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Introduction 1 

Cancer is a major public health problem, with an estimated 18.1 million new cases and 9.6 2 

million deaths in 2018 (Bray et al., 2018). Moreover, high population growth, aging, and 3 

increased exposure to pollutants are causing a rapid worldwide increase in cancer incidence 4 

and mortality in countries with different levels of economic wealth (Bray et al., 2018; Torre et 5 

al., 2015). The predicted burden is so high that cancer is thought to be the only important 6 

obstacle to an increase of life expectancy during the 21st century (Torre et al., 2015), and it is 7 

expected to become the leading cause of death worldwide. 8 

Meanwhile, mosquitoes represent a global public health problem because they act as 9 

vectors for viruses, bacteria and protozoa (Mehlhorn et al., 2012), including, among others, 10 

agents of malaria, filariasis, encephalitis, yellow fever, dengue, West Nile fever, chikungunya, 11 

and, more recently, Zika. Mosquito-borne infectious diseases cause significant morbidity and 12 

mortality worldwide, with more than 700 million people infected and more than a million 13 

deaths annually (Caraballo and King, 2014). They represent a growing problem, with 14 

mosquito invasions occurring throughout the world and affecting every continent but 15 

Antartica (Masterson, 2019). 16 

Regarding the dramatic global impacts of these two concerns for humans, it is crucial to 17 

investigate whether they have a reciprocal connection. Indeed, cancers and mosquito-borne 18 

pathogens are both globally distributed, therefore affecting the same populations and can co-19 

occur within the same individuals. Knowing whether there is a connection between cancers 20 

and mosquito-borne pathogens could also be helpful not only for forecasting the net impact of 21 

the different control strategies on human health, but also for envisioning integrative strategies 22 

targeting the two problems at the same time. Unfortunately, very few studies (Benelli et al., 23 

2016) have examined the link between these two threats, and the existing ones have generally 24 



focused only on the transmission of oncogenic pathogens through mosquitoes (Marcondes and 25 

Benelli, 2019; Ward et al., 2016). 26 

In this review, we provide an overview of the possible links between mosquitoes and 27 

cancer. To do so, we focus on (i) the impact of mosquitoes on carcinogenesis in humans, (ii) 28 

the impact of cancer development in humans on mosquito behaviour, and (iii) the 29 

consequences of cancers in mosquitoes and on their disease transmission potential (see 30 

Figure). We will then discuss the most promising research avenues on this topic and the 31 

public health strategies that could be envisioned in this context. 32 

 33 

Impact of mosquitoes on carcinogenesis 34 

We first focus on how mosquitoes can promote the risk of developing cancer in humans. In 35 

this part, we show that this risk could result from the (i) transmission of oncogenic pathogens, 36 

(ii) inflammatory reactions following mosquito blood meals, (iii) non-inflammatory effects of 37 

indirectly oncogenic mosquito-borne pathogens, and (iv) direct transmission of cancer cells. 38 

 39 

Oncogenic pathogen transmission. 40 

Over the last decades, an increasing number of infections have been linked to the 41 

development of human and animal cancers (Ewald and Swain Ewald, 2015; McAloose and 42 

Newton, 2009; Parkin, 2006; Zur Hausen, 2009). The frequency of cancers with an infectious 43 

causation has certainly been underestimated because cancer symptoms generally occur after 44 

years of development, therefore making the identification of a causal link extremely 45 

challenging. Nevertheless, current estimates are that 20% of cancer cases have an infectious 46 

causality (Parkin, 2006; Zur Hausen, 2009), and it has been suggested that underlying 47 

infectious agents can only actually be strictly excluded in 5% of cancer cases (Ewald, 2009). 48 

Epidemiological studies suggest that the current increase in emerging pathogen transmission 49 



(Jones et al., 2008) could have a substantial effect on the future burden of cancer worldwide 50 

(currently around two million cancer cases annually are known to be caused by an infectious 51 

agent) (De Martel et al., 2012). 52 

An infectious agent is considered as an oncogenic pathogen when the infection is a 53 

prerequisite for the occurrence and/or the development of cancer (Zur Hausen, 2009). 54 

Oncogenic pathogens may make a direct contribution to cancer development, most commonly 55 

through integration of their DNA into the host genome (e.g. Epstein-Barr virus (Moormann et 56 

al., 2011)). According to Ward et al. (2016), many of the pathogens that are likely to promote 57 

cancer development (Ewald and Swain Ewald, 2012; Plummer et al., 2016) could possibly be 58 

transmitted through mosquitoes because they can be found in blood (Ward et al., 2016). This 59 

category of pathogens includes Plasmodium species, Epstein–Barr virus, Kaposi sarcoma 60 

herpesvirus, Hepatitis B virus and Hepatitis C virus (Ward et al., 2016). Moreover, it has also 61 

been suggested that mosquitoes may be able to transmit unknown viruses that could be linked 62 

with cancer (Benelli et al., 2016; Lehrer, 2010a). 63 

The International Agency for Research on Cancer has recently mentioned malaria, which is 64 

caused by the mosquito-borne protozoan Plasmodium and produces 228 millions new 65 

infections every year, as a probable oncogenic pathogen (WHO, 2019). This parasite can have 66 

a direct action on carcinogenesis because analogies at the cellular level have been reported for 67 

malaria and gastrointestinal tumours (Suresh et al., 2005). The association between malaria 68 

and the risk of developing cancer could be explained by the ability of Plasmodium parasites to 69 

induce the immune response towards the destruction of plasmodium-infected cells (Degarege 70 

et al., 2009), which could decrease the immune system’s ability to target cancer cells. This 71 

action could also be indirect, especially through reactivation of oncogenic viruses. For 72 

instance, endemic Burkitt lymphoma occurs at higher incidences in areas where malaria is 73 

endemic because Plasmodium falciparum fuels transmission of Epstein Barr virus that is 74 



associated with more than 95% of cancer cases (Burkitt, 1961). Burkitt lymphoma is an 75 

aggressive B‐cell malignancy (Brady et al. 2007). The B-cells are the primary targets of 76 

Epstein Barr virus (a known oncogenic pathogen) infection (Shannon-Lowe et al., 2017). By 77 

stimulating the proliferation of B-cells, Plasmodium falciparum could enhance oncogenic 78 

effects of the Epstein Barr virus on these target cells (Ewald and Swain Ewald 2014). 79 

Knowing that mosquito-borne pathogens could stimulate antibody production (e.g., 80 

stimulating B-cell replication), there is good reason to think that other pathogens might 81 

similarly contribute to amplified the oncogenic effect of Epstein Barr virus. 82 

This connection is supported by the fact that several studies have found a significant 83 

relationship between malaria cases and mortality across all cancers in all 50 states of the USA 84 

(Lehrer, 2010a, 2010b). More specifically, relationships between malaria outbreaks in the 85 

USA and reports of brain tumour incidence have also been observed (Lehrer, 2010a, 2010b). 86 

While these results strongly suggest an association between malaria and cancer, they do not 87 

provide a direct proof of causality between these two pathologies. 88 

It is worth pointing out that other studies found that the stimulation of the host immune 89 

system could also limit cancers development and progression. For example, malaria infection 90 

can reduce the growth of lung tumours via the induction of innate and adaptive anti-tumour 91 

responses in a mouse model (Chen et al., 2011; Faure, 2016). Therefore, the interaction 92 

between Plasmodium parasites and cancer might be complex and needs much more 93 

investigation. 94 

 95 

Immune reaction following the mosquito blood meal. 96 

Mosquito blood meals are characterised by an edema and an inflammatory influx of 97 

neutrophils that yield localised innate immune reactions (Pingen et al., 2016). This 98 

inflammation induces different immune responses, which are different for each mosquito 99 



species (Donovan et al., 2007; Fontaine et al., 2011; Schneider et al., 2011, 2004), and 100 

accompanied by tissue damage, which could increase the risk of developing cancer (Coussens 101 

and Werb, 2002; Hanahan and Weinberg, 2011; Johansson and Ward, 2017). Moreover, it is 102 

now becoming clear that the tumour’s microenvironment, which is largely organised by 103 

inflammatory cells, is driving the neoplastic process by fostering the proliferation, survival, 104 

and migration of cancer cells (Coussens and Werb, 2002). Therefore, in areas where humans 105 

are particularly exposed to mosquito bites, the risk of developing cancer should rise following 106 

exposure to multiple mosquito blood meals. To the best of our knowledge, this has never been 107 

investigated. 108 

 109 

Mosquito-borne transmission of indirectly oncogenic pathogens 110 

Each mosquito-borne pathogen can also indirectly contribute to carcinogenesis by inducing 111 

changes in the microenvironment via inflammation or the immunomodulation they produce 112 

(Dalton-Griffin and Kellam, 2009; Jacqueline et al., 2018; Zur Hausen, 2009). In this case, 113 

their diversity of action ranges from chronic inflammation (Helicobacter pylori, which is 114 

associated with 65% of stomach cancers (Sepulveda, 2013)) to immunosuppression (HIV 115 

(Gopal et al., 2014)). Moreover, pathogen persistence within the host induces successive 116 

genetic, epigenetic, and/or immune changes that facilitate cancerous development (Ewald and 117 

Swain Ewald, 2012; Ewald and Swain Ewald, 2013). 118 

 119 

Direct transmission of cancer cells. 120 

While not observed in natural conditions, a study has shown that a hamster reticulum cell 121 

sarcoma, named TM, can be transmitted by the mosquito species Aedes aegypti through a 122 

direct transfer of cancer cells (Banfield et al., 1966, 1965). When passed by subcutaneous 123 

transplantation within the hamsters, cancer cells appear in their blood after five days and 124 



increase constantly until reaching a high density just before host death (greater than 100,000 125 

per mm3). TM cancer cells remained viable for up to eight hours after ingestion by the adult 126 

mosquito, and only 1 to 2% of the mosquitoes tested had viable cancer cells after several 127 

days, which could be due to the digestion processes in the mosquito gut. Mosquitoes carrying 128 

cancer cells were able to implant these cells into 5 to 10% of other hamsters (Banfield et al., 129 

1966, 1965). 130 

 131 

Consequences of cancers in humans on mosquitoes 132 

A variety of changes in mosquito behaviour have been reported when they are exposed to 133 

people infected with pathogens (Busula et al., 2017; Emami et al., 2017; Lacroix et al., 2005; 134 

Robinson et al., 2018). Infection induces a change in host odour, CO2 blood concentration, 135 

and many other physiological factors (Cummins et al., 2014; Shirasu and Touhara, 2011), 136 

which could impact the attractiveness of mosquitoes for infected hosts. Since cancer can 137 

influence many aspects of host physiology, it could similarly influence attraction of 138 

mosquitoes. 139 

Malignant cancers are often associated with a higher iron level in blood (Kwok, 2002). 140 

This surplus of iron is needed during early steps of tumour development, i.e., enhanced 141 

survival (Bauckman et al., 2015) and proliferation of transformed cells (Steegmann-142 

Olmedillas, 2011), as well as during late stages to promote the metastatic cascade (Jung et al., 143 

2019). Moreover, iron is required for optimal egg development and viable offspring in 144 

mosquitoes (Zhou et al., 2007), suggesting that blood meal with higher iron concentration 145 

may impact mosquito behaviour and reproduction (hence vector population dynamics and 146 

infectious disease transmission intensity). 147 

Some cancers can change human odour (Shirasu and Touhara, 2011). For example, 148 

patients with gynaecological tumours also complain of heavy vaginal discharge with an 149 



offensive odour resulting from the production of acetic, isovaleric, and/or butyric acids (Kuge 150 

et al., 1996). Matsumura et al. have shown that the urine from mice with artificially induced 151 

cancerous lung tumours could be clearly discriminated from non-affected (control) mice by 152 

the detection of volatile biomarkersin their urine (Matsumura et al., 2010). Dogs are also able 153 

to detect these odour modifications and so can be used as potential detectors of different 154 

cancers, such as melanoma, bladder cancer, ovarian cancer, and colorectal cancer (Horvath et 155 

al., 2008; McCulloch et al., 2006; Pickel et al., 2004; Sonoda et al., 2011; Willis et al., 2004). 156 

Other study have investigated the potential of using the Drosophila's olfactory system to 157 

recognise cancer cells by their scent (Strauch et al., 2014). 158 

Cancer can also change the CO2 concentration in the blood (major driver of mosquito host 159 

seeking behaviour). Lung cancer is often associated with dyspnea (shortness of breath) or 160 

previous respiratory disease including chronic bronchitis, emphysema, or pneumonia, all of 161 

which can alter the CO2 concentration in the blood (Brenner et al., 2012). Dyspnea was also 162 

observed for other cancers (e.g., breast cancer, lymphoma) but could be linked to risk factors 163 

such as a history of smoking, asthma, or chronic obstructive pulmonary disease or a history of 164 

exposure to asbestos (Dudgeon et al., 2001). 165 

Since cancer can modify many physiological factors in humans, we would expect that their 166 

attractiveness to mosquitoes could also be altered. This suggests that individuals with cancer 167 

could be more or less actively targeted for the transmission of mosquito-borne pathogens. 168 

 169 

Consequences of cancers in mosquitoes on humans 170 

No study has yet detected natural cancer in mosquitoes, so the impact of cancer on 171 

mosquito life history traits is highly speculative at the moment. Nevertheless, several types of 172 

tumours occurring naturally (Robert, 2010; Salomon and Rob Jackson, 2008; Scharrer and 173 

Lochhead, 1950) or triggered by genetic engineering (Mirzoyan et al., 2019), including 174 



neuroblastoma, ovarian, and imaginal disk tumours, have been reported in different insect 175 

species, especially in D. melanogaster (Mirzoyan et al., 2019; Salomon and Rob Jackson, 176 

2008). It is therefore possible that natural cancers exist in mosquitoes and have significant 177 

effect on traits such as longevity, fecundity, or feeding-behaviour. 178 

Changes in an organism’s life-history traits may be an adaptive response to a parasitic 179 

infection (Adamo, 1999; Minchella and Loverde, 1981; Polak and Starmer, 1998). One 180 

solution developed by many animal species against biotic aggressors (such as parasites) is the 181 

adjustment of life-history traits to compensate for their negative effects on fitness (Forbes, 182 

1993; Hochberg et al., 1992; Michalakis and Hochberg, 1994; Thomas et al., 2000). An 183 

example is the work by Vezilier and colleagues, which shows that mosquitoes infected by 184 

Plasmodium species lay their eggs two days earlier than non-infected ones (Vézilier et al., 185 

2015) to compensate for the rapid decrease in egg quality observed in infected mosquitoes. 186 

This type of adaptive response can have consequences on mosquito communities and 187 

indirectly on the evolution of pathogen communities. 188 

Because malignancies usually also reduce survival, and hence potentially host fitness, a 189 

similar process could also exist in this context. Indeed, it has been shown that Drosophila 190 

melanogaster harbouring an early gut cancer adjust their life-history traits by having their 191 

egg-laying period peak two days earlier than normal, which would maximise their immediate 192 

reproductive effort and therefore compensate for the reduced survival (Arnal et al., 2017). 193 

 194 

Conclusion and perspectives 195 

Despite the significant impact of cancers and mosquito-borne diseases on human health, 196 

there is little documented evidence of a relationship between these two concerns for humans. 197 

Briefly, we know that the direct transmission of cancer cells is mechanistically possible based 198 

on a single experimental model and that mosquitoes can transmit oncogenic pathogens or 199 



induce immune reactions, which could favour carcinogenesis. In addition, we have seen 200 

evidence that cancer in humans or in insect can alter the insect’s life history traits, hence 201 

pathogen transmission dynamics. Nevertheless, the impact of these connections in natura 202 

needs to be quantified, especially in populations affected by these two threats. 203 

First, we need to determine if there are more oncogenic pathogens transmitted by 204 

mosquitoes than are currently observed, especially by refining our knowledge on the 205 

oncogenic capacities of malaria. Identifying such connections between pathogens and cancer 206 

could have a strong impact on prevention strategies, as exemplified by the papillomavirus 207 

vaccine that avoids cases of cervical cancer by protecting against its infectious causation. 208 

Moreover, this interaction could be more complicated because mosquito bites can create 209 

immunosuppression, which can favor proliferation of oncogenic pathogens but also directly 210 

cancer development (so called "promoter arthropods" hypothesis (Coluzzi et al., 2003, 2002)). 211 

In the case of mosquito-borne pathogens, identifying such connections could create an 212 

unprecedented synergy between vector control programs and the prevention of numerous 213 

cancer cases, with paying much attention on using insecticides to avoid increasing cancer risk. 214 

It is worth pointing out that the vast majority of blood feeding events will be by 215 

mosquitoes engaging in their first (i.e. mosquitoes are non-infectious) blood meal or by 216 

mosquitoes that do not carry infectious agents from previous blood meals. Thus, while all 217 

feeding events will cause inflammatory reactions and possibly impact cancer dynamics, only a 218 

small proportion of feeding events will involve the vectoring of infectious agents. 219 

Regarding the huge number of people living in areas affected by mosquitoes, investigating 220 

the link between the rate of mosquito bites and the probability of developing cancer through 221 

local inflammation could also be very informative. Experimental studies are first required to 222 

evaluate the immunomodulation effect after exposure to mosquito saliva (therefore mosquito 223 

blood meal) on cancer development and to characterise interactions between the inflammatory 224 



process involved following mosquito blood meals and the one involved in cancer initiation. 225 

Second, large-scale statistical analyses are now possible due to improved both cancer 226 

surveillance in tropical countries and mosquito surveillance in the North hemisphere 227 

(Sankaranarayanan, 2014). 228 

Importantly, experiments on mosquito transmission of cancer cells must be repeated with 229 

different host species, different mosquito species, and different types of cancer cells. While 230 

very promising, these experiments cannot conclusively prove the existence of such 231 

transmission in the field, and most importantly to humans. Once mosquito transmission has 232 

been quantified experimentally in a more robust way, the question of the importance of this 233 

transmission route in natura can be addressed. 234 

Experiments on odour modification in people affected by cancer and its correlation with 235 

mosquito attractiveness can quantify the impact of human cancer development on mosquito 236 

behaviour. The technical tools are available today (Vantaux et al., 2018) to perform such 237 

experiments, and the integration of such information to epidemiological models could provide 238 

a first estimation of the impact of human cancers on the epidemiology of mosquito-borne 239 

pathogens (Roux et al., 2015). 240 

Finally, the potential consequences of natural cancers in mosquitoes on human health 241 

could be also important. We first need to identify natural cases of cancer in mosquitoes, even 242 

if the prevalence is low. Once this has been quantified, we can expose mosquitoes to 243 

radiation, pesticides or other xenobiotic agents. We can also use genetic engineering to create 244 

cancerous mosquitoes in order to design experiments to study the evolution of mosquito life 245 

history traits when a cancer affects them. 246 

To conclude, it is essential to develop integrative strategies considering both cancers and 247 

mosquito-borne pathogens. Such a research avenue will require inter-disciplinary 248 

collaborations from evolutionary biologists, entomologists, experts in chemical ecology, 249 



oncologists, immunologist, epidemiologists, and public health experts. Considering the 250 

potentially huge impact of such connections, quantifying them to forecast the impact of 251 

different control strategies for human health should lead to promising benefits. 252 

 253 

Figure list 254 

Figure 1. Schematic representation of the possible connections between mosquitoes, 255 

mosquito-borne diseases, and cancer. (A) The impact of mosquitoes on carcinogenesis in 256 

humans, including the mosquito transmission of oncogenic pathogens (symbolized here by a 257 

human herpesvirus 8), the mosquito transmission of cancer cells from a cancerous person to 258 

another susceptible person, and the possible immune reactions following mosquito blood 259 

meals. All these processes could increase the risk of developing cancer in the human 260 

population. (B) The possible negative or positive impact of cancer on human attractiveness to 261 

mosquitoes, and therefore on the transmission intensity of mosquito-borne diseases, and (C) 262 

the possible negative or positive impacts that natural cancers could have on mosquito 263 

phenotype (lifespan, fecundity, feeding behaviour) and therefore on their vector capacity. 264 

265 
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