–9] or 
negatively [10, 11]. Similarly, it was commonly reported 
that host age influenced P. falciparum MOI but the direc-
tionality of the relationship was controversially reported 
[12, 13]. While several studies reported a negative corre-
lation between the MOI and host age, underpinning the 
acquisition of an anti-parasite immunity in older indi-
viduals [10, 14], other studies reported a positive rela-
tionship [7, 15]. Another important factor which is most 
often ignored is the effect of sex although sex-mediated 

differences in parasite infections is known [16, 17]. A 
recent study conducted in Cameroon reported that the 
MOI value was marginally higher in male than in female 
participants [18], while a study in the Republic of the 
Congo reported no effect of patient sex on the MOI [15].

Finally, whether specific P. falciparum variants of the 
msp1 and msp2 allelic families are well adapted to specific 
seasonal characteristics of the study area than others, is 
hitherto unknown. In neighboring Ghana, where malaria 
transmission tends to be perennial, the relative frequen-
cies of msp1 allelic families were found to be dynamic 
across transmission season [19]. In Burkina Faso, despite 
marked seasonal variations, data exploring P. falciparum 
genetic diversity regarding this seasonal pattern are not 
available.

This study explored the influence of season, patient 
age, sex, and parasite density on both P. falciparum mul-
tiplicity of infection and genetic diversity in an endemic 
area of Burkina Faso with marked seasonality of malaria 
transmission.

Methods
Study site and source of samples
Clinical data were collected from September 2010 to 
October 2012 at two primary health centers (Nanoro 
and Nazoanga) of the Nanoro sanitary district in Burkina 
Faso. Nanoro is one of the sentinel sites for the assess-
ment of antimalarial therapeutic efficacy and is located 
at 85 km from Ouagadougou, the capital city of Bur-
kina Faso. Malaria is hyperendemic with seasonal varia-
tion in transmission which peaked between July/August 
and October/November. As in other sub-Sahara African 
countries, P. falciparum is the most common Plasmo-
dium species. The population mostly practice subsistence 
farming with Mossi being the major ethnic group, and 
Gourounsi and Fulani representing minor groups.

Dried blood spots were collected from 724 malaria 
patients (aged from 6 months to 40 years-old: median: 4 
years, interquartile range (IQR): 2–6, male: female ratio 
= 381:343) with parasite density ≥ 2000/µl, attending 
a pharmacovigilance trial over 23 months of the study 
period. For this investigation, only samples collected on 
day 0, i.e. from screened participants before the admin-
istration of study drugs artemether-lumefantrine (AL) 
or artesunate-amodiaquine (ASAQ) were considered. 
Screened participants included any patient attending the 
two health facilities during the study period with fever or 
history of fever or clinical suspicion of malaria according 
to the routine medical staff of the health facilities. Those 
who met all the criteria for the effectiveness study were 
included in this cohort and treated with either AL or 
ASAQ and those who failed were treated with ASAQ, the 
only available ACT during the study period in the drug 
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stores of the health facilities. Details of the study site and 
sampling procedures were described previously else-
where [14, 20, 21].

Molecular analysis
Molecular analysis was performed at the Molecular Biol-
ogy Laboratory of Centre Muraz of Bobo-Dioulasso, 
Burkina Faso, from September 2012 and October 2014. 
Genomic DNA was extracted from dry blood spots using 
the QIamp DNA Kit (Qiagen, Hilden, Germany) follow-
ing the manufacturer’s procedure. A nested PCR ampli-
fication (using a Mastercycler® Gradient, (Eppendorf, 
Hamburg, Germany) and a Biometra thermal cycler 
(Analytik Jena, Jena, Germany) PCR machines of msp1 
block 2 and msp2 block 3 was performed as previously 
described [14, 20]. Briefly, 5 µl of DNA extract serving as 
a DNA template were used to initiate the first msp PCR 
round. Following completion of the first PCR round, 1 µl 
of the PCR product of the first PCR round was used as 
DNA template to launch the 2nd round of nested PCR 
for msp1 and msp2 using family-specific primers. All 
PCR rounds were carried out with a total volume of reac-
tion mixture of 25 µl. Fragments were revealed by eth-
idium bromide stained agarose gel electrophoresis using 
LabnetTM (Labnet International, New York, USA) and 
MupidTM-One (Nippon Genetics Europe, Dueren, Ger-
many) electrophoresis machines. Gels were visualized by 
ultraviolet transillumination and band sizes were calcu-
lated using Photo CaptMW (version 11.01).

Determination of MOI and allelic frequency
MOI was defined as the number of distinct parasite gen-
otypes co-existing within a given infection based on the 
genotyping of the msp1 block 2 gene (K1, MAD20 and 
RO33) and the msp2 block 3 gene (3D7 and FC27) [3, 7, 
14, 22]. Each PCR round using family-specific primers 
can reveal several alleles differing in band size result-
ing from variation of repeat allotypes encoding a sin-
gle amino-acid motif which characterize the family [23, 
24]. For example, the PCR round using MAD20-specific 
primers can reveal two distinct bands indicating that two 
genotypes of the allelic family MAD 20 were present in 
this infection. Similarly, the other PCR rounds each using 
K1-, RO33-, 3D7- or FC27-specific primers could result 
e.g. in 2, 1, 3, and 1 band respectively. With this example, 
the genotyping of msp1 revealed 2 (MAD20) + 2 (K1) + 
1 (RO33) = 5 genetic variants, while the genotyping of 
msp2 revealed 3 (3D7) + 1 (FC27) = 4 genetic variants. 
In other words, MOI for msp1 for each clinical sample 
represented the number of PCR fragments obtained from 
K1 + MAD20 + RO33 gels, while the MOI for msp2 
represented the number of PCR fragments obtained 
from 3D7 + FC27 gels. Samples with a single parasite 

genotype at both msp1 and msp2 loci were classified as 
mono-infections while samples with more than one par-
asite genotype at any of the two loci were classified as 
multiple infections. The final MOI value for each clinical 
isolate represented the maximum MOI value from both 
msp1 and msp2 loci i.e. MOI = 3 if MOImsp1 = 3 and 
MOImsp2 =2.

The frequency of allelic family (K1, MAD20 and RO33 
for msp1, and 3D7 and FC27 for msp2) was calculated as 
the ratio of the number of PCR bands obtained for each 
family to the overall number of gene-specific PCR bands 
obtained from PCR positive samples. For each patient, 
the number of fragments observed for a given allelic 
family was divided by the total number of fragments 
observed for the msp1 or msp2 genes. For example, if for 
a given blood sample, 5 K1 fragments, 1 MAD20 frag-
ment and 0 RO33 fragments were observed, the relative 
frequencies of K1, MAD20 and R033 for this patient were 
respectively 0.83 (5/6), 0.17 (1/6) and 0 (0/6).

Rainfall and malaria incidence data
Monthly rainfall data were obtained from satellite data of 
the Global Precipitation Measurement (GPM) Database 
[25]. Monthly rainfall data was used to make a distinction 
between the dry season that starts from November to 
May and the rainy season from June to October. Malaria 
incidence data were extracted from District Health Infor-
mation Software 2 (DHIS2-Endos) medical data of the 
Center-West sanitary regional direction [26].

Statistical analysis
All statistical analyses were performed with R (version 
3.5.1) software [27]. A generalized linear model (GLM) 
with Poisson errors was used to investigate the effect of 
season (2 levels: dry vs rainy), sex (2 levels: male, female), 
parasite density, age and interactions, on P. falciparum 
multiplicity of infection. For each allelic family (K1, 
MAD20, RO33, 3D7 and FC27), a GLM with binomial 
errors was used to investigate the effect of time (numeric 
variable from 1 (September 2010) to 23 (July 2012)) on 
the relative frequency of the studied allelic family. A GLM 
with quasibinomial errors was used to explore the effect 
of season (2 levels: dry vs rainy), sex (2 levels), parasite 
density, age, and interactions on P. falciparum genetic 
diversity. Model simplification used stepwise removal 
of terms, followed by likelihood ratio tests (LRT). Term 
removals that significantly reduced explanatory power (P 
< 0.05) were retained in the minimal adequate model.

Results
Multiplicity of infection
A total of 724 samples were successfully genotyped. Of 
these, 316 (43.65%) samples were collected during the 
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dry season while 408 (56.35%) were collected during the 
rainy season. In total, msp1 yielded a total of 1717 PCR 
fragments ranging between 142–497 bp for the K1 allelic 
family, 91–319 bp for the MAD20 allelic family, 95–391 
bp for the RO33 allelic family, while 1653 fragments 
ranging between 170–773 bp for the 3D7 allelic family 
and 180–719 bp for the FC27 allelic family were obtained 
from msp2 genotyping. The MOI ranged from 1 to 7 par-
asite genotypes with a mean of 2.732 (± 0.056) different 
parasite genotypes co-existing per isolate.

Monthly dynamics of MOI, malaria incidence, and rainfall
The monthly trends of rainfall, MOI, and malaria inci-
dence in the study area are shown in Fig. 1. The dry sea-
son was characterized by lower MOI with a significant 
reduction of malaria cases. The peak MOI coincided with 
the malaria peak and the period of maximum rainfall 
(June to November) (Fig. 1).

There was a significant correlation between the 
monthly MOI and the monthly malaria incidence (F(1, 21) 
= 11, P = 0.004) (Fig.  2a). However, monthly MOI and 
rainfall were poorly associated (F(1, 21) = 2.6, P = 0.12) 
(Fig. 2b) as were malaria incidence and rainfall (F(1, 21) = 
3.9, P = 0.06) (Fig. 2c).

Effect of the season, age and parasite density on the MOI
There was a strong effect of season on MOI (LRT χ2

1
 

= 15.74, P < 0.001), with infected patients harboring a 
higher number of parasite genotypes during the rainy 
season, rather than during the dry season (Fig. 3, Addi-
tional file  1: Table  S1). MOI significantly decreased in 
older hosts (LRT χ2

1
 = 14, P < 0.001) (Fig. 3b), regard-

less of the season (i.e. no statistical interaction between 
season and age, Additional file 1: Table S1). By exclud-
ing the few patients > 20 years-old (n = 11), the neg-
ative relationship between MOI and host age was 
confirmed (LRT χ2

1
 = 7, P = 0.009). There was no sig-

nificant sex effect on MOI (LRT χ2

1
 = 1.36, P = 0.24) 

(Fig.  3c), with females and males harbouring an aver-
age 2.81 ± 0.08 and 2.66 ± 0.07 genotypes respectively. 
Finally, there was a negative relationship between MOI 
and parasite density (LRT χ2

1
 = 8.1, P = 0.004) (Fig. 3d).

Genetic diversity
From September 2010 to July 2012, the K1 allelic fam-
ily was the most frequent msp1 genetic variant circu-
lating in infected patients ( χ2

2
 = 116, P < 0.001). Of a 

total of 1717 observed fragments for msp1, 879 (51%) 
belonged to the K1 family, 456 (27%) to MAD20 and 
382 (22%) to RO33. The 3D7 allelic family was more 
frequent than the FC27 family ( χ2

1
 = 1, P < 0.001) with 

58% (957/1653) of the msp2 genetic variants.

Monthly dynamic of the genetic composition of msp1 
and msp2 allelic families
Each allelic family of the msp1 gene was present all year 
round. There was no significant monthly fluctuation of 
the msp1 allelic families from September 2010 to July 
2012 (K1: LRT χ2

1
 = 0.007, P = 0.94, MAD20: LRT χ2

1
 

= 3, P = 0.085, LRT χ2

1
 = 3, P = 0.083), (Fig. 4a). Simi-

larly, there was no significant monthly fluctuation in 
the relative frequency of 3D7 and FC27 allelic families 
(LRT χ2

1
 = 2.28, P = 0.13 for both family). However, 

toward the end of the dry season (May 2011 and May 
2012), the over representation of K1 and 3D7 respec-
tively, turns to diminish.

Effects of season, patient age, sex and parasite density 
on genetic composition
The allelic family K1 was more frequent than the MAD20 
and RO33 families regardless of the season (Fig. 5a, Addi-
tional file  2: Table  S2). In addition, there were no main 
effects of patient age, sex or parasite density on K1 and 
MAD20 frequencies (Fig.  5a, Additional file  2: Table  S2 
and Additional file 3: Table S3). However, there was a sig-
nificant three-way interaction between sex, season and 
patient age (Additional file  2: Table  S2 and Additional 
file  3: Table  S3). In particular, the K1 to MAD20 ratio 
increased with age in male patients during the rainy sea-
son but decreased during the dry season (Fig. 6a, b). The 
opposite pattern was observed for females (Fig.  6a, b). 
Finally, the relative frequency of RO33 variants increased 
in high density infections (LRT χ2

1
 = 4.2, P = 0.04).

The allelic family 3D7 was more frequent than the FC27 
family regardless of the season (Fig. 5a, Additional file 5: 
Table S5 and Additional file 6: Table S6). There were no 
main effects of season, patient age and sex on the rela-
tive frequency of 3D7 and FC27 (Fig. 5, Additional file 5: 
Table S5 and Additional file 6: Table S6). However, there 
was a significant three-way interaction between sex, sea-
son and parasite density (Additional file 5: Table S5 and 
Additional file 6: Table S6). In particular, the relative fre-
quency of 3D7 during the dry season decreased with par-
asite density in female patient only (Fig. 6c).

Discussion
From the start of the study (2010) to the end (2012) no 
significant difference in MOI values was observed from 
year to year. The study started just after the large-scale 
distribution of insecticide-treated nets (ITN) and no 
major intervention occurred during the course of the 
study, probably explaining the lack of significant MOI 
variation between the beginning in 2010 and the end 
of the study in 2012. The high MOI value observed in 
this study indicates the endemicity level in the area 
while highlighting that the expected outcome from the 



Page 5 of 12Sondo et al. Parasites Vectors          (2020) 13:427 	

large-scale deployment of ITN was not achieved. High 
MOI results from high diversity in P. falciparum popu-
lation structure observed in high transmission settings 
while low transmission settings are characterized by a 
predominance of monoclonal infections [28–30]. The 

MOI level in Nanoro area is comparable to previous find-
ings in the country and neighboring countries across 
West Africa with similar level of transmission intensity 
[19, 31–36]. However, the reported MOI values would be 
significantly underestimated due to genotyping strategy 

Fig. 1  Monthly trend of rainfall, MOI, and malaria incidence in Nanoro area from September 2010 to July 2012. Rainy season is depicted in blue 
the dry season in orange. The upper panel shows the monthly trend of rainfall in the area (in mm) (source: GPM program). The middle panel 
illustrates the monthly trend of the average multiplicity of infection (MOI) ± SE, defined as the number of different parasite genotypes co-existing 
within a particular infection. The lower panel represents the reported total number of malaria cases per month during the study period (source: 
DHIS2-Endos medical data of the Center-West sanitary regional direction)
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as this study used agarose gel approach to detect parasite 
variants versus new methods with higher discriminatory 
power such as capillary electrophoresis and genome-
wide association studies and this represents one limita-
tion of this study.

A match between the peak MOI and malaria peak and 
the period of maximum rainfall was observed, suggesting 
that MOI could be a reliable indicator describing malaria 
transmission intensity in high endemic malaria settings 
as previously suggested [5]. However, in reduced malaria 
settings, previous reports showed that MOI is a poor pre-
dictor of malaria transmission intensity [37].

Our study reported a strong effect of season on the 
multiplicity of P. falciparum infections. In contrast to 
studies in Ghana where an association between highest 
MOI with low transmission season was reported [19, 34], 
our study found higher MOI values in the rainy season 
than in the dry season reflecting the known variation in 
seasons of malaria transmission in Burkina Faso. This 
could be due to the differences in population profiles. The 
studies in Ghana were actually carried out on asympto-
matic populations with increased MOI values compared 
to symptomatic populations on whom the present work 
is based. Unlike this study, no seasonal fluctuation of the 

Fig. 2  Relationship between the MOI, monthly malaria incidence and rainfall. a Correlation between the multiplicity of infection (MOI) defined 
as the number of different parasite genotypes co-existing within a particular infection and monthly malaria incidence (number of reported cases 
from DHIS2-Endos medical data of the Center-West sanitary regional direction). b Correlation between MOI and monthly rainfall (in mm) (source: 
GPM program. c Association between monthly malaria incidence and monthly rainfall (mm). Each point (blue, rainy season; orange, dry season) 
represents a value for malaria incidence. The line represents a linear relationship fitted to the number of malaria cases



Page 7 of 12Sondo et al. Parasites Vectors          (2020) 13:427 	

MOI was reported in the Democratic Republic of the 
Congo [38] highlighting the geographical differences in 
the expression of the MOI. That is probably why the MOI 
is not a reliable indicator of malaria transmission in areas 
with reduced intensity of malaria transmission [37].

A negative correlation between the MOI and parasite 
density was observed, suggesting a within-host compe-
tition among co-infecting genetically distinct P. falcipa-
rum variants. This competition becomes clearly apparent 
when analyzing the interactions of different allelic fami-
lies in mixed infections as previously reported [14]. 

Fig. 3  Relationship between the MOI, host age and sex, and parasite density. a Effect of season on multiplicity of infection (MOI), defined as the 
number of different parasite genotypes co-existing within a particular infection. Each color bar represents the average MOI for each season. b Effect 
of host age (in years) on MOI. Each color line represents a linear relationship fitted to the MOI values for each season (blue, rainy; orange = dry 
season). c Effect of host sex on MOI. Each color bar represents the average MOI for each sex by season (blue, rainy season; orange, dry season). d 
Effect of parasite density (number of asexual forms per microliter of blood) on MOI. Each color line represents a linear relationship fitted to the MOI 
values for each season (blue, rainy season; orange, dry season)
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This finding partially explains why the MOI is higher 
in asymptomatic populations (with low parasite load) 
than in symptomatic populations as previously pointed 
out by several authors [39–41]. This means that clinical 
manifestations result from a breakdown of the balance 
among genetically distinct variants (from asymptomatic 
infections) leading to proliferation of more competitive 
variants over the others. Likewise, it has been reported 
previously that multiclonal asymptomatic infections 
reduced the risk of malaria disease [42].

Similarly, a strong effect of host age on MOI was 
observed presumably because of the acquisition of 

antiparasitic immunity in high malaria endemic settings 
[10, 34, 43, 44].

A high diversity of circulating P. falciparum vari-
ants was found in the Nanoro area. All allelic families of 
msp1 and msp2 genes were found in both the dry and the 
rainy season. The absence of association between par-
ticular msp1 or msp2 alleles and a particular season was 
previously reported [8, 34]. However, the msp1-K1 and 
msp2-3D7 allelic families predominated over the others 
regardless of season. The predominance of the msp1-K1 
and msp2-3D7 was reported by previous findings in Bur-
kina Faso [31, 32]. This could mean that these two allelic 
families are better adapted to their host in the study area 

Fig. 4  Temporal trend of msp1 and msp2 allelic families. a The temporal trend of msp1 allelic families. Each color line represents the relative 
frequency level for each allelic family. b The temporal trend of msp2 allelic families. Each color line represents the relative frequency level for each 
allelic family
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than the others and could be the reason why they are 
less virulent compare to the MAD20, RO33 and FC27 
allelic families which are mostly associated with hyper-
parasitaemia and anemia respectively [14], as well as the 
increased probability of clinical malaria occurrence [45]. 
The relative frequency of RO33 variants increased in high 
density infections, suggesting that these variants suf-
fer more from within host competition than the K1 and 
MAD20 variants. Surprisingly, a three-way interaction 
between host-age, sex, season on the relative frequencies 

of P. falciparum genetic variants was observed. The K1 
to MAD20 ratio increased with age in male patients dur-
ing the rainy season but decreased during the dry season. 
Similarly, the relative frequency of 3D7 during the dry 
season decreased with parasite density in female patients 
only. These findings highlight the multifactorial aspect 
underlying the development of a particular variant within 
the host, ranging from genetic (parasite: effect observed 
with specific variant and not with the others; host: effect 
observed with particular sex and not with the other) to 

Fig. 5  Influence of season, patient age, sex and parasite density on the relative frequencies of msp1 and msp2 allelic families. a Effect of season on 
the relative frequencies of msp1 and msp2 allelic families. Each color bar represents the relative frequency for each allelic family by season. b Effect 
of host age (in years) on the relative frequencies of msp1 and msp2 allelic families. Each color line represents a linear relationship fitted to the relative 
frequency level for each allelic family. c Effect of host sex on the relative frequencies of msp1 and msp2 allelic families. Each color bar represents the 
relative frequency for each allelic family by sex. d Effect of parasite density on the relative frequencies of msp1 and msp2 allelic families. Each color 
line represents a linear relationship fitted to the relative frequency level for each allelic family
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environmental factors. As the majority of the study pop-
ulation is represented by children under five years-old, 
no sex-related behavior differences in each season could 
explain these findings. However, hormonal and immuno-
logical mechanisms mediating sex differences in parasite 
infection has been suggested [16, 17], highlighting the 
need for further investigation on host related patterns.

Conclusions
In high malaria endemic settings with marked variation 
in seasons of malaria transmission, MOI represents an 
appropriate malaria metric which provides useful infor-
mation about the changes in malaria transmission longi-
tudinally in a given area. All allelic families of msp1 and 
msp2 genes were found in both dry and rainy season. 
However, patterns affecting the distribution of these P. 
falciparum variants deserve further investigations. The 
approach offers the opportunity of translating genotyping 

Fig. 6  Three-way interaction between sex-season-patient age and sex-season-parasite density on the relative frequencies of msp1 and msp2 
allelic families. a Effect of age on the relative frequency of msp1-K1 allelic family. Each color line represents a linear relationship fitted to the relative 
frequency level for each sex. b Effect of age on the relative frequency of msp1-MAD20 allelic family. Each color line represents a linear relationship 
fitted to the relative frequency level for each sex. c Effect of parasite density on the relative frequency of msp2-3D7 allelic family. Each color line 
represents a linear relationship fitted to the relative frequency level for each sex
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data into relevant epidemiological information for 
malaria control.
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