M. S. Barros, P. G. Lara, M. T. Fonseca, E. H. Moretti, L. R. Filgueiras et al., Aedes aegypti saliva impairs M1-associated proinflammatory phenotype without promoting or affecting M2 polarization of murine macrophages, Parasites Vectors, vol.12, p.239, 2019.

E. Y. Bissonnette, P. A. Rossignol, and A. D. Befus, Extracts of mosquito salivary gland inhibit tumour necrosis factor alpha release from mast cells, Parasite Immunol, vol.15, pp.27-33, 1993.

B. Bizzarro, M. S. Barros, C. Maciel, D. I. Gueroni, C. N. Lino et al., Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology, Parasites Vectors, vol.6, p.329, 2013.

M. Bonizzoni, W. A. Dunn, C. L. Campbell, K. E. Olson, O. Marinotti et al., Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection, PLoS ONE, vol.7, p.50512, 2012.

V. D. Boppana, S. Thangamani, A. J. Adler, and S. K. Wikel, SAAG-4 is a novel mosquito salivary protein that programmes host CD4 T cells to express IL-4, Parasite Immunol, vol.31, pp.287-295, 2009.

L. Briant, P. Desprès, V. Choumet, and D. Missé, Role of skin immune cells on the host susceptibility to mosquito-borne viruses, Virology, vol.464, pp.26-32, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01054562

D. G. Brooks, M. J. Trifilo, K. H. Edelmann, L. Teyton, D. B. Mcgavern et al., Interleukin-10 determines viral clearance or persistence in vivo, Nat. Med, vol.12, pp.1301-1309, 2006.

E. A. Caine, S. M. Scheaffer, N. Arora, K. Zaitsev, M. N. Artyomov et al., Interferon lambda protects the female reproductive tract against zika virus infection, Nat. Commun, vol.10, p.280, 2019.

R. R. Cavalcante, M. H. Pereira, and N. F. Gontijo, Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects, Parasitology, vol.127, pp.87-93, 2003.

R. Chen, K. D. Yang, L. Wang, J. Liu, C. Chiu et al., Different clinical and laboratory manifestations between dengue haemorrhagic fever and dengue fever with bleeding tendency, Trans. R. Soc. Trop. Med. Hyg, vol.101, pp.1106-1113, 2007.

A. I. Chiramel and S. M. Best, Role of autophagy in zika virus infection and pathogenesis, Virus Res, vol.254, pp.34-40, 2018.

D. M. Chisenhall, C. N. Mores, M. K. Mccracken, R. C. Christofferson, and B. L. Londono, Effect of dengue-2 virus infection on protein expression in the salivary glands of Aedes aegypti mosquitoes, Am. J. Trop. Med. Hyg, vol.90, pp.431-437, 2014.

M. J. Conway, A. M. Watson, T. M. Colpitts, S. M. Dragovic, Z. Li et al., Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host, J. Virol, vol.88, pp.164-175, 2014.

J. Cox, J. Mota, S. Sukupolvi-petty, M. S. Diamond, and R. Rico-hesse, Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice, J. Virol, vol.86, pp.7637-7649, 2012.

M. L. Cross, E. W. Cupp, and F. J. Enriquez, Differential modulation of murine cellular immune responses by salivary gland extract of Aedes aegypti, Am. J. Trop. Med. Hyg, vol.51, pp.690-696, 1994.

R. Dhawan, M. Kumar, A. K. Mohanty, G. Dey, J. Advani et al., Mosquito-borne diseases and omics: salivary gland proteome of the female Aedes aegypti mosquito, OMICS J. Integr. Biol, vol.21, pp.45-54, 2017.

T. Z. Valle, A. Billecocq, L. Guillemot, R. Alberts, C. Gommet et al., A new mouse model reveals a critical role for host innate immunity in resistance to rift valley fever, J. Immunol, vol.185, pp.6146-6156, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01325858

S. M. Dragovic, T. A. Agunbiade, M. Freudzon, J. Yang, A. K. Hastings et al., Immunization with AgTRIO, a protein in anopheles saliva, contributes to protection against plasmodium infection in mice, Cell Host Microbe, vol.23, pp.523-535, 2018.

D. M. Dudley, C. M. Newman, J. Lalli, L. M. Stewart, M. R. Koenig et al., Infection via mosquito bite alters zika virus tissue tropism and replication kinetics in rhesus macaques, Nat. Commun, vol.8, p.2096, 2017.

A. P. Durbin, M. J. Vargas, K. Wanionek, S. N. Hammond, A. Gordon et al., Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever, Virology, vol.376, pp.429-435, 2008.

P. Ekchariyawat, R. Hamel, E. Bernard, S. Wichit, P. Surasombatpattana et al., Inflammasome signaling pathways exert antiviral effect against chikungunya virus in human dermal fibroblasts, Infect. Genet. Evol, vol.32, pp.401-408, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148961

M. Garcia, H. Alout, F. Diop, A. Damour, M. Bengue et al., Innate immune response of primary human keratinocytes to west nile virus infection and its modulation by mosquito saliva, Front. Cell. Infect. Microbiol, vol.8, p.387, 2018.

V. Golubovskaya and L. Wu, Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy, Cancers, vol.8, p.36, 2016.

R. Gomes, C. Teixeira, M. J. Teixeira, F. Oliveira, M. J. Menezes et al., Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.7845-7850, 2008.

J. L. Gommerman, J. L. Browning, and C. F. Ware, The lymphotoxin network: orchestrating a type I interferon response to optimize adaptive immunity, Cytokine Growth Factor Rev, vol.25, pp.139-145, 2014.

E. Gould, J. Pettersson, S. Higgs, R. Charrel, and X. De-lamballerie, Emerging arboviruses: why today? One Health, vol.4, pp.1-13, 2017.

D. Gurera, B. Bhushan, and N. Kumar, Lessons from mosquitoes' painless piercing, J. Mech. Behav. Biomed. Mater, vol.84, pp.178-187, 2018.

R. Hamel, O. Dejarnac, S. Wichit, P. Ekchariyawat, A. Neyret et al., Biology of zika virus infection in human skin cells, J. Virol, vol.89, pp.8880-8896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228435

J. R. Harmon, J. R. Spengler, J. D. Coleman-mccray, S. T. Nichol, C. F. Spiropoulou et al., CD4 T cells, CD8 T cells, and monocytes coordinate to prevent rift valley fever virus encephalitis, J. Virol, vol.92, pp.1270-1288, 2018.

A. Hartman, Rift valley fever, Clin. Lab. Med, vol.37, pp.285-301, 2017.

A. K. Hastings, R. Uraki, H. Gaitsch, K. Dhaliwal, S. Stanley et al., Aedes aegypti NeSt1 protein enhances zika virus pathogenesis by activating neutrophils, J. Virol, vol.93, pp.395-414, 2019.

C. H. Hiroki, J. E. Toller-kawahisa, M. J. Fumagalli, D. F. Colon, L. T. Figueiredo et al., Neutrophil extracellular traps effectively control acute chikungunya virus infection, Front. Immunol, vol.10, p.3108, 2020.

B. S. Hollidge, S. R. Weiss, and S. S. Soldan, The role of interferon antagonist, non-structural proteins in the pathogenesis and emergence of arboviruses, Viruses, vol.3, pp.629-658, 2011.

Y. S. Huang, S. Higgs, and D. L. Vanlandingham, Arbovirusmosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses, Front. Microbiol, vol.10, p.22, 2019.

N. Jain, N. Oswal, A. S. Chawla, T. Agrawal, M. Biswas et al., CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function, PLoS Neglected Trop. Dis, vol.11, p.5329, 2017.

D. Jiang, J. M. Weidner, M. Qing, X. Pan, H. Guo et al., Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections, J. Virol, vol.84, pp.8332-8341, 2010.

L. Jin, X. Guo, C. Shen, X. Hao, P. Sun et al., Salivary factor LTRIN from Aedes aegypti facilitates the transmission of zika virus by interfering with the lymphotoxin-? receptor, Nat. Immunol, vol.19, pp.342-353, 2018.

T. Kawai, A. , and S. , Signaling to NF-?B by toll-like receptors, Trends Mol. Med, vol.13, pp.460-469, 2007.

A. M. Kilpatrick and S. E. Randolph, Drivers, dynamics, and control of emerging vector-borne zoonotic diseases, Lancet, vol.380, pp.61151-61160, 2012.

A. D. Labeaud, F. Bashir, and C. H. King, Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections, Popul. Health Metrics, vol.9, p.1, 2011.

M. Laureti, D. Narayanan, J. Rodriguez-andres, J. K. Fazakerley, and L. Kedzierski, Flavivirus receptors: diversity, identity, and cell entry, Front. Immunol, vol.9, p.2180, 2018.

L. Coupanec, A. Babin, D. Fiette, L. Jouvion, G. Ave et al., Aedes mosquito saliva modulates rift valley fever virus pathogenicity, PLoS Neglected Trop. Dis, vol.7, p.2237, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01054567

A. Y. Limon-flores, M. Perez-tapia, I. Estrada-garcia, G. Vaughan, A. Escobar-gutierrez et al., Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells: cutaneous infection with dengue virus, Int. J. Exp. Pathol, vol.86, pp.505-512, 2005.

K. M. Long and M. T. Heise, Protective and pathogenic responses to chikungunya virus infection, Curr. Trop. Med. Rep, vol.2, pp.13-21, 2015.

C. G. Lucas, J. Z. Kitoko, F. M. Ferreira, V. G. Suzart, M. P. Papa et al., Critical role of CD4+ T cells and IFN? signaling in antibody-mediated resistance to zika virus infection, Nat. Commun, vol.9, p.3136, 2018.

P. D. Maharaj, S. G. Widen, J. Huang, T. G. Wood, and S. Thangamani, Discovery of mosquito saliva microRNAs during CHIKV Infection, PLoS Neglected Trop. Dis, vol.9, p.3386, 2015.

J. E. Manning and T. Cantaert, Time to micromanage the pathogenhost-vector interface: considerations for vaccine development, vol.7, p.10, 2019.

J. E. Manning, D. M. Morens, S. Kamhawi, J. G. Valenzuela, and M. Memoli, Mosquito saliva: the hope for a universal arbovirus vaccine?, J. Infect. Dis, vol.218, pp.7-15, 2018.

J. E. Manning, F. Oliveira, I. V. Coutinho-abreu, S. Herbert, C. Meneses et al., Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial, Lancet, vol.395, 1998.

A. Matejuk, Skin immunity, Arch. Immunol. Ther. Exp, vol.66, pp.45-54, 2018.

M. K. Mccracken, G. D. Gromowski, L. S. Garver, B. A. Goupil, K. D. Walker et al., Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques, PLoS Neglected Trop. Dis, vol.14, p.8191, 2020.

E. Mehlhop and M. S. Diamond, Protective immune responses against west nile virus are primed by distinct complement activation pathways, J. Exp. Med, vol.203, pp.1371-1381, 2006.

E. Mehlhop, K. Whitby, T. Oliphant, A. Marri, M. Engle et al., Complement activation is required for induction of a protective antibody response against west nile virus infection, J. Virol, vol.79, pp.7466-7477, 2005.

A. F. Mendes-sousa, D. C. Queiroz, V. F. Vale, J. M. Ribeiro, J. G. Valenzuela et al., An inhibitor of the alternative pathway of complement in saliva of new world anopheline mosquitoes, J. Immunol, vol.197, pp.599-610, 2016.

A. F. Mendes-sousa, V. F. Vale, D. C. Queiroz, A. A. Pereira-filho, N. C. Da-silva et al., Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis, Insect Biochem. Mol. Biol, vol.92, pp.12-20, 2018.

L. S. Miller, Toll-like receptors in skin, Adv. Dermatol, vol.24, pp.71-87, 2008.

J. C. Morrill, G. B. Jennings, T. M. Cosgriff, P. H. Gibbs, and C. J. Peters, Prevention of rift valley fever in rhesus monkeys with interferon-?, Clin. Infect. Dis, vol.11, 1989.

Y. Nan, C. Wu, and Y. Zhang, Interplay between janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism, Front. Immunol, vol.8, p.1758, 2017.

A. Opasawatchai, P. Amornsupawat, N. Jiravejchakul, W. Chan-in, N. J. Spoerk et al., Neutrophil Activation and early features of NET formation are associated with dengue virus infection in human, Front. Immunol, vol.9, p.3007, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02048214

A. Papa, Emerging arboviruses of medical importance in the mediterranean region, J. Clin. Virol, vol.115, pp.5-10, 2019.

A. A. Pereira-filho, R. H. Pereira, N. C. Da-silva, L. G. Ferreira-malta, A. M. Serravite et al., The gut anticomplement activity of Aedes aegypti: investigating new ways to control the major human arboviruses vector in the Americas, Insect Biochem. Mol. Biol, vol.120, p.103338, 2020.

M. Pfeffer and G. Dobler, Emergence of zoonotic arboviruses by animal trade and migration, Parasites Vectors, vol.3, p.35, 2010.

M. Pingen, S. R. Bryden, E. Pondeville, E. Schnettler, A. Kohl et al., Host inflammatory response to mosquito bites enhances the severity of arbovirus infection, Immunity, vol.44, pp.1455-1469, 2016.

M. Pingen, M. A. Schmid, E. Harris, and C. S. Mckimmie, Mosquito biting modulates skin response to virus infection, Trends Parasitol, vol.33, pp.645-657, 2017.

O. Puiprom, R. E. Morales-vargas, R. Potiwat, P. Chaichana, K. Ikuta et al., Characterization of chikungunya virus infection of a human keratinocyte cell line: role of mosquito salivary gland protein in suppressing the host immune response, Infect. Genet. Evol, vol.17, pp.210-215, 2013.

J. M. Ribeiro, B. Arca, F. Lombardo, E. Calvo, V. M. Phan et al., An annotated catalogue of salivary gland transcripts in the adult female mosquito, AEdes aegypti * . BMC Genomics, vol.8, p.6, 2007.

A. I. Rolin, L. Berrang-ford, and M. A. Kulkarni, The risk of rift valley fever virus introduction and establishment in the United States and European Union, Emerg. Microbes Infect, vol.2, pp.1-8, 2013.

C. Rosales, Neutrophil: a cell with many roles in inflammation or several cell types?, Front. Physiol, vol.9, p.113, 2018.

P. A. Rudd, J. Wilson, J. Gardner, T. Larcher, C. Babarit et al., Interferon response factors 3 and 7 protect against chikungunya virus hemorrhagic fever and shock, J. Virol, vol.86, pp.9888-9898, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01191139

C. Schilte, M. R. Buckwalter, M. E. Laird, M. S. Diamond, O. Schwartz et al., Cutting edge: independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to chikungunya infection, J. Immunol, vol.188, pp.2967-2971, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01372485

B. S. Schneider and S. Higgs, The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response, Trans. R. Soc. Trop. Med. Hyg, vol.102, pp.400-408, 2008.

B. S. Schneider, L. Soong, L. L. Coffey, H. L. Stevenson, C. E. Mcgee et al., Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during west nile virus infection, PLoS ONE, vol.5, p.11704, 2010.

B. S. Schneider, L. Soong, N. S. Zeidner, and S. Higgs, Aedes aegypti salivary gland extracts modulate anti-viral and TH1/TH2 cytokine responses to sindbis virus infection, Viral. Immunol, vol.17, pp.565-573, 2004.

J. W. Schoggins, S. J. Wilson, M. Panis, M. Y. Murphy, C. T. Jones et al., A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, vol.472, pp.481-485, 2011.

G. C. Sen, Viruses and interferons, Annu. Rev. Microbiol, vol.55, pp.255-281, 2001.

S. Sharma, Triggering the interferon antiviral response through an IKKrelated pathway, Science, vol.300, pp.1148-1151, 2003.

G. F. Silveira, P. F. Wowk, A. H. Cataneo, P. F. Santos, M. Delgobo et al., Human T lymphocytes are permissive for dengue virus replication, J. Virol, vol.92, pp.2181-02117, 2018.

K. A. Stoermer and T. E. Morrison, Complement and viral pathogenesis, Virology, vol.411, pp.362-373, 2011.

C. J. Struchiner, J. Rocklöv, A. Wilder-smith, and E. Massad, Increasing dengue incidence in Singapore over the past 40 years: population growth, climate and mobility, PLoS ONE, vol.10, p.136286, 2015.

L. M. Styer, P. Lim, K. L. Louie, R. G. Albright, L. D. Kramer et al., Mosquito saliva causes enhancement of west nile virus infection in mice, J. Virol, vol.85, pp.1517-1527, 2011.

P. Sun, K. Nie, Y. Zhu, Y. Liu, P. Wu et al., A mosquito salivary protein promotes flavivirus transmission by activation of autophagy, Nat. Commun, vol.11, p.260, 2020.

P. Surasombatpattana, P. Ekchariyawat, R. Hamel, S. Patramool, S. Thongrungkiat et al., Aedes aegypti saliva contains a prominent 34-kDa protein that strongly enhances dengue virus replication in human keratinocytes, J. Invest. Dermatol, vol.134, pp.281-284, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02513214

P. Surasombatpattana, S. Patramool, N. Luplertlop, H. Yssel, and D. Missé, Aedes aegypti saliva enhances dengue virus infection of human keratinocytes by suppressing innate immune responses, J. Invest. Dermatol, vol.132, pp.2103-2105, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02959112

S. Thangamani, S. Higgs, S. Ziegler, D. Vanlandingham, R. Tesh et al., Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus, PLoS ONE, vol.5, p.12137, 2010.

S. Thangamani and S. K. Wikel, Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasites Vectors 2:34, 2009.

H. Townson, Development, nutrition and reproduction, Bull. Entomol. Res, vol.1, pp.307-308, 1992.

V. Upasani, H. T. Vo, S. Ung, S. Heng, D. Laurent et al., Impaired antibody-independent immune response of B cells in patients with acute dengue infection, Front. Immunol, vol.10, p.2500, 2019.

R. Uraki, A. K. Hastings, A. Marin-lopez, T. Sumida, T. Takahashi et al., Aedes aegypti AgBR1 antibodies modulate early zika virus infection of mice, Nat. Microbiol, vol.4, pp.948-955, 2019.

M. B. Vogt, A. Lahon, R. P. Arya, A. R. Kneubehl, J. L. Spencer-clinton et al., Mosquito saliva alone has profound effects on the human immune system, PLoS Neglected Trop. Dis, vol.12, p.6439, 2018.

D. M. Vu, D. Jungkind, and A. D. Labeaud, Chikungunya virus, Clin. Lab. Med, vol.37, pp.371-382, 2017.

N. Wanasen, R. H. Nussenzveig, D. E. Champagne, L. Soong, and S. Higgs, Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus, Med. Vet. Entomol, vol.18, pp.191-199, 2004.

C. F. Ware, NETWORK COMMUNICATIONS: lymphotoxins, LIGHT, and TNF, Annu. Rev. Immunol, vol.23, pp.787-819, 2005.

H. A. Wasserman, S. Singh, and D. E. Champagne, Saliva of the yellow fever mosquito, Aedes aegypti, modulates murine lymphocyte function, Parasite Immunol, vol.26, pp.295-306, 2004.

S. C. Weaver and W. K. Reisen, Present and future arboviral threats, Antiviral Res, vol.85, pp.328-345, 2010.

, A Global Brief on Vector-Borne Diseases. WHO. Available online at: www.who.int, WHO, 2020.

S. Wichit, F. Diop, R. Hamel, L. Talignani, P. Ferraris et al., , 2017.

, Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway, Infect. Genet. Evol, vol.55, pp.68-70

A. Wilder-smith, D. J. Gubler, S. C. Weaver, T. P. Monath, D. L. Heymann et al., Epidemic arboviral diseases: priorities for research and public health, Lancet Infect. Dis, vol.17, issue.16, pp.30518-30525, 2017.

S. L. Wu, G. Grouard-vogel, W. Sun, J. R. Mascola, E. Brachtel et al., Human skin langerhans cells are targets of dengue virus infection, Nat. Med, vol.6, pp.816-820, 2000.

M. Yamamoto, S. Sato, K. Mori, K. Hoshino, O. Takeuchi et al., Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-? promoter in the toll-like receptor signaling, J. Immunol, vol.169, pp.6668-6672, 2002.

N. S. Zeidner, S. Higgs, C. M. Happ, B. J. Beaty, and B. R. Miller, Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: an effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice, Parasite Immunol, vol.21, pp.35-44, 1999.

M. Zhang, X. Zheng, Y. Wu, M. Gan, A. He et al., Differential proteomics of Aedes albopictus salivary gland, midgut and C6/36 cell induced by dengue virus infection, Virology, vol.444, pp.109-118, 2013.