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Abstract  9 

Since the ZIKV outbreak in Brazil in 2015, the scientific community has joined efforts to 10 

gather more information on the epidemiology, clinical features and pathogenicity of the virus. 11 

Here, we summarize the most important advances made recently and discuss promising, 12 

innovative aproaches to understand and control ZIKV infection. 13 
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1. Introduction  21 

Zika virus (ZIKV) is an emerging mosquito-borne Flavivirus, belonging to the Flaviviridae 22 

family. ZIKV contains a positive single-stranded RNA encoding a polyprotein precursor that 23 

is processed by cellular and viral proteases to yield its three structural proteins: the capsid (C), 24 

the precursor of membrane (prM) and the envelop (E) proteins, as well as seven non-structural 25 

protein: NS1 to NS5. ZIKV was discovered following scientific research on the enzootic 26 

cycle of the Yellow fever virus and other unknown arboviruses in the Zika forest of Uganda. 27 

The first case of human ZIKV infection has been reported in Uganda in 1952 [1] and the virus 28 

was later isolated from humans in South East Asia [2]. Viral pathology was associated with a 29 

few sporadic cases in tropical Africa and the south of Asia until 2007 when the number of 30 

human cases of ZIKV infection unexpectedly increased, initially in Micronesia, then in 31 

Pacific Ocean Island to finally reach the South American continent in 2015. Although the 32 

reasons for the sudden emergence of the virus are not clear, several hypotheses can be put 33 

forward. Many factors may determine the emergence of arboviruses, such as the actual 34 

climate change, which affects the distribution of vectors, viral mutation frequency leading to 35 

an increasing virulence, as well as changes in anthropological behaviour resulting in increased 36 

host-pathogen interactions. ZIKV entry in Brazil from Pacific countries [3,4] has been linked 37 

to two major social events, the World cup soccer game and  the World Sprint Championships 38 

[5] that were held in this country in 2014. At present, three different major lineages of ZIKV, 39 

belonging to African, Asian and Brazilian strains, have been characterized according to 40 

phylogenetic investigations. While Asian and Brazilian strains show low nucleotidics 41 

differences, mutations have been highlighted between Asian strain and African strain. 42 

Moreover, in vitro and in vivo studies revealed differential infection outcome, particularly 43 

between the African and Asian/Brazilian strains, suggesting that the African strain seems to 44 

be more virulent and to cause more cellular damage than the Asian/Brazilian strain [6–8]. 45 
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Nonetheless, further investigations are needed to understand why both the Asian and Brazilian 46 

strains are particularly associated with neurological disorders. 47 

 48 

2. Epidemiology 49 

2.1 Geographic distribution  50 

Despite its broad geographical distribution, human infections with ZIKV have remained 51 

sporadic and limited to small-scale epidemics for decades, until 2007 when a large epidemic 52 

was reported on Yap Island with nearly 75% of the population being infected with the virus 53 

[9]. Moreover, an outbreak of a syndrome due to ZIKV fever has been reported in French 54 

Polynesia, associated with ZIKV-infection-related neurological and an unexpected increase in 55 

the incidence of Guillain Barré syndrome by 20 fold [10]. Subsequently, several cases of 56 

ZIKV infection in New Caledonia, Easter Island and the Cook Islands have been described 57 

indicating a rapid spreading of the virus in the Pacific [3]. The ZIKV epidemic in 2015 has 58 

been the start of an international public health emergency when the virus reaches the 59 

American continent, with 33 countries reporting autochthonous transmission of ZIKV 60 

infection and an increase in the incidence of cases of microcephaly and/or Guillain-Barré 61 

syndrome. Moreover, ZIKV infection has also been associated with imported cases, notably in 62 

Europe [11], indicating a rapid world-wide spread of the virus. On February 2016, the WHO 63 

started to issue monthly reports on the situation of the ZIKV epidemy. On March 2017, the 64 

WHO published the last report following the ZIKV outbreaks establishing a total of 61 areas 65 

with ongoing virus transmission: 13 countries with evidence of person to person virus 66 

transmission: 31 countries reporting neurological disorders associated with ZIKV infection 67 

(microcephally, congenital malformations …) and 23 countries reporting an increased 68 

incidence of Guillain-Barré in ZIKV-infected patients (situation report, 10 March 2017, 69 

WHO). During this period an estimate of 400 000 to 1.5 million cases of ZIKV infection have 70 

been reported in these countries. Since 2017, the number of cases declined, although the virus 71 



 4 

is still circulating in many countries, even in those that were not involved in the last outbreak. 72 

For example, three laboratory-confirmed cases of ZIKV infection have been reported in India 73 

(Bapunagar area) showing that the virus is still circulating in this country (Disease Outbreak 74 

News, 26 May 2017, WHO). For several years, new informatic tools have been developped to 75 

improve the modelisation of infectious disease outcome. As a consequence, many studies 76 

have been performed to develop predictive models of ZIKV spread by taking into account 77 

determining parameters of the infection (vector abundance, local temperature, mode of 78 

transmission, surveillance information and human behavior) to obtain meaningful projections 79 

of the number of ZIKV infections in countries around the world [12,13]. These models will 80 

allow public health authorities to better anticipate the propagation of ZIKV infection or to 81 

project the end of the epidemy. 82 

 83 

2.2 Transmission and vector control  84 

The main mode of ZIKV transmission occurs via the female mosquitoe bite during blood 85 

feeding, although the human to human transmission route, among which perinatal 86 

transmission [14], sexual transmission [15,16] and breast milk feeding [17–19] has been 87 

described as well. Many different species of Aedes mosquito can account for the transmission 88 

of ZIKV, including Ae.aegypti and albopictus [20,21].  Nevertheless, the competence of this 89 

two Aedes genus seems to be variable according to geographic sites and the viral strain it has 90 

been infected with [22,23]. The Aedes genus is dispersed in predominantly tropical areas on 91 

three continents (Asia, Africa, America), but shows increased spreading, particularly in North 92 

America, Europe and China [24], which highlights the importance to develop efficient tools to 93 

control the spread of the vectors. Strategies to contain and reduce the development of 94 

mosquitoe populations have already been established to limit arbovirus propagation (Figure 95 

1). To this aim, the WHO promotes a combination of methods, such as individual and 96 

household protection (clothing, air–conditionning, repellents, net …), procedures to limit 97 
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backwater and the safe use of insecticides. However, these methods are not sufficient to halt 98 

vector-borne disease spread and there is a real need for innovative, efficacious, approaches. 99 

Recently, the Worldwide Insecticide resistance Network (WIN) [25] symposium 100 

(https://www.winsingapore2018.com/) has provided an overview of the alternative methods 101 

currently under development for the control of arbovirus vectors [26–28]. Amongs these new 102 

tools feature novel larvicides (entomopathogenic Ascomycetes fungi, pyroproxyfen, 103 

autodissemination), classical and biotechnology-based sterile insect techniques, spatial 104 

repellents, insect traps, attractive targeted sugar baits, insecticide-treated materials and gene 105 

drives (ex : CRISPR-Cas like system C2c2). Moreover, an emerging method showing 106 

impressive results to prevent arbovirus propagation is the use of the bacterial Wolbachia 107 

genus to either eliminate Ae.aegypti mosquitoe (mosquitoe population suppression) [29,30] or 108 

restrict the arbovirus infection (i.e. mosquitoe population replacement) [31]. In fact, it has 109 

been shown that the endosymbiotic bacterium Wolbachia, naturally present in up to 40% of 110 

all arthropods [32] is able to block the transmission of many human pathogens in mosquitoes, 111 

such as CHIKV, DENV and Plasmodium [33,34], by cytoplasmic incompatibility [35].  More 112 

recently, several experimental studies showed that the wMel Wolbachia strain si able to also 113 

restrict ZIKV infection in Ae. aegypti [36–38]. Nevertheless these methods show efficacy 114 

limits and ethical issues and need to also integrate a sustainable, effective, community-based, 115 

locally adapted vector control management to reduce the burden of Aedes-transmitted disease 116 

[27].   117 

ZIKV outbreaks have mainly been investigated in countries where the infection was 118 

associated with severe symptoms. Nevertheless, it remains important to provide more 119 

information about the prevalence of the infection in other countries where the virus is 120 

circulating, or has circulated probably with more asymptomatic effects, to better understand 121 

the evolutive propagation of the virus. In particular it is of importance to define and 122 
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characterize the different factors that are associated with its emergence and pathogenicity and 123 

in this respect, it appears crucial to obtain more information about the circulation and 124 

infection outcome of ZIKV in Africa and India where the virus has started its course.  125 

 126 

3. Pathogenicity of ZIKV in humans 127 

3.1 Symptoms of Zika virus infection  128 

The sudden emergence of ZIKV has rapidly become a major public health due to the severe 129 

symptoms developped by newborn babies. In fact, the latest outbreak has raised major 130 

concerns about the pathogenicity of ZIKV since severe neurological complications in fetuses, 131 

neonates and adults were found to be associated with the infection [39–41]. Previous outbreaks 132 

of ZIKV were characterized by a classic clinical pattern, fever, rash, arthralgia and 133 

conjunctivitis in infected individuals [42]. However, in ZIKV-infected pregnant women in 134 

Brazil, a remarkable 42% of fetuses exhibited some type of ultrasound abnormality [43]. The 135 

clinical phenotype of congenital ZIKV infection was variable and included cerebral 136 

calcifications, microcephaly, intrauterine growth restriction and fetal demise. Computed 137 

tomography and magnetic resonance imaging of the brains of congenitally infected neonates 138 

in Brazil further demonstrated hypoplasia of the cerebellum and brainstem, ventriculomegaly, 139 

delayed myelination, enlarged cisterna magna, abnormalities of the corpus callosum, 140 

calcifications, and cortical malformations [44]. It is of note that retrospective assessment of 141 

the ZIKV epidemic in French Polynesia also found an increased risk of microcephaly 142 

associated with ZIKV infection, with 95 cases occurring per 10,000 women infected in the 143 

first trimester [45]. In comparison to the encephalitic flaviviruses (e.g., West Nile virus and 144 

Tick-born encephalitis virus), ZIKV generally is less neuroinvasive in adults, rarely causing 145 

meningitis and encephalitis [46]. ZIKV infection has also been associated with the 146 

development of Guillain-Barré Syndrome (GBS) in a lower percentage of patients 147 
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[10,39,47,48]. GBS is an auto-immune disease associated with aberrant inflammation that 148 

targets peripheral nerves and leading to muscle weakness and paralysis [49]. It is 149 

hypothesized that the production of neutralizing antibodies against ZIKV target peripheral 150 

nerve glycolipids, thereby inducing injuries of myelin or axonal membranes that leads to 151 

inflammatory demyelinating polyneuropathy [49–51]. Further research is needed to better 152 

characterized the immune response mechanism involved in the GBS development associated 153 

with ZIKV infection.  154 

 155 

3.2 Zika virus permissiveness and replication  156 

The epidemy of Zika in Brazil has been followed by an exceptional effort from the scientific 157 

community to identify the key biological factors associated with the pathogenicity of the virus 158 

and to help the health system to contain the epidemic. ZIKV infection studies using patients 159 

samples, in vivo and in vitro models [52,53] allowed to characterized differents tissue and cell 160 

lines permissive to infection. ZIKV has been detected in placenta, brain, eye, testis, uterus, 161 

vagina and body fluids (blood, tears, saliva, semen, cervical mucus and urine) in human [54], 162 

but also in liver, spleen, lung, kidney, heart and muscle in various animal models [55–59].  163 

Moreover, in vitro studies characterized a broad range of cell lines showing differential 164 

susceptibility to ZIKV infection, providing new tools to study its pathogenesis [60,61]. 165 

Interestingly, cell lines derived from the placenta or genital tract are susceptible to infection 166 

with ZIKV, but not with other while other flaviviruses, such as DENV [61] which could 167 

explain the association of ZIKV with congenital disorders. In addition, ZIKV was found to 168 

replicate in human testicular tissue and male germ cells and furthermore persisted in semen 169 

[62,63] resulting in a high risk of sexual transmission. More precisely, a recent study 170 

investigating ZIKV dissemination in the male reproductive tract proposed a model in which 171 

ZIKV infects the testis through the hematogenous route, whereas infection of the epididymis 172 
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can occur through both hematogenous/lymphogenous and excurrent testicular routes [64]. 173 

Nevertheless, ZIKV preferentially infects brain cells, in particular human neural progenitor 174 

cells (hNPC) [65–68], which may explain its ability to impair development of the fetal brain 175 

and cause microcephaly and other neurodevelopmental injuries. ZIKV-induced microcephaly 176 

can have several different causes [69] since the virus can affect the neuronal progenitors 177 

which results in either cell death or neurogenesis dysregulation [66,67,70]. ZIKV can also 178 

infect glial cells and disturb their role in neuronal development. In addition, it is yet unknown 179 

if these mechanisms could vary according to viral strain, being from African or Asian origin. 180 

Like all viruses, ZIKV depends heavily on the cellular machinery of the host to accomplish its 181 

life cycle. The permissiveness of ZIKV is dependent on the presence of specific cell surface 182 

receptors which allow the entry of the virus in the cells. Several entry receptors have already 183 

been identified to facilitate ZIKV infection, including the innate immune receptor DC-SIGN, 184 

TIM-1 and TAM receptors (transmembrane protein TYRO-3, AXL and MER) in human skin 185 

cells, endothelial cells, neural and retinal progenitor cells, highlighting a unique tropism 186 

among flaviviruses [60,42,71–75]. More recently, high-throughput fitness profiling of ZIKV 187 

E protein has shown that N-linked glycosylation enhances ZIKV infection in mammalian cell 188 

line following interaction with DC-SIGN [76]. Several studies in experimental mouse models 189 

have also shown that TAM receptors, in particularly AXL, are determinant, although not 190 

essential, for ZIKV infection [77,78].  Further investigations are still needed to clarify the role 191 

of each of each of these receptors and to identify any additional key entry factors that could 192 

represent an potential new therapeutic target.  193 

 194 

3.3 Innate immune response to ZIKV 195 

ZIKV infection induces innate and adaptative responses by infected cells. First, viral RNA 196 

sensors activate TLR receptors, in particularly TLR3 and TLR7, as well as the RIG-like 197 
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receptors MDA5 and RIG-I, leading to the production of type 1 (IFN-β) and type III (IFN-198 

λ) interferons. The latter will then bind their respective receptors to induce the activation of 199 

the JAK/STAT signaling pathway leading to the production of interferon-stimulated genes, 200 

such as ISG15, OAS2, MX1, and IFIT, as well as inflammatory chemokines, like CCL5 and 201 

CXCL10 [42,79]. Moreover, recent reports have also highlighted the importance of IFITM1 202 

and IFITM3, members of the family of interferon-inducible transmembrane proteins, in the 203 

inhibition of ZIKV replication [80,81] and the prevention of ZIKV-induced cell death [81]. 204 

The importance of IFN signaling pathway has been highlighted by the development of ZIKV-205 

induced pathology in mice deficient in the expression of  type I and II IFN receptors or 206 

STAT2 that was not observed in immunocompetent mice [56,58,53,82]. Moreover, IFN-λ has 207 

been shown to be particularly protective against ZIKV infection in the female reproductive 208 

tract [83] and in the maternal decidua and placenta associated with its production at later 209 

gestationnel stages during pregnancy [84,85]. Therefore, differential innate immune response 210 

profiles according to cell type and cell differentiation state associated with immunological 211 

maturation could be related to variable susceptibility to ZIKV infection [83–85] (Ferraris et 212 

al., unpublished data).  213 

ZIKV, as many other viruses, is able to counteract anti-viral immune responses through the 214 

interaction of viral proteins with proteins of cellular signalling. In particular, ZIKV is able to 215 

impair IFNs signaling pathways [86] by preventing STAT1 phosphorylation [87], inducing 216 

JAK1 and STAT2 proteasomal degradation through its interaction with the NS2B-NS3 217 

protease [88] and and NS5 [89], respectively . Moreover, the NS2B-NS3 protease complex is 218 

also able to target the human STING protein [90] whereas NS1 and NS4B reduce IFN-β 219 

production by disrupting phospho-TBK1 in human brain cells [91].  220 

ZIKV sfRNA, a subgenomic viral RNA, is also involved in viral interference with innate 221 

immune responses [92], since it has been reported to antagonize RIG-I mediated induction of 222 
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type I interferon in human lung epithelial cells [93,94]. More recently, the FXMRP protein, 223 

identified as rectricted factor of ZIKV, has been shown to be antagonized by ZIKV sfRNA 224 

[95].  225 

The immune response is essential to fight infection but can also be associated with 226 

pathogenesis by inducing auto-immune disease. Within this context, it has been shown that 227 

ZIKV can induce exacerbated neuro-inflammation associated with NPC depletion in human 228 

organoids, notably through the activation of TLR3 [96] and production of cytokines [97]. 229 

Moreover, the production of non-neutralizing antibodies that induce a process called 230 

Antibody-Dependent Enhancement during a primary infection against DENV can facilitate 231 

the infection by another flavivirus through the cross-reactivity with the Fcγ receptor [98]. 232 

Because of the important ZIKV outbreak in countries where DENV is known to be epidemic, 233 

many studies have been performed to evaluate this cross-reactivity between both viruses [99]. 234 

However, the results remain controversial, whereas some studies found that prior DENV 235 

infection was associated with lower risk to develop ZIKV infection symptoms [100,101], 236 

other in vitro and in vivo studies reported opposite obversations [98,102,103]. This 237 

phenomenon seems to be dependent on the virus strain and host immune response, and needs 238 

to be taken in account in the development of an anti-ZIKV vaccine [104]. 239 

Since the ZIKV outbreak in 2015 an exceptional effort has been made to develop fundamental 240 

research aimed to improve our knowledge about the biology of this flavivirus, including its 241 

tropism, morphogenesis and antiviral responses. These studies have been essential to better 242 

understand the infection and to implement novel approaches for treatment and the 243 

development of vaccines. These advances notwithstanding, continued investigations are still 244 

needed to understand the molecular mechansims underlying the capacity of the virus to cross 245 

the placental and blood-brain barrier, unlike other flaviviruses, as well as the differences 246 
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between the various ZIKV strains and the impact of co-infection with other arboviruses on 247 

viral pathogenicity. 248 

 249 

4. Treatment and vaccine perspectives 250 

4.1 Antiviral molecules 251 

Currently, no vaccines or antiviral treatments have been approved to cure ZIKV infection and 252 

patients’ care is mainly focused on treating their symptoms. The main challenge is to develop 253 

treatment for ZIKV infection that can be administrated to pregnant women. Nevertheless, 254 

hundreds of compounds are currently tested in silico for their capacity to interfere with the 255 

replicative life cycle of ZIKV, but only few have been shown to inhibit ZIKV infection in 256 

vitro and need further testing in vivo as well as in clinical trials (Table 1) (Figure 1) [105–257 

107]. Some molecules, called Direct Acting Agents have the potential to directly act on viral 258 

function by inhibiting both early and late stages of replication. Another antiviral strategy is to 259 

block viral entry by inhibiting the attachment, endocytosis and fusion of the virus in the cell. 260 

Several molecules show encouraging in vitro results such as duramycin and suramin that may 261 

prevent attachment to host receptors mediating flavivirus entry into the cell [108–110] and 262 

nanchangmycin that seems to block clathrine-mediated endocytosis of ZIKV [111]. 263 

Nevertheless, no in vivo studies have been published so far that sustain their efficacy. In vivo 264 

experiments demonstrated that two inhibitors of ZIKV entry, a synthetic peptide inhibitor, Z2, 265 

interfered with vertical transmission of ZIKV in pregnant mice [112] and Cholesterol-25-266 

hydroxylase, a natural interferon stimulated gene, responsible for cholesterol oxydation 267 

inhibiting ZIKV uptake, are protective against ZIKV symptoms and microcephaly [113]. 268 

These molecules need now to be tested in clinical trials. Another strategy consists in the 269 

targeting of the NS2B-NS3 viral protease protein which allows the cleavage of the different 270 

viral proteins from the polyprotein. Therefore Novobioctin, lopinavir-ritonavir and 271 
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Bromocriptine, among other molecules, show a significant effect on ZIKV infection and cell 272 

death in vitro or in silico, via the inhibition of protease activity [114,115]. Another targeted 273 

viral protein is NS5 RdRp whose polymerase activity is crucial for the replication of the virus. 274 

One of the promising molecules is the Sofosbuvir a class B FDA-approved compound that has 275 

already been tested to treat Hepatitis C virus infections. Importantly, animal studies have not 276 

demonstrated a risk to use it during pregnancy. The efficacy of Sofosbuvir to inhibit ZIKV 277 

infection has been demonstrated in vitro in neural progenitor cells, brain organoids, 278 

neuroepithelial stem cells and in vivo in mice [91,116–118]. Other viral protein are targeted to 279 

identify new potential drugs, such as NS3 helicase (Ivermectin and Resveratrol) and NS5 280 

methyltransferase for which compounds have shown antiviral activity against other 281 

flaviviruses and therefore will need to be tested on ZIKV infection [107]. Many other 282 

compounds which show a conserved efficacy among flaviviruses could represent a potential 283 

target for ZIKV and need to be tested as well. Several other molecules that are currently under 284 

development are tested to counteract undesirable cell effects that could be induced by the 285 

virus. For example, Emricansan has been shown to reduce cellular apoptosis by inhibiting 286 

caspase-3 activity, whereas several nucleoside analogues are able to reduce cytopathic effects 287 

and cell death after ZIKV infection [119]. Moreover, some modulators of lipid metabolism 288 

such as Imipramine, an FDA approved drug, inhibits ZIKV replication and viral production, 289 

in human skin fibroblasts, probably through interference with intracellular cholesterol 290 

transport [120]. More recently, Taguwa et al. highlighted the interest to target the cellular 291 

protein Hsp70, essential for flavivirus replication for antiviral strategy. They showed that 292 

Hsp70 inhibitor, significantly reduced ZIKV replication in cells, associated with reducing 293 

pathogenicity in mice and low cytotoxicity effect. Furthemore Hsp70 inhibitors present a low 294 

risk of drug resistance makes them new attractive antivirals against ZIKV infection [121].  295 

Finally, therapeutic antibodies could be also an alternative since the results of several studies 296 



 13

have shown that neutralizing antibodies targeting ZIKV can prevent viral replication, 297 

microcephally and fetal disease in mice [122–124].  298 

 299 

4.2 Vaccines  300 

Following the sudden outbreak of ZIKV infection in Brazil, the international health care 301 

system has called for the development of candidate vaccines against the virus. One of the 302 

important challenge of ZIKV vaccine development is to produce a low cost and safe vaccine 303 

to be inoculated in pregnant women, particularly in low-ressource countries where viral 304 

outbreaks occur. Several mouse and rhesus monkey models have been established in the 305 

framework of ZIKV vaccine development [58,53,125,126].  Most models used to study ZIKV 306 

vaccine efficacy are knockout mice (129, C57BL/6, Balbc, Swiss…)  with deficiencies in IFN 307 

type I (IFN-α and -β) or II (IFN-γ) receptors which have the particularity to reproduce several 308 

characteristics of ZIKV pathogenesis, such as fever, neurological disorders on newborn 309 

mouse and lethality. Many vaccine subtypes and strategies are under development and 310 

vaccine candidates are currently tested for their non-toxicity and efficacy, although only a few 311 

are currently in phase I or II clinical trials (Table 1) (Figure 1) [125,127,128]. Among the 312 

more promising vaccines in clinical trials there is a ZIKV-purified inactivated virus (ZPIV) 313 

which was found to confer long-term protection in monkeys [129,130] and several  nucleic 314 

acid vaccines targeting the prM and E proteins that provide complete protection against viral 315 

challenges in both mice and non human primates [129–134] as well as an adenovirus-based 316 

vaccine targeting the prM and E protein of ZIKV with a complete long-term protection in 317 

monkeys [129,135]. Additional vaccines are also being investigated but are still in the process 318 

of preclinical development [125,127,128,136]. Also, fundamental research has higlighted a 319 

new and very interesting strategy, pertaining to as an miRNA co-targeting approach for a live 320 

virus vaccine that might result in improved genetic stability and restricted virus replication 321 
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[64]. In summary, remarkable efforts have been undertaken to develop an effective vaccine 322 

against ZIKV infection and a list of potential candidates has been identified of which several 323 

have reached phase II in clinical trials. 324 

5. Conclusion 325 

Three years after the beginning of the ZIKV outbreak in Brazil, the virus is still subject to 326 

intense medical research. Many investigations have allowed to better understand the biology 327 

of the infection leading to the establishment of vector control strategies and the development 328 

of drugs and vaccines that are currently tested in clinical trials in a remarkably short time 329 

following the outbreak (Figure 1). Nevertheless, most of the challenges such as vector 330 

control, diagnostics and patients care need to be improved in order to better control ZIKV 331 

spread. The symptomatic consequences of the co-circulation of ZIKV with other arboviruses 332 

such as DENV and CHIKV are still poorly characterized. However, since both viruses use the 333 

same vector it is important to continue to put a main effort in strategies of vector control. The 334 

latest ZIKV outbreak also highlights the importance to develop better tools to survey the 335 

ciculation of arboviruses in general and prevent the emergence of new ones. In fine, lessons 336 

from ZIKV outbreak have to be integrated to be prepared to adequately respond to the 337 

emergence of the next generation of arboviruses already circulating in the vector [137]. 338 

 339 
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Figure 1. Strategies to control ZIKV infection in humans 745 
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Innovative strategies to limit ZIKV transmission through the control and the reduction of Aedes 746 

mosquito populations (1); the production of antiviral drugs able to inhibit ZIKV infection in humans 747 

(2) and the development of efficient ZIKV vaccines to counteract ZIKV epidemy propagation (3). Red 748 

spots represent organs from which ZIKV has been isolated. 749 

Table 1. Promising ZIKV antiviral drugs and vaccines  750 

 751 





Treatment Target system of validation reference
Duramycin viral entry in vitro 104-106

Suramin viral entry in vitro 104-106

Nanchangmycin viral entry in vitro 107

Z2 viral entry in vitro/in vivo 108

25HC viral entry in vitro/in vivo 109

Novobioctin NS2B-NS3 in silico/in vitro 110

Lopinavir-ritonavir NS2B-NS3 in silico/in vitro 110

Bromocriptine NS2B-NS3 in vitro 111

Sofosbuvir NS5 RdRp in silico/in vitro 89,104-106

Emricasan caspase 3 in vitro 115

Imipramine
cholesterol 

transport
in vitro 116

therapeutics antibodies E in vitro/in vivo 117-119

Vaccine target clinal trial reference
inactivated virus prM & E phase I 122.125

nucleic acid vaccine prM & E phase I/II 122-129

adenovirus-based vaccine prM & E phase I 124,130




