M. Kraemer, R. C. Reiner, O. J. Brady, J. P. Messina, M. Gilbert et al., Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus, Nat Microbiol, vol.4, issue.5, p.30833735, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02067318

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, issue.7446, pp.504-511, 2013.

R. Hamel, F. Liégeois, S. Wichit, J. Pompon, F. Diop et al., Zika virus: epidemiology, clinical features and host-virus interactions, Microbes Infect, vol.18, issue.7-8, pp.441-450, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452879

T. C. Pierson and B. S. Graham, Zika virus: immunity and vaccine development, Cell, vol.167, issue.3, pp.625-656, 2016.

L. A. Silva and T. S. Dermody, Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies, J Clin Invest, vol.127, issue.3, pp.737-786, 2017.

S. V. Mayer, R. B. Tesh, and N. Vasilakis, The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and Zika fevers, Acta Trop, vol.166, pp.155-63, 2017.

A. Wilder-smith and D. J. Gubler, Dengue vaccines at a crossroad, Science, vol.350, issue.6261, pp.626-633, 2015.

N. J. Barrows, R. K. Campos, K. Liao, K. R. Prasanth, R. Soto-acosta et al., Biochemistry and molecular biology of flaviviruses, Chem Rev, vol.118, issue.8, pp.4448-82, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02863530

A. Wilder-smith, D. J. Gubler, S. C. Weaver, T. P. Monath, D. L. Heymann et al., Epidemic arboviral diseases: priorities for research and public health, Lancet Infect Dis, vol.17, issue.3, pp.30518-30525, 2017.

N. Liu, Insecticide resistance in mosquitoes: impact, mechanisms, and research directions, Annu Rev Entomol, vol.60, issue.1, pp.537-59, 2015.

K. L. Anders, C. Indriani, R. A. Ahmad, W. Tantowijoyo, E. Arguni et al., The AWED trial (applying Wolbachia to eliminate dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial, Trials [Internet], vol.19, issue.1, 2018.

S. A. Ritchie, A. F. Van-den-hurk, M. J. Smout, K. M. Staunton, and A. A. Hoffmann, Mission accomplished? we need a guide to the 'post release' world of Wolbachia for Aedes -borne disease control, Trends Parasitol, vol.34, issue.3, pp.217-243, 2018.

N. Jupatanakul, S. Sim, Y. I. Angleró--rodríguez, J. Souza-neto, S. Das et al., Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus, PLoS Negl Trop Dis, vol.11, issue.1, 2017.

Y. I. Angleró-rodríguez, H. J. Macleod, S. Kang, J. S. Carlson, N. Jupatanakul et al., Aedes aegypti molecular responses to Zika virus: modulation of infection by the Toll and JAK/STAT immune pathways and virus host factors. Front Microbiol, vol.8, 2017.

S. Sim, N. Jupatanakul, J. L. Ramirez, S. Kang, C. M. Romero-vivas et al., Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions, PLoS Negl Trop Dis, vol.7, issue.7, p.2295, 2013.

Z. Xi, J. L. Ramirez, and G. Dimopoulos, The Aedes aegypti Toll pathway controls dengue virus infection, PLoS Pathog, vol.4, issue.7, 2008.

J. A. Souza-neto, S. Sim, and G. Dimopoulos, An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense, Proc Natl Acad Sci, vol.106, issue.42, pp.17841-17847, 2009.

J. L. Ramirez and G. Dimopoulos, The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes, Dev Comp Immunol, vol.34, issue.6, pp.625-634, 2010.

X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti, Proc Natl Acad Sci, vol.109, issue.1, pp.23-31, 2012.

N. Luplertlop, P. Surasombatpattana, S. Patramool, E. Dumas, L. Wasinpiyamongkol et al., Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus, PLoS Pathog, vol.7, issue.1, p.1001252, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00558260

S. Blandin, Thioester-containing proteins and insect immunity, Mol Immunol, vol.40, issue.12, pp.903-911, 2004.

X. Xiao, Y. Liu, X. Zhang, J. Wang, Z. Li et al., Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides, PLoS Pathog, 2014.

I. Sanchez-vargas, E. A. Travanty, K. M. Keene, A. Franz, B. J. Beaty et al., RNA interference, arthropod-borne viruses, and mosquitoes, Virus Res, vol.102, issue.1, pp.65-74, 2004.

R. P. Olmo, A. Ferreira, T. C. Izidoro-toledo, E. Aguiar, I. De-faria et al., Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2, Nat Microbiol, vol.3, issue.12, p.30374169, 2018.

L. Kockel, J. G. Homsy, and D. Bohmann, Drosophila AP-1: lessons from an invertebrate, Oncogene, vol.20, pp.2347-64, 2001.

L. S. Garver, G. De-almeida-oliveira, and C. Barillas-mury, The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity, PLoS Pathog, vol.9, issue.9, 2013.

M. Bonizzoni, W. A. Dunn, C. L. Campbell, K. E. Olson, O. Marinotti et al., Complex Modulation of the Aedes aegypti transcriptome in response to dengue virus infection, PLoS One, vol.7, issue.11, p.50512, 2012.

S. Sim, J. L. Ramirez, and G. Dimopoulos, Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior, PLoS Pathog, vol.8, issue.3, p.1002631, 2012.

S. Mbaika, J. Lutomiah, E. Chepkorir, F. Mulwa, C. Khayeka-wandabwa et al., Vector competence of Aedes aegypti in transmitting chikungunya virus: effects and implications of extrinsic incubation temperature on dissemination and infection rates, Virol J, vol.13, 2016.

M. I. Salazar, J. H. Richardson, I. Sá-nchez-vargas, K. E. Olson, and B. J. Beaty, Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes, BMC Microbiol, vol.13, 2007.

J. Waldock, K. E. Olson, and G. K. Christophides, Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection, PLoS Negl Trop Dis, vol.6, issue.3, p.1565, 2012.

T. Flatt, A. Heyland, F. Rus, E. Porpiglia, C. Sherlock et al., Hormonal regulation of the humoral innate immune response in Drosophila melanogaster, J Exp Biol, vol.211, issue.16, pp.2712-2736, 2008.

E. Martín-blanco, A. Gampel, J. Ring, K. Virdee, N. Kirov et al., Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila, Genes Dev, vol.12, issue.4, pp.557-70, 1998.

D. G. Mcewen, Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNKinduced apoptosis, Development, vol.132, issue.17, pp.3935-3981, 2005.

H. Wu, M. C. Wang, and D. Bohmann, JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy, Mech Dev, vol.126, issue.8-9, pp.624-661, 2009.

Z. Fishelson, Complement and apoptosis, Mol Immunol, vol.38, issue.2-3, pp.55-59, 2001.

E. A. Levashina, L. F. Moita, S. Blandin, G. Vriend, M. Lagueux et al., Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae

Q. Liu and R. J. Clem, Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspases, Apoptosis, vol.16, issue.2, p.21107703, 2011.

J. Pompon and E. A. Levashina, A new role of the mosquito complement-like cascade in male fertility in Anopheles gambiae, PLoS Biol, vol.13, issue.9, p.1002255, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02135240

S. Dong, S. K. Behura, and A. Franz, The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape, BMC Genomics, vol.18, issue.1, 2017.

Y. Delotto and R. Delotto, Proteolytic processing of the Drosophila spä tzle protein by easter generates a dimeric NGF-like molecule with ventralising activity, Mech Dev, vol.72, issue.1-2, pp.24-24, 1998.

J. Pompon, M. Manuel, G. K. Ng, B. Wong, C. Shan et al., Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission, PLoS Pathog, vol.13, issue.7, p.1006535, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02013864

S. Sim, N. Jupatanakul, and G. Dimopoulos, Mosquito immunity against arboviruses, Viruses, vol.6, issue.11, pp.4479-504, 2014.

I. Akhouayri, C. Turc, J. Royet, and B. Charroux, Toll-8/Tollo negatively regulates antimicrobial response in the Drosophila respiratory epithelium, PLoS Pathog, vol.7, issue.10, p.1002319, 2011.

M. Gendrin, F. Turlure, F. H. Rodgers, A. Cohuet, I. Morlais et al., The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium, J Innate Immun, vol.9, issue.4, pp.333-375, 2017.
URL : https://hal.archives-ouvertes.fr/ird-02896672

B. A. Callus and B. Mathey-prevot, SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc, Oncogene, vol.21, issue.31, pp.4812-4833, 2002.

Y. Takatsu, M. Nakamura, M. Stapleton, M. C. Danos, K. Matsumoto et al., TAK1 Participates in c-jun N-terminal kinase signaling during Drosophila development, Mol Cell Biol, vol.20, issue.9, pp.3015-3041, 2000.

J. M. Park, Targeting of TAK1 by the NF-B protein relish regulates the JNK-mediated immune response in Drosophila, Genes Dev, vol.18, issue.5, pp.584-94, 2004.

T. Lu, J. M. Macdonald, L. J. Neukomm, A. E. Sheehan, R. Bradshaw et al., Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling, Nat Commun, vol.8, p.14355, 2017.

A. L. Myers, C. M. Harris, K. Choe, and C. A. Brennan, Inflammatory production of reactive oxygen species by Drosophila hemocytes activates cellular immune defenses, Biochem Biophys Res Commun, vol.505, issue.3, pp.726-758, 2018.

J. K. Sax and W. S. El-deiry, Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene, J Biol Chem, vol.278, issue.38, pp.36435-36479, 2003.

M. Essers, S. Weijzen, A. De-vries-smits, I. Saarloos, N. D. De-ruiter et al., FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK, EMBO J, vol.23, issue.24, pp.4802-4814, 2004.

A. Dostá-lová, S. Rommelaere, M. Poidevin, and B. Lemaitre, Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps, BMC Biol, vol.15, issue.1, p.79, 2017.

G. Cheng, L. Liu, P. Wang, Y. Zhang, Y. O. Zhao et al., An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection, PLoS One, vol.6, issue.7, p.22786, 2011.

Y. A. Girard, V. Popov, J. Wen, V. Han, and S. Higgs, Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (diptera: culicidae), J Med Entomol, vol.42, issue.3, p.16, 2005.

E. M. Kelly, D. C. Moon, and D. F. Bowers, Apoptosis in mosquito salivary glands: sindbis virus-associated and tissue homeostasis, J Gen Virol, vol.93, p.22894924, 2012.

M. F. Day, I. D. Marshall, and C. A. Mims, Cytopathic effect of Semliki Forest virus in the mosquito Aedes Aegypti, Am J Trop Med Hyg, vol.15, issue.5, pp.775-84, 1966.

K. O'neill, B. Olson, N. Huang, D. Unis, and R. J. Clem, Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector, Proc Natl Acad Sci, vol.112, issue.10, pp.1152-61, 2015.

R. J. Clem, Arboviruses and apoptosis: the role of cell death in determining vector competence, J Gen Virol, vol.97, issue.5, pp.1033-1039, 2016.

C. B. Ocampo, P. A. Caicedo, G. Jaramillo, U. Bedoya, R. Baron et al., Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus, PLoS One, vol.8, issue.4, 2013.

R. Vaidyanathan and T. W. Scott, Apoptosis in mosquito midgut epithelia associated with West Nile virus infection, Apoptosis, vol.11, issue.9, p.16820968, 2006.

S. Kumar, A. Molina-cruz, L. Gupta, J. Rodrigues, and C. Barillas-mury, A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae, Science, vol.327, issue.5973, pp.1644-1652, 2010.

G. D. Oliveira, J. Lieberman, and C. Barillas-mury, Epithelial Nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity, Science, vol.335, issue.6070, pp.856-865, 2012.

M. Gildenhard, E. K. Rono, A. Diarra, A. Boissière, P. Bascunan et al., Mosquito microevolution drives Plasmodium falciparum dynamics, Nat Microbiol, 2019.
URL : https://hal.archives-ouvertes.fr/ird-02896669

S. Guntermann and E. Foley, The protein dredd is an essential component of the c-jun n-terminal kinase pathway in the Drosophila immune response, J Biol Chem, vol.286, issue.35, pp.30284-94, 2011.

A. Wilke, J. C. Beier, and G. Benelli, Transgenic mosquitoes-fact or fiction?, Trends Parasitol, vol.34, issue.6, pp.456-65, 2018.

J. G. Christenbury, P. Aw, S. H. Ong, M. J. Schreiber, A. Chow et al., A method for full genome sequencing of all four serotypes of the dengue virus, J Virol Methods, vol.169, issue.1, pp.202-208, 2010.

K. A. Tsetsarkin, H. Kenney, R. Chen, G. Liu, H. Manukyan et al., A full-length infectious cDNA clone of Zika virus from the 2015 epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development, mBio, vol.7, issue.4, pp.1114-1130, 2016.

Z. Her, B. Malleret, M. Chan, E. Ong, S. Wong et al., Active infection of human blood monocytes by chikungunya virus triggers an innate immune response, J Immunol, vol.184, issue.10, pp.5903-5916, 2010.

G. Manokaran, E. Finol, C. Wang, J. Gunaratne, J. Bahl et al., Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness, Science, vol.350, issue.6257, pp.217-238, 2015.

G. I. Giraldo-calderó-n, S. J. Emrich, R. M. Maccallum, G. Maslen, E. Dialynas et al., VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases, Nucleic Acids Res, vol.43, issue.D1, pp.707-720, 2015.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, issue.4, 2013.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, issue.2, pp.166-175, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, issue.12, 2014.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-179, 2010.

C. Trapnell, D. G. Hendrickson, M. Sauvageau, L. Goff, J. L. Rinn et al., Differential analysis of gene regulation at transcript resolution with RNA-seq, Nat Biotechnol, vol.31, issue.1, pp.46-53, 2013.

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim et al., Differential gene and transcript expression analysis of RNA-seq experiments with tophat and cufflinks, Nat Protoc, vol.7, issue.3, pp.562-78, 2012.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., BLAST+: architecture and applications, BMC Bioinformatics, vol.10, issue.1, p.421, 2009.

L. S. Gramates, S. J. Marygold, U. Santos-g-dos, G. Antonazzo, and B. B. Matthews, FlyBase at 25: looking to the future, Nucleic Acids Res, vol.45, issue.D1, pp.663-71, 2017.

A. Conesa, S. Gotz, J. M. Garcia-gomez, J. Terol, M. Talon et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, issue.18, pp.3674-3680, 2005.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat Methods, vol.8, issue.10, pp.785-791, 2011.