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Abstract 

Background: The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males 
into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of 
a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released 
females to transmit pathogens. This study aimed to assess the effect of irradiation on the survival and competence of 
Anopheles arabiensis females for Plasmodium falciparum in laboratory conditions.

Methods: Pupae were irradiated at 95 Gy of gamma‑rays, and emerging females were challenged with one of 14 
natural isolates of P. falciparum. Seven days post‑blood meal (dpbm), irradiated and unirradiated‑control females 
were dissected to assess the presence of oocysts, using 8 parasite isolates. On 14 dpbm, sporozoite dissemination in 
the head/thorax was also examined, using 10 parasites isolates including 4 in common with the 7 dpbm dissection 
(oocyst data). The survivorship of irradiated and unirradiated‑control mosquitoes was monitored.

Results: Overall, irradiation reduced the proportion of mosquitoes infected with the oocyst stages by 17% but this 
effect was highly inconsistent among parasite isolates. Secondly, there was no significant effect of irradiation on the 
number of developing oocysts. Thirdly, there was no significant difference in both the sporozoite infection rate and 
load between the irradiated and unirradiated‑control mosquitoes. Fourthly, irradiation had varying effects on female 
survival with either a negative effect or no effect.

Conclusions: The effect of irradiation on mosquito competence strongly varied among parasite isolates. Because of 
such isolate variability and, the fact that different parasite isolates were used to collect oocyst and sporozoite data, the 
irradiation‑mediated reduction of oocyst prevalence was not confirmed for the sporozoite stages. Our data indicate 
that irradiated female An. arabiensis could contribute to malaria transmission, and highlight the need for perfect sex‑
ing tools, which would prevent the release of females as part of SIT programmes.
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Background
The worldwide annual incidence of malaria declined by 
36% between 2000 and 2015 [1]. Control measures based 
on vector management have played an important role in 
reducing malaria transmission with, for example, the use 
of long-lasting insecticide-treated nets contributing to an 
estimated 68% of the decline in Plasmodium falciparum 
incidence over this period [2]. Since 2015 however, global 
progress has stalled, and several African countries are 
currently experiencing an increase in malaria incidence 
[3]. The reasons for these recent increases are unclear but 
current vector control techniques are showing some limi-
tations. This may include a loss of motivation in tool use 
[4], and/or vector adaptations such as physiological and 
behavioral resistance to insecticides [5, 6].

Although improving the use of existing and available 
tools is essential for malaria control in the near future, 
there is also an urgent need for the development and 
implementation of alternative solutions [7]. One solution 
is based on the sterile insect technique (SIT), which aims 
to control vector populations by releasing sterile males. 
SIT relies on the massive production of sterile males by 
irradiation or chemical treatment and introduction into 
wild insect populations in order to reduce the number of 
adults in subsequent generations [8–10]. With repeated 
release, this approach has proven successful in eliminat-
ing some agricultural pest species [11], and has shown to 
be promising in suppressing or reducing the density of 
disease vectors from islands [12] or from relatively iso-
lated areas such as urban settings [13]. More recently, it 
allowed the elimination of two partially isolated popula-
tions of Aedes albopictus in Guangzhou, China, when 
used in combination with the incompatible insect tech-
nique [14].

In recent years, the joint FAO/IAEA programme has 
spurred renewed interest in the development of SIT 
approaches for the control of mosquito-borne diseases 
[15, 16]. With regard to malaria, Anopheles arabiensis has 
focused much of the scientific attention as this species 
can display localized, narrow range distribution such as 
river side [17] or urban areas [18, 19]. Accordingly, the 
radiation biology of this species has been relatively well 
studied [20–25]. Besides efficient mass-rearing and opti-
mal level of irradiation ensuring male sterilization with 
limited impact on sexual competitiveness, a perfect sepa-
ration technique of male and female mosquitoes prior to 
release is essential [26].

To date, the available sexing tools, including pupal size, 
addition of toxicants to blood-meal sources, or develop-
ment of genetic sexing strains, remain imperfect; and 
a small proportion of females can escape sexing before 
irradiation [21, 26–28]. These females will be irradiated 

with the males and can therefore potentially contribute 
to malaria transmission when released into wild popula-
tions. While efforts to find an effective and operational 
sex separation technique are maintained, it is important 
to evaluate the effect of irradiation on the ability of female 
Anopheles to transmit P. falciparum. Previous work has 
focused on the influence of irradiation on a large range of 
traits including sperm production [23, 29, 30], male com-
petitiveness [23, 29, 31], male and female longevity [20, 
28], insemination rate [32], oviposition behavior [32] and 
fertility and fecundity [20, 32], but no study has, to our 
knowledge, characterized the influence of irradiation on 
the competence of An. arabiensis for P. falciparum.

Competence, the mosquito’s ability to ensure parasite 
development and transmission, is a combined estimate of 
parasite infectivity and vector susceptibility to infection. 
It thus encompasses both mosquito resistance mecha-
nisms used to fight the infection and parasite mecha-
nisms used to overcome the vector’s defenses [33]. The 
molecular and genetic bases of mosquito competence for 
malaria parasites have been well characterized for a num-
ber of mosquito-parasite associations [34, 35], and there 
is also great diversity of ways in which biotic and abi-
otic environmental factors (temperature, mosquito diet, 
insecticide exposure, microbial gut flora, etc.) can affect 
mosquito competence [36]. As any other environmental 
factor, radiation also has the potential to influence the 
competence of Anopheles vectors for P. falciparum. For 
example, Aedes aegypti mosquitoes exposed to a 5000 
roentgen dose of X ray-irradiation and infected with 
a strain of P. gallinaceum showed a 2.7-fold reduction 
in oocyst number compared to unirradiated infected 
counterparts [37], thereby suggesting a potential nega-
tive effect of irradiation on mosquito competence for 
malaria parasites [38, 39]. In contrast, a study on Anoph-
eles mosquitoes found that adult gamma-irradiated An. 
quadrimaculatus displayed increased susceptibility to the 
nematode Dirofilaria uniformis [40].

This study aimed to evaluate the effect of a steriliz-
ing dose of gamma-rays from a Caesium-137 source on 
mosquito competence using the parasite P. falciparum, 
responsible for causing the most severe form of human 
malaria, and the mosquito An. arabiensis, a major vector 
of P. falciparum in Africa. Females of An. arabiensis were 
challenged with sympatric field isolates of P. falcipa-
rum (14 distinct isolates in total) using direct membrane 
feeding assays and, through a series of experiments, the 
effects of irradiation on (i) mosquito competence at two 
distinct time points over the course of infection (oocyst 
and sporozoite parasite developmental stages), and (ii) 
female survival, were examined.
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Methods
Mosquitoes
Laboratory-reared An. arabiensis were obtained from an 
outbred colony established in 2016 and repeatedly replen-
ished with F1 from wild-caught mosquito females collected 
in Dioulassoba, a central urban area of Bobo-Dioulasso, 
south-western Burkina Faso, and identified by routine 
PCR-RFLP [41]. Mosquitoes were held in 30 × 30 × 30 cm 
mesh-covered cages under standard insectary conditions 
(27 ± 2 °C, 70 ± 5% relative humidity, 12:12 LD).

Irradiation
Irradiation was performed as described in [32]. Prior to 
irradiation, pupae were transferred from their rearing trays 
to plastic cups (Ø = 45 mm, h = 85 mm) at similar densi-
ties. Cups were randomly assigned to one of two treatment 
groups: irradiation or unirradiated-control. The pupae 
density in cups was similar between the two treatment 
groups and did not exceed 200 pupae per cup. One cm 
of water was left at the bottom of each cup to limit radia-
tion absorbance by water. Pupae were irradiated at a dose 
of 95.4 ± 0.9 Gy (mean ± SE) in a Gamma Cell 137Cs self-
contained gamma source at a rate of 4 Gy/min. In An. ara-
biensis males, this dose induces a high level of sterility [20, 
32] while preserving relatively high competitiveness [20]. 
Cups were placed at the center of the irradiation chamber 
to maximize dose uniformity within the batch. A dosime-
try system was used to measure the accurate dose received 
by each batch using a Gafchromic® HD-V2 film (Ashland, 
Bridgewater, NJ, USA) placed on the wall of the cups. 
After irradiation, the optical density of irradiated films was 
read at both 458 nm and 590 nm with a dose reader (Dos-
ereader4; Radgen, Budapest, Hungary) and compared to 
the unirradiated-control. The unirradiated-control group 
was manipulated in the same way as the irradiated group 
but was not irradiated. Pupae were then placed in 30 × 
30 × 30 cm mesh-covered cages and kept under standard 
insectary conditions (27 ± 2 °C, 70 ± 10% RH, 12:12 LD) 
for emergence. Female and male mosquitoes were main-
tained together on a 5% glucose solution. Between 3 and 6 
days after emergence, unirradiated-control and irradiated 
females were transferred to cardboard cups (Ø = 75 mm, h 
= 85 mm) at a density of 60 mosquitoes per cup.

Parasite isolates and mosquito experimental infection
Irradiated and unirradiated-control mosquito females 
were challenged by using blood drawn from naturally 
P. falciparum gametocyte-infected patients recruited 
among 5–12-year-old school children in villages sur-
rounding Bobo-Dioulasso, Burkina Faso, using direct 
membrane feeding assays (DMFA) as previously 
described [42, 43]. Briefly, thick blood smears were 

taken from each volunteer, air-dried, Giemsa-stained, 
and examined by microscopy for the presence of P. 
falciparum at the IRSS laboratory in Bobo-Dioulasso. 
Asexual trophozoite parasite stages were counted 
against 200 leucocytes, while infectious gametocytes 
stages were counted against 1000 leukocytes. Children 
with asexual parasitemia of > 1000 parasites/µl (esti-
mated based on an average of 8000 leucocytes/ml) were 
treated in accordance with national guidelines. Asymp-
tomatic P. falciparum gametocyte-positive children 
were recruited for the study.

Gametocyte carrier blood was collected by veni-
puncture into heparinized tubes. To test for a possible 
interaction between the natural blocking immunity of 
the human host [44–46] and the irradiation on mos-
quito infection, DMFA were performed using either 
whole donor blood or with replacement of the serum 
by a non-immune AB serum (see Additional file 1: Text 
S1). Mosquitoes were starved of glucose solution for 
12 h prior to the exposure. Three to six-day-old female 
mosquitoes, emerged from irradiated or unirradiated-
control pupae, were allowed to feed on this blood for 1 
h. Non-fed or partially fed females were removed and 
discarded, while the remaining fully-engorged mos-
quitoes were maintained in a biosafety room under 
standard insectary conditions (27 ± 2 °C, 70 ± 10% RH, 
12:12 LD). Mosquitoes were provided with a sugar meal 
consisting in a 5% glucose solution on cotton wool fol-
lowing blood-feeding.

Experiment 1: Effect of irradiation on An. arabiensis 
competence for P. falciparum
Competence was characterized by infection prevalence 
(i.e. the proportion of mosquitoes that develop infection 
upon feeding on an infectious blood meal) and inten-
sity (i.e. the average number of parasites among infected 
mosquitoes). Infection prevalence and intensity were 
gauged at two distinct points in time over the course of 
infection (Table 1):

(i) On day 7 post-blood meal (dpbm), the midguts of 
a total of 383 irradiated females and 378 unirradiated-
control females fed with blood from one of 8 gametocyte 
carriers (Table  1) were dissected, stained with 2% mer-
curochrome, and the presence and number of oocysts 
(immature, non-transmissible stage of malaria parasites) 
were recorded using light under the microscopy (400×).

(ii) On 14 dpbm, the heads and thoraces of a total of 
473 irradiated and 489 unirradiated-control females fed 
with blood from one of 10 gametocyte carriers (Table 1) 
were dissected, and the presence and quantity of sporo-
zoites (mature transmissible stage) were determined 
using qPCR (see below).
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Experiment 2: Effect of irradiation on An. arabiensis 
survival
Two assays were performed to gauge the effect of irra-
diation on An. arabiensis survival. First, as part of the 
previous experiments, the survivorship of irradiated and 
unirradiated-control mosquitoes exposed to each para-
site isolate (n = 14 isolates) was monitored from 1 to 7 
days post-treatment (isolates A, C, D and G) or from 1 to 
14 dpbm (isolates E, H, I, J, K, L, M, N, O and P). Every 
morning at 8:00 h, dead mosquitoes were removed and 
counted from each cage. The remaining alive mosquitoes 
used for midgut dissection at 7 and/or 14 dpbm (Experi-
ment 1) were considered in the analysis and given a cen-
soring indicator of “0”.

Secondly, to determine how parasite infection and 
irradiation interact to influence mosquito longevity, a 
membrane feeding assay was performed following the 
same general procedure as described above except that 
a group of uninfected control mosquitoes was added, 
and that survival was monitored until all the mosquitoes 
had died. Uninfected control mosquitoes received heat-
treated gametocytic blood to kill the parasite gameto-
cytes as previously described [43, 47, 48]. For each group 
(irradiated-parasite exposed, irradiated-parasite unex-
posed, control-parasite exposed and control-parasite 
unexposed), between 40 and 60 females were placed in 
one of two 20 × 20 × 20 cm cages to avoid possible cage 
effect on mosquito survival. Females were fed a 2.5% glu-
cose solution every other day and provided water-soaked 
cotton ad libitum. Dead mosquitoes were counted from 
each cage (n = 8 cages) every morning at 8:00 h and indi-
vidually stored at -20 °C to determine their infection sta-
tus using qPCR (see below).

Plasmodium falciparum DNA extraction and qPCR
Plasmodium falciparum genomic DNA was extracted 
from the head-thorax of mosquitoes by grinding tissues 
with a micro pestle in extraction buffer (0.1 M Tris HCl, 
pH 8.0, 0.01 M EDTA, 1.4 M NaCl, 2% cetylltrimethyl 
ammonium bromide). The mixture was incubated at 65 
°C for 10 min. Total DNA was extracted with chloroform, 
precipitated in isopropanol, washed in 70% ethanol, and 
resuspended in sterile water [49]. Parasite detection was 
carried out by qPCR, using P. falciparum mitochondrial 
DNA specific primers 5’-TTA CAT CAG GAA TGT 
TTT GC-3’ and qPCR-PfR 5’-ATA TTG GGA TCT CCT 
GCA AAT-3’ [50].

Statistical analyses
All statistical analyses were performed in R (version 
3.6.1). Logistic regression by generalized mixed linear 

models (GLMM, binomial errors, logit link; lme4 pack-
age) were used to test the effect of irradiation on the 
prevalence of oocysts and sporozoites (Experiment 1), 
A GLMM with zero truncated negative binomial errors 
(glmmTMB package) was used to test the effect of irra-
diation on the oocyst intensity (Experiment 1). A GLMM 
with Gaussian distribution (lme4 package) was used to 
test the effect of irradiation on the sporozoite intensity 
(Cq: mean number of amplification cycle during qPCR, 
Experiment 1). For each GLMM, the full model included 
irradiation treatment (irradiated vs unirradiated-control) 
and gametocytemia (the mean number of gametocytes 
in parasite isolates) as fixed effects and parasite isolate 
as a random effect. The effect of irradiation on mosquito 
survivorship (survival assay 1) was analyzed using a Cox’s 
proportional hazard regression mixed model (coxme 
package) with censoring and with parasite isolate set as 
a random factor. The effect of irradiation and infection 
on mosquito survivorship (survival assay 2) was analyzed 
using Cox’s proportional hazard regression mixed model 
without censoring and with cage identity set as a ran-
dom factor. Model simplification used stepwise removal 
of terms, followed by likelihood ratio tests (LRT). Term 
removals that significantly reduced explanatory power (P 
< 0.05) were retained in the minimal adequate model.

Results
Experiment 1: Effect of irradiation on An. arabiensis 
competence for P. falciparum
Oocyst prevalence and intensity at day 7 post‑blood meal
Irradiation reduced the proportion of infected mos-
quitoes by 16.8% (180 infected unirradiated-control 
mosquitoes/378 = 47.6%; and 152 infected irradiated 
mosquitoes/383 = 39.6%; LRT χ2

1 = 5.2, P = 0.02; 
Fig. 1a). Although no significant effect of gametocytemia 
on oocyst prevalence was found (LRT χ2

1 = 0.2, P = 
0.65), there was an interaction between treatment and 
gametocytemia (LRT χ2

1 = 19.5, P < 0.001). In particular, 
while irradiation reduced the mosquito infection rate of 
parasite isolates C, D, G and I, it had no effect on A and 
E, and even slightly increased the infection rate of iso-
lates H and J (Fig. 1a).

The mean number of developing oocysts in infected 
females (i.e. intensity) was not significantly affected by 
irradiation (LRT χ2

1 = 0.0017, P = 0.97; Fig. 1b). Game-
tocytemia had no effect on intensity (LRT χ2

1 = 0.54, P = 
0.46; Fig. 1b). There was a significant interaction between 
gametocytemia and treatment (LRT χ2

1 = 9.58, P = 
0.002; Fig. 1b) such that irradiation either decreased (iso-
lates A, G and H), increased (C and D) or had no effect (E, 
I and J) on oocyst intensity.
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Sporozoite prevalence and intensity at day 14 post‑blood 
meal
The proportion of mosquitoes with disseminated sporo-
zoites in their head/thorax was similar between irradiated 
and unirradiated-control females (unirradiated-control: 
248/489 = 50.7 ± 4%; irradiated: 257/473 = 54.3 ± 5%, 
LRT χ2

1 = 2.56, P = 0.11; Fig. 1c). There was no effect of 
gametocytemia on sporozoite prevalence (LRT χ2

1= 0.12, 
P = 0.73; Fig. 1c), and a marginally non-significant inter-
action between treatment and gametocytemia (LRT χ2

1 = 
3.5, P = 0.06; Fig. 1c).

The mean number of amplification cycles during qPCR 
(the lower the Cq, the higher the sporozoite intensity) did 
not vary with irradiation (mean Cq irradiated = 25.57 ± 
0.32 (n = 257), mean Cq unirradiated-control = 26.02 ± 
0.33 (n = 248), LRT χ2

1 = 0.55, P = 0.46; Fig. 1d). Game-
tocytemia had a significant effect on sporozoite intensity 
(LRT χ2

1 = 7.7, P = 0.006), with higher gametocyte den-
sity in blood leading to an increase in sporozoite density 
in mosquito head and thoraces. Finally, there was no 
interaction between treatment and gametocytemia on 
sporozoite intensity (LRT χ2

1 = 0.04, P = 0.85).

Fig. 1 Effect of irradiation on the competence of Anopheles arabiensis for natural isolates of Plasmodium falciparum. a Oocyst prevalence (± 95% 
CI) on day 7 post‑blood meal (dpbm), expressed as the number of mosquito females harboring at least one oocyst in their midguts out of the total 
number of dissected females, for each treatment (white bars: unirradiated‑control mosquitoes, grey bars: irradiated mosquitoes) and for 8 parasite 
isolates. b Infection intensity (± SE) at 7 dpbm, expressed as the mean number of developing oocysts in the guts of infected females, for each 
treatment and 8 parasite isolates. c Sporozoite prevalence (± 95% CI) at 14 dpbm, expressed as the number of mosquito head/thoraces detected 
positive to P. falciparum using qPCR out of the total number of dissected head/thoraces, for each treatment and for 10 parasite isolates. d Sporozoite 
intensity at 14 dpbm, expressed as the mean number (± SE) of amplification cycle during qPCR (the lower the Cq, the higher the sporozoite 
intensity) for each treatment and for 10 parasite isolates. The asterisk denotes a statistically significant difference (P‑value < 0.05); NS: not significant
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Experiment 2: Effect of irradiation on An. arabiensis 
survival
In the first assay, the survival of females exposed to one 
of 14 parasite isolates was monitored from 1 to 7 dpbm 
or from 1 to 14 dpbm (Table  1). The overall survival 
rate from 1 to 7 dpbm (isolates A, C, D and G) was very 
high, with 96.1% of mosquitoes (320/333) that survived 
between 1 to 7 dpbm, and there was no survival differ-
ence between irradiated and unirradiated-control mos-
quitoes (LRT χ2

1 = 1, P = 0.31, Fig. 2a). However, from 1 
to 14 dpbm (isolates E, H, I, J, K, L, M, N, O and P), irra-
diated mosquitoes showed a lower survival than unirra-
diated-control mosquitoes (survival rate irradiated: 79.1% 

(696/880), unirradiated-control: 88.3% (709/803), LRT χ2 
1 = 22.3, P < 0.001; Fig. 2b). When focusing on the time 
range 1–7 dpbm using the 1–14 dpbm dataset, the effect 
of irradiation on mosquito survival was moderate and 
marginally non-significant (LRT χ2

1 = 3.67, P = 0.055). 
This suggests that the irradiation-mediated reduction in 
mosquito survival mostly occurs after 7 dpbm (Fig. 2b).

In the second assay, the survival of irradiated mosqui-
toes exposed to parasites (n = 55), irradiated unexposed 
(n = 49), unirradiated exposed (n = 52) and unirradiated 
unexposed (n = 45) females was monitored from 1 to 35 
dpbm, when the last mosquito died. The DNA of para-
site-exposed dead mosquitoes was extracted to detect 

Fig. 2 Effect of irradiation on the survival of Anopheles arabiensis. a Survivorship of malaria‑exposed mosquitoes from 1 to 7 dpbm for each 
treatment (grey line: unirradiated‑control, black line: irradiated) using 4 parasite isolates. b Survivorship of malaria‑infected mosquitoes from 1 to 14 
dpbm for each treatment using 10 parasite isolates. c Survivorship of both malaria‑infected (solid lines) and uninfected unirradiated (dashed lines) 
mosquitoes from 1 to 35 dpbm for each treatment (grey: unirradiated‑control, black: irradiated) using 1 parasite isolate
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the presence of P. falciparum using qPCR. Mosquitoes 
(irradiated or non-irradiated) which remained uninfected 
upon parasite exposure were excluded from the analysis 
to focus on the effect of infection and irradiation on mos-
quito survival. In this second assay using smaller number 
of mosquitoes (Table 1), there was no effect of irradiation 
on mosquito survival (LRT χ2

1 = 0.04, P = 0.84; Fig. 2c). 
Infection did not significantly reduce mosquito survival 
(LRT χ2

1 = 0.05, P = 0.82; Fig.  2c). Finally, there was a 
marginally significant interaction between irradiation 
and infection (LRT χ2

1 = 4, P = 0.045; Fig. 2c), such that 
irradiation resulted in an increased lifespan in infected 
mosquitoes but caused a reduced lifespan in uninfected 
mosquitoes.

Discussion
Irradiation reduced the proportion of mosquitoes har-
bouring parasite oocysts upon ingestion of blood meals 
from gametocyte carriers by 17%, but this effect was highly 
inconsistent among parasite isolates. Because of this inter-
isolate variation and the fact that oocyst and sporozoite 
data were not collected from exactly the same isolates, 
the irradiation-mediated reduction in infection observed 
at 7 dpbm (oocyst stage) was not confirmed at 14 dpbm 
(sporozoite stages). Indeed, no significant difference in 
sporozoite prevalence between irradiated and unirradiated 
control mosquitoes was detected at 14 dpbm. Finally, irra-
diation either decreased (survival assay 1) or had no effect 
(assay 2) on the lifespan of An. arabiensis females.

Although irradiated females displayed reduced oocyst 
infection rate compared to non-irradiated individuals, 
the parasite development was not fully suppressed. If 
released into the wild, irradiated females will therefore 
likely contribute to malaria transmission, provided that 
irradiation does not impair the host-seeking and host-
feeding behaviors of these females. Our results therefore 
highlight the need for perfect sexing tools which would 
prevent the release of females as part of SIT programmes.

The precise mechanisms behind irradiation-mediated 
reduction of Plasmodium infection at the oocyst stage 
are not yet clear, but interferences with mosquito immu-
nity, microbiota and/or parasite infectivity mechanisms 
are likely. Although it is well-known that irradiation 
causes DNA damage, oxidative stress, and changes in 
gene expression including immune genes [51], its impact 
on insect host-pathogen interactions remain generally 
unclear [52]. While a study found that irradiated Teph-
ritidae flies displayed damaged midgut and peritrophic 
membranes resulting in decreased bacterial growth [53], 
irradiated Spodoptera butterflies showed increased sus-
ceptibility to a nucleopolyhedrosis virus [54]. Similarly, in 
mosquito-malaria parasite associations, X-ray irradiation 
caused increased Ae. aegypti resistance to P. gallinaceum 

[37, 39], while gamma-ray irradiation enhanced the 
development of D. uniformis in An. quadrimacula-
tus [40]. Together, the few existing studies on this topic 
suggest that the observed changes in infection level are 
mediated mostly through radiation damage to the insect 
midgut rather than through altered immune response 
such as hemocyte production [52, 55, 56]. In addition, 
the effects of irradiation on infection seem to be dose-
dependent. For example, at a dose of 1000 r of X-ray, the 
competence of Ae. aegypti to P. gallinaceum decreased by 
only 1.15 times compared to unirradiated-control mos-
quitoes; while at doses between 5000 and 40,000 r, com-
petence decreased by a factor of 2.75 to 4 [37]. Further 
investigations are required to determine whether the 
decreased susceptibility of irradiated An. arabiensis to P. 
falciparum oocysts is also dose-dependent.

In this study, the effect of irradiation on mosquito 
infection strongly varied among parasite isolates (Fig. 1). 
Why irradiation reduced An. arabiensis competence for 
some parasite isolates and not others is unclear. We first 
postulated that the natural blocking immunity of the 
human host could play a role. To test this possibility, the 
natural serum of isolates K to P was replaced by naive AB 
serum [44–46] (Additional file 1: Figures S1, S2). Similar 
to assays using unchanged natural serum (isolates A to J), 
assays with serum replacement showed either increased 
(L, N, O and P) or decreased (K and M) infection in irra-
diated mosquitoes (Additional file  1: Figure S2). Here, 
we used wild parasite isolates from a geographical area 
characterized by an important genetic diversity [57]. 
Accordingly, some parasite clones might perform well in 
irradiated mosquitoes while others would be more infec-
tive to non-irradiated mosquitoes. Future genotyping 
studies of the parasite population used to perform the 
experimental infections of irradiated mosquitoes would 
be required to explore this possibility.

The reduction of parasite prevalence observed for the 
oocyst stage at 7 dpbm (Fig.  1a) was not confirmed for 
the sporozoite stages at 14 dpmb (Fig. 1c). There are sev-
eral possible explanations for this uneven pattern. First, 
and most likely, this was due to the isolate-dependent 
effect of irradiation (see discussion above), and the fact 
that the characterization of vector competence for oocyst 
(Fig.  1a) and sporozoite (Fig.  1c) stages partly relied on 
different parasite isolates (Table 1). Among the eight iso-
lates used to collect oocyst data (Fig. 1a), half showed a 
reduced prevalence in the irradiated group (isolates C, D, 
G and I; Fig. 1a). Among the ten isolates used to collect 
sporozoite data, the decreased prevalence in irradiated 
mosquitoes was reported for isolate M and to a lesser 
extent I and K (Fig. 1c). Secondly, the uneven pattern in 
Fig.  1a, c could be explained by a differential mortality 
between irradiated and unirradiated-control mosquitoes 
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exposed to the infectious blood meal. For instance, 
if infected-irradiated individuals survive better than 
infected-unirradiated counterparts between 7–14 dpbm, 
then the relative proportion of infected individuals will 
increase in the irradiated group only. Our data from the 
two survival assays (Fig. 2a-c) do not suggest this could 
be the case. Thirdly, this could be that parasite develop-
ment is faster in irradiated individuals, thereby increas-
ing the relative proportion of mosquito head/thoraces 
positive to sporozoites at 14 dpbm. This possibility is sup-
ported by the higher proportion of infected mosquitoes 
with ruptured oocysts (Additional file 2: Figure S3a), the 
higher ruptured oocyst to intact oocyst ratio (Additional 
file  2: Figure S3b) and the higher proportion (although 
not significant) of infected mosquitoes with sporozo-
ites at 14 dpi (Additional file  2: Figure S3c). Exploring 
the temporal dynamics of P. falciparum development 
using mosquitoes dissected at different time points dur-
ing the course of infection would provide more detailed 
and robust information. The number of mosquitoes in 
our experiments was insufficient to perform such tem-
poral monitoring of the EIP and future experiments are 
required to confirm our observations at 14 dpi.

The effects of irradiation on the survival of An. ara-
biensis females were inconsistent. In our first assay, the 
monitoring of 165 irradiated and 168 unirradiated-con-
trol females from 1 to 7 dpbm following the ingestion of 
a gametocyte-infected blood meal revealed no effect of 
irradiation. Within this period, mosquito survival was very 
high with only eight deaths in the unirradiated-control 
group and five in the irradiated group. However, when the 
monitoring expanded to 14 dpbm on a much larger sample 
size (880 irradiated and 803 unirradiated-control females), 
the irradiated group recorded twice as many deaths as the 
unirradiated-control group (21.25% vs 11.71%).

Finally, no significant influence of irradiation was 
observed as part of the second survival assay in which 26 
infected-irradiated, 49 uninfected-irradiated, 14 infected-
unirradiated and 45 uninfected-unirradiated mosquitoes 
were monitored until all individuals had died. Unlike the 
first assay in which mosquitoes were maintained on a 5% 
glucose solution ad libitum, mosquitoes received a 2.5% 
glucose solution every other day in this second assay. 
This was supposed to induce nutritional stress in mos-
quitoes and help a better detection of the possible effects 
of radiation on survival [32, 58]. Inconsistent effects of 
irradiation on the survival of mosquito females were 
previously observed, with some studies reporting either 
lifespan reduction [37, 59], no effect [28, 59–61] or even 
an increase [59]. For example, in the mosquito Ae. poly-
nesiensis, irradiation of females < 24 h post-pupation at 
20 Gy and 40 Gy induced a significant lifespan reduction 
compared to non-irradiated females, while irradiation at 

30 Gy had no effect and irradiation at 40 Gy of females > 
24 h post-pupation boosted female lifespan. If confirmed 
in field conditions, the irradiation-mediated reduction of 
mosquito lifespan observed from 1 to 14 dpbm would not 
be strong enough to prevent the completion of the Plas-
modium incubation period and hence the contribution of 
these females to malaria transmission [59].

Conclusions
Our data indicate that irradiation of female An. ara-
biensis can reduce competence and survival, but not to 
the point of preventing malaria transmission. Irradiated 
females therefore remain potential vectors and further 
studies are required to develop fully effective sexing tools 
to prevent possible release of irradiated females into the 
wild. Until we find such sexing tools, it will be impor-
tant to expand our knowledge on the radiation biology of 
female mosquito vectors.
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