Predicting environmental concentrations of carbamazepine and oxcarbazepine and their main metabolites in a coastal system

To cite this version:
H. Fenet, L. Arpin-Pont, A. van Houtte, D. Munaron, A. Fiandrino, et al.. Predicting environmental concentrations of carbamazepine and oxcarbazepine and their main metabolites in a coastal system. SETAC Europe 22nd Annual Meeting, May 2012, Berlin, Germany. hal-02957544

HAL Id: hal-02957544
https://hal.umontpellier.fr/hal-02957544
Submitted on 5 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Predicted environmental concentrations of carbamazepine, oxcarbazepine and their main metabolites in a coastal system

- a: UMR 5569 Hydrosciences Montpellier, Université Montpellier 1, Montpellier, France
- b: IFREMER, Laboratoire Environnement et Ressources du Languedoc-Roussillon (LER-LR), Sète, France
- c: Laboratoire de Pharmacologie Médicale et Toxicologie, Hôpital Lapeyronie, Montpellier, France
- d: EPOC - UMR 5805 CNRS, Talence, France

Introduction

Pharmaceuticals are widely released in aquatic environment through treated wastewaters. They reach coastal zone indirectly via streams or directly though marine outfalls however data concerning this contamination in coastal waters are scarce.

Environmental Risk Assessment (ERA) of pharmaceuticals have been conducted mostly in surface waters and not has been performed in coastal zone. The first step of ERA is to evaluate the exposure through predictive environmental concentration (PEC) values. The aim of this study was to predict the occurrence of some pharmaceuticals in a coastal area subjected to treated wastewater (TWW) reject through a marine outfall (Fig 2). Among pharmaceuticals, Carbamazepine, Oxcarbazepine and their main metabolites (Fig 1) were chosen. CBZ has been proposed as an indicator of wastewater contamination and has been already detected in Mediterranean (Munaron et al., 2011).

Prediction was performed based on local pharmaceuticals consumption recording and a review of pharmacokinetics data. PECs values were estimated in TWW and at the marine outfall and compared with MECs obtained by direct quantification and with POCIS implementation.

Materials and methods

PEC

Medical care consumption data (g of CBZ and OxCZ sales per month)

Pharmacokinetics data (% of excreted forms : parents compounds and metabolites)

% elimination in STEP, flux effluent

PEC effluent : Sales (g) * % excreted/ % elimination*flux

PEC coastal zone : PEC/100 (TGD, 2003)

MEC

MEC effluents :

24h homogenate effluents sampling (n=8)

Filtration, SPE OASIS HLB, analysis LC-MS (Ledlercq et al., 2009)

MEC coastal zone : POCIS implementation for one month near the submarine outfall (n=6)

Analysis as described by Munaron et al. (2011)

Results - Discussion

Table 2: PEC in coastal zone (ng/L)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>CBZ</th>
<th>OxCB</th>
<th>10-OHCbz</th>
<th>Cbgluc</th>
<th>OxCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBZ</td>
<td>0.7</td>
<td>0.92</td>
<td>3.3</td>
<td>10.17</td>
<td></td>
</tr>
<tr>
<td>OxCB</td>
<td>0.6</td>
<td>0.8</td>
<td>3.4</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Cbgluc</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>OxCZ</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: concentrations in POCIS in ng/g of sorbent

<table>
<thead>
<tr>
<th>POCIS Sorbent</th>
<th>CBZ</th>
<th>OxCB</th>
<th>10-OHCbz</th>
<th>Cbgluc</th>
<th>OxCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6-1.8</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

Fig. 2: Study area and sampling points (56-59)

Fig. 3: Deviation from the mean of CBZ and OxCBZ from January to June 2011

Fig. 4: Metabolits excretion percentages of absorbed dose of CBZ(A) and OxCBZ (B)

Fig. 5: PEC and MECs in treated wastewater effluents

Conclusion

Further studies have to be performed for PEC estimation in coastal area including a hydrodynamic numeric model, which take into account diffusion, advection in seawater.

References

Acknowledgments

We wish to thank Agence Régionale de Santé Languedoc Roussillon (ARS LR) for its partnership and its assistance for the acquisition on medical care data without which this work would have been impossible.