D. Huey, J. Hu, and K. Athanasiou, Unlike bone, cartilage regeneration remains elusive, Science, vol.338, issue.6109, pp.917-921, 2012.

J. Alford and B. Cole, Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options, Am. J. Sports Med, vol.33, issue.2, pp.295-306, 2005.

S. B-m-davies, L. Snelling, O. Quek, H. Hakimi, . Ye et al., Identifying the optimum source of mesenchymal stem cells for use in knee surgery, J. Orthop. Res, vol.35, issue.9, pp.1868-1875, 2017.

A. C-de-bari and . Roelofs, Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis, Curr. Opin. Pharmacol, vol.40, pp.74-80, 2018.

C. Vinatier, C. Mrugala, J. Jorgensen, and . Guicheux, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors, Trends Biotechnol, vol.27, issue.5, pp.307-314, 2009.

B. Johnstone, T. Hering, A. I-caplan, V. Goldberg, and J. Yoo, In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells, Exp. Cell Res, vol.238, issue.1, pp.265-272, 1998.

J. Yoo, . Barthel, L. Nishimura, . Solchaga, . Caplan et al., The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells, J. Bone Joint Surg, vol.80, issue.12, pp.1745-1757, 1998.

H. Rogan, . Ilagan, and . Yang, Comparing single cell versus pellet encapsulation of mesenchymal stem cells in three-dimensional hydrogels for cartilage regeneration, Tissue Eng. A, vol.25, pp.1404-1412, 2019.

L. D-d-chan, K. Cai, S. Butz, E. Trippel, C. A-nauman et al., In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee, Sci. Rep, vol.6, 2016.

. Kutzner, . Heinlein, . Graichen, . Bender, . Rohlmann et al.,

. Bergmann, Loading of the knee joint during activities of daily living measured in vivo in five subjects, J. Biomech, vol.43, issue.11, pp.2164-2173, 2010.

L. Bian, E. Ng, D. Lima, P. Xu, G. Jayabalan et al., Applied dynamic loading enhances mechanical properties of engineered cartilage using adult chondrocytes, Trans. Orthop. Res, vol.35, p.382, 2010.

S. Grad, . Loparic, M. Peter, . Stolz, M. Aebi et al., Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage, Osteoarthr. Cartil, vol.20, issue.4, pp.288-295, 2012.

D. Griffin, E. Bonnevie, D. Lachowsky, J. Hart, H. Sparks et al.,

A. Matthews, . Nixon, L. Cohen, and . Bonassar, Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks, J. Biomech, vol.48, issue.10, pp.1944-1949, 2015.

N. B-o-diekman, V. Christoforou, H. Willard, . Sun, K. Sanchez-adams et al., Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells, Proc. Natl. Acad. Sci, vol.109, issue.47, pp.19172-19177, 2012.

L. Peñuela, . Wolf, . Raiteri, . Wendt, . Martin et al., Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity, J. Biomech, vol.47, issue.9, pp.2157-2164, 2014.

. A-t-maria, M. Toupet, G. Maumus, L. Fonteneau, C. Quellec et al., Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis, J. Autoimmun, vol.70, pp.31-39, 2016.

Y. Fung, Elasticity of soft tissues in simple elongation, Am. J. Phys, vol.213, issue.6, pp.1532-1544, 1967.

F. Dubois, LMGC90, 13e Colloque National En Calcul Des Structures, 2017.

B. G-a-ateshian, J. Ellis, and . Weiss, Equivalence between short-time biphasic and incompressible elastic material responses, J. Biomech. Eng, vol.129, issue.3, pp.405-412, 2007.

C. Geuzaine and J. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng, vol.79, issue.11, pp.1309-1331, 2009.

M. V-c-mow, W. Holmes, and . Lai, Fluid transport and mechanical properties of articular cartilage: a review, J. Biomech, vol.17, issue.5, pp.90031-90040, 1984.

K. Athanasiou, . Rosenwasser, . Buckwalter, . Malinin, and . Mow, Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage, J. Orthop. Res, vol.9, issue.3, pp.330-340, 1991.

N. C-j-little, . Bawolin, and . Chen, Mechanical properties of natural cartilage and tissue-engineered constructs, Tissue Eng. B Rev, vol.17, issue.4, pp.213-227, 2011.

. D-k-temple, B. Cederlund, R. Lawless, D. M-aspden, and . Espino, Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends, BMC Musculoskelet. Disord, vol.17, issue.1, p.419, 2016.

M. Ebrahimi, . Ojanen, M. Mohammadi, . Finnilä, H. Joukainen et al.,

R. Saarakkala, P. K-korhonen, and . Tanska, Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage, Ann. Biomed. Eng, pp.1-14, 2019.

G. W-r-trickey, . Lee, and . Guilak, Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage, J. Orthop. Res, vol.18, issue.6, pp.891-898, 2000.

. E-m-darling, . Topel, T. Zauscher, F. Vail, and . Guilak, Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes, J. Biomech, vol.41, issue.2, pp.454-464, 2008.

Q. B-v-nguyen, N. Wang, A. Kuiper, C. Haj, Z. Thomas et al., Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling, J. R. Soc. Interface, vol.7, issue.53, pp.1723-1733, 2010.

M. Stolz, . Gottardi, . Raiteri, . Miot, . Martin et al., Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy, Nat. Nanotechnol, vol.4, issue.3, p.186, 2009.

G. Kempson, . Freeman, and . Swanson, The determination of a creep modulus for articular cartilage from indentation tests on the human femoral head, J. Biomech, vol.4, issue.4, pp.239-250, 1971.

C. Armstrong and . Mow, Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content, J. Bone Joint Surg. Am, vol.64, issue.1, pp.88-94, 1982.

A. Swann and . Seedhom, The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis, Rheumatology, vol.32, issue.1, pp.16-25, 1993.

T. Lyyra, . Kiviranta, H. Väätäinen, J. Helminen, and . Jurvelin, In vivo characterization of indentation stiffness of articular cartilage in the normal human knee, J. Biomed. Mater. Res. A, vol.48, issue.4, pp.1097-4636, 1999.

J. Yao and . Seedhom, Mechanical conditioning of articular cartilage to prevalent stresses, Rheumatology, vol.32, issue.11, pp.956-965, 1993.

L. Burgin, . Edelsten, and . Aspden, The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading, Med. Eng. Phys, vol.36, issue.2, pp.226-232, 2014.

M. D-l-robinson, N. Kersh, D. Walsh, R. Ackland, M. Steiger et al., Mechanical properties of normal and osteoarthritic human articular cartilage, J. Mech. Behav. Biomed. Mater, vol.61, pp.96-109, 2016.

M. Laasanen, . Töyräs, . Korhonen, . Rieppo, M. Saarakkala et al., Biomechanical properties of knee articular cartilage, Biorheology, vol.40, issue.1, pp.133-140, 2003.

A. Gannon, . Nagel, . Bell, . Avery, and . Kelly, Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network, Eur. Cell. Mater, vol.29, issue.105, p.23, 2015.

A. A-k-williamson, R. Chen, and . Sah, Compressive properties and function-composition relationships of developing bovine articular cartilage, J. Orthop. Res, vol.19, issue.6, pp.1113-1121, 2001.

K. Hu, L. Xu, C. Cao, J. Flahiff, . Brussiau et al., Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen, Arthritis Rheum, vol.54, issue.9, pp.2891-2900, 2006.

K. M-l-roemhildt, G. Coughlin, B. Peura, B. Fleming, and . Beynnon, Material properties of articular cartilage in the rabbit tibial plateau, J. Biomech, vol.39, issue.12, pp.2331-2337, 2006.

P. Julkunen, . Harjula, . Iivarinen, . Marjanen, . Seppänen et al., Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage, vol.17, pp.1628-1638, 2009.

J. Berteau, M. Oyen, and S. Shefelbine, Permeability and shear modulus of articular cartilage in growing mice, Biomech. Model. Mechanobiol, vol.15

F. Barry, B. Boynton, J. Liu, and . Murphy, Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components, Exp. Cell Res, vol.268, issue.2, pp.189-200, 2001.

A. Murdoch, L. Grady, M. Ablett, T. Katopodi, R. Meadows et al., Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage, Stem Cells, vol.25, issue.11, pp.2786-2796, 2007.

K. Pelttari, . Winter, . Steck, . Goetzke, B. Hennig et al., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis Rheum, vol.54, issue.10, pp.3254-3266, 2006.

S. A-m-mackay, J. Beck, F. Murphy, C. Barry, M. Chichester et al., Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Eng, vol.4, issue.4, pp.415-428, 1998.

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, issue.4, pp.677-689, 2006.

M. J-l-allen, T. Cooke, and . Alliston, ECM stiffness primes the TGF? pathway to promote chondrocyte differentiation, Mol. Biol. Cell, vol.23, issue.18, pp.3731-3742, 2012.

L. Taber, Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev, vol.48, issue.8, pp.487-545, 1995.

A. Goriely, The Mathematics and Mechanics of Biological Growth, vol.45, 2017.