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ABSTRACT 

 

Mycobacterium tuberculosis, a causative agent of tuberculosis, remains one of the most wide-spread and 

deadliest pathogens in the world. A distinguishing feature of mycobacteria that sets them apart from other 

bacteria is the unique architecture of the cell wall characterized by the presence of various species-specific 

lipids, most notably mycolic acids (MAs). Therefore, targeted inhibition of enzymes involved in MA 

biosynthesis, transport and assembly has been extensively explored in drug discovery. Additionally, more 

recent evidence suggests that many enzymes in the MA biosynthesis pathway are regulated by kinase-

mediated phosphorylation, thus opening additional drug development opportunities. However, how 

phosphorylation regulates mycolic acid production remains unclear. Here, we employed genetic strategies 

combined with lipidomics and phosphoproteomics approaches to investigate the role of phosphorylation in 

Mycobacterium. Our results revealed that PknB regulates export of MA and remodeling of the mycobacterial 

cell envelope. In particular, we identified the essential Mycobacterial membrane protein Large 3 (MmpL3) 

as a new substrate of PknB, thus directly linking kinase activity with MA trafficking. Taken together, our 

study documents the essential role of phosphorylation/dephosphorylation in regulating MA biosynthesis 

pathway and provides a blueprint for future anti-mycobacterial drug discovery. 

 

Keywords: Mycobacteria, cell wall, mycolic acid, drug target, regulation, protein kinases, proteomics, 

phosphorylation, Fatty acid/Biosynthesis, lipids 
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INTRODUCTION 

Mycobacterium tuberculosis (Mtu), a causative agent of tuberculosis (TB), remains one of the most 

wide-spread and deadliest pathogens in the world. Currently available treatment regimens for patients with 

active TB are significantly more complex than other bacterial infections and require the use of multiple 

antibiotics taken over the course of 6 to 9 months. The length, complexity and side effects of this 

chemotherapy may have contributed to the emergence of multi drug-resistant (MDR) and extensively drug-

resistant (XDR) Mtu strains due to low compliance. This highlights the need for continued development of 

additional TB treatment options as well as further research into Mtu biological features that set it apart from 

other bacterial pathogens.  One such distinguishing feature of mycobacteria is one-of-a-kind architecture of 

their cell wall, which provides a protective layer and renders the pathogen recalcitrant to chemical damage, 

dehydration and antibiotic treatment. This cell wall contains various species-specific lipids, most notably 

mycolic acids (MAs) that are unique to mycobacteria and play key roles in mycobacterial physiology and 

fitness (1) as well as in Mtu virulence and persistence within infected cells (2). MAs are very long-chain -

branched, -hydroxylated fatty acids ranging from C70-C90 (3). MAs represent the main constituents of the 

cell wall outer membrane (OM or mycomembrane) wherein they are anchored. MAs are transported across 

the plasma (inner) membrane as trehalose monomycolates (TMMs) and then are either covalently linked to 

the arabinogalactan-peptidoglycan to form the mycoloyl arabinogalactan peptidoglycan (mAGP) complex 

or incorporated into trehalose dimycolates (TDM), found in the outermost leaflet of the mycomembrane. 

The outer leaflet also contains other noncovalently associated lipids, such as phthiocerol dimycocerosates 

and sulfolipids (4). 

MAs are synthesized in the cytoplasm via a highly conserved and well-characterized mixed fatty 

acid synthase (FAS)/polyketide synthase (PKS) biosynthetic pathway that has been extensively studied 

(5,6). Additionally, a molecular picture of cell-wall biogenesis process, which in Mtu involves 13 

mycobacterial Membrane protein Large (MmpL) transporters that shuttle lipids across the membrane (7), 

has also emerged (8,9). However, intracellular regulation of cell wall biosynthesis still remains poorly 
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understood. Recently, phosphorylation mediated by Ser/Thr protein kinases (STPKs) has begun to emerge 

as a major regulation mechanism for many biological processes controlling mycobacterial infection and 

persistence (10-12). The Mtu genome encodes 11 STPKs named PknA, PknB and PknD-to-L. These 

enzymes are responsible for responding to environmental signals and coordinating cellular responses to 

ensure growth and survival. Recently, STPK-mediated phosphorylation has been reported to inhibit many 

enzymes involved in the MA biosynthesis, including proteins involved in MA chain elongation within the 

FAS-II system (13-16), mycolic chain modification (17), as well as the enzyme that specifically activates 

the meromycolic acid during mycolic condensation (18). 

PknB is proposed to be one of the master regulators of Ser/Thr phosphorylation-mediated signaling 

in Mtu (19,20). It is essential and regulates the activity of a large repertoire of substrates, notably those 

involved in cell wall synthesis. Modulation of its expression levels has been shown to impact cellular 

morphology and survival (21,22), which suggests that the expression and activity of this kinase must be 

critically fine-tuned inside the bacterium. Its gene is localized in an operon containing two other essential 

genes involved in Ser/Thr phosphorylation: pknA and pstP. Interestingly, pstP is the only gene of Mtu known 

to encode a Ser/Thr phosphatase that likely forms a functional pair with PknB to control mycobacterial cell 

growth via modulating phosphorylation/dephosphorylation levels on substrate proteins (20,23). The dual 

regulation has only been reported for a few Mtu proteins, such as acyl-AMP ligase activity of FadD32 

involved in the MA pathway (18). Despite these efforts, the full scope of STPK substrates remains unknown 

and the mechanistic and system-level link between intracellular phosphorylation/dephosphorylation events 

and cell wall biogenesis is not well understood. To begin to address this issue, we performed lipidomic and 

quantitative phosphoproteomic analysis of M. smegmatis (Msm) strains engineered to exhibit altered Ser/Thr 

phosphorylation through genetic manipulation. We depleted PstP to globally increase Ser/Thr 

phosphorylation levels, and combined with overexpression of pknB and its kinase-inactive mutant to identify 

PknB-dependent phosphorylations and their impact on cell wall composition and integrity through distinct 
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downstream changes in lipid profiles. We identify MmpL3 as the substrate of PknB, and this 

phosphorylation event as a major regulatory node in MA trafficking and cell wall biosynthesis. 

 

MATERIALS AND METHODS 

Plasmid construction. To produce PknB in M. smegmatis mc²155, the pknB gene was cloned into pLD1, an 

IPTG-inducible mycobacterial expression vector previously described (18). The pknB gene was PCR-

amplified using a donor vector and primers (PknB_F and PknB_R, listed in Table S3) containing ClaI and 

NdeI restriction sites, respectively. To create the vector pLD1-pknB_K40M, the DNA portion of pknB 

containing the K40M mutation was transferred into pLD1-pknB using Gibson Assembly method. Briefly, 

fragment 1 was amplified from pLD1-pknB using the primers pair Frag1_F and Frag1_R, and fragment 2 

was amplified from a donor vector using the primers pair Frag2_F and Frag2_R (Table S3). The 2 fragments 

were incubated together for 1h at 50°C using Gibson Assembly Master Mix (New England Biolab). E. coli 

DH5α competent cells were used to select successful assembly products. All the inserted sequences and 

mutation were confirmed by DNA sequencing (Eurofins Genomics, France). 

 

Bacterial strains and culture conditions. The plasmids pLD1-null, pLD1-pknB and pLD1-pknB_K40M 

were electroporated into M. smegmatis mc2155. Transformants were selected on 7H10/0.05% Glycerol agar 

plates with Hygromycin B (100 µg/mL). Starter cultures were grown for 30h and then diluted in 7H9 

medium (Difco) supplemented with Glycerol (2 g/L), Tyloxapol (0.025%) and Hygromycin B (100 µg/mL). 

The resulting cultures were incubated under shaking (180 RPM) at 37°C until reaching OD600 of 0.6. PknB 

overexpression was induced with IPTG (0.5 mM final) (Euromedex, France). Cells were harvested 4h after 

IPTG induction, washed with 50 mM PBS, pelleted by centrifugation, flash-frozen and kept at -80°C. Starter 

cultures of M. smegmatis mc²-cd-pstP were grown for 30h in 7H9 medium (Difco) supplemented with 

Glycerol (2 g/L), Tyloxapol (0.025%) and Kanamycin (50 µg/mL). Cultures were initiated at OD600 of 0,1 

and grown in the absence or presence of anhydrotetracyclin (ATc) for 12h. The resulting cultures were 
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incubated under shaking (200 RPM) at 37°C until reaching an OD600 of 1. Cells were harvested, pelleted 

and kept at -80°C. 

 

Immunoblotting. Cell pellets were thawed and resuspended in lysis buffer (50 mM HEPES pH7.5, 10% 

glycerol (v/v), 500 mM NaCl, and 2 mM 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF, Euromedex). 

The suspension was lysed with a cell disruptor (One Shot Model - Constant System Ltd., France) at 2.6 

kbar. Total cell lysates were fractionated by SDS-PAGE, and then transferred to 0.4 µm Nitrocellulose 

membrane using the Transblot Turbo semi-dry transfer method (Biorad). Following the transfer, His-tagged 

PknB and PknB_K40M were detected using mouse monoclonal anti-polyHis antibodies (Sigma Aldrich) 

diluted 1/5000 or rat monoclonal anti-PknB antibodies (1652A rat antibody raised against the catalytic 

domain, gift from the STATENS SERUM INSTITUT); HRP-conjugated goat antibodies against mouse 

(Biorad, diluted 1/10000) or rat (Biorad, diluted 1/20000) were used as secondary antibodies. For mc²-cd-

pstP cell pellets were thawed and resuspended in lysis buffer (50 mM Tris pH8, 8% glycerol (v/v), 500 mM 

NaCl, and 2 mM 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF, Euromedex). The suspension was 

lysed with a cell disruptor (One Shot Model - Constant System Ltd., France) at 2.6 kbar. Total cell lysates 

were fractionated by SDS-PAGE, and then transferred to 0.4 µm Nitrocellulose membrane using the 

Transblot Turbo semi-dry transfer method (Biorad). PstP-FLAG were detected using mouse monoclonal 

anti-FLAG antibodies HRP-conjugated (Sigma) diluted 1/10000. Detections were performed with 

AmershamTm ECL Prime Western Blotting Reagents Kit (GE Healthcare). Immunoreactive bands were 

revealed and measured with Chemidoc Imaging System (Biorad). 

 

Lipid radiolabeling, extraction and analysis. To radiolabel all the lipids, 1,5 µL of [1-14C] acetic acid 

(92,67x103 Bq, Amersham) were added to 5.4 mL of each M. smegmatis culture 3h post-induction. The 

cultures were incubated again for 1h at 37°C under shaking (150 RPM). Radiolabeled bacteria cultures were 

divided in two aliquots, and then harvested by centrifugation for 10 min at 2900 x g. Cell pellets were stored 

at -20°C. 
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To analyze labeled whole cell fatty acids, wet cell pellets were saponified with KOH (40%)/2-

methoxyethanol (1/7; v/v) for 3 h at 110°C. FAs and MAs acids were extracted 3 times with diethyl ether 

and the resulting fractions acids were methylated using TMS-diazomethane (Sigma) and analyzed by thin 

layer chromatography (TLC) with CH2Cl2 as developing solvent.  

The total extractable lipids (TEL) were obtained from wet bacterial pellets by two successive extractions 

using distinct mixtures of CHCl3/CH3OH (1/2 and 2/1, v/v). The fractions were pooled, washed with water, 

and dried. TLC bands of each radiolabeled lipid were quantified by PhosphorImaging and the ImageQuant 

software (Variable Mode Imager Typhoon TRIO, Amersham Biosciences). As reference, non-labeled lipid 

profiles were also analyzed.  

For unlabeled lipid analysis, equivalent weights of total lipid fraction from each strain were spotted onto a 

HPTLC silica gel 60 plate (Merck) with a Camag ATS4 apparatus. The plates were developed in the 

indicated solvent system using a Camag ADC2 device and stained by immersion using a Camag CID3 

apparatus with primuline (10% (w/v) in acetone/H2O 84/16) then revealed and quantified with Chemidoc 

Imaging System (Biorad). 

 

Sample preparation for label-free proteomics and phosphoproteomics analysis. Flash-frozen cell pellets 

were resuspended in Urea lysis buffer (Urea 8 M, 50 mM Tris-HCl pH 8.0, Sodium Orthonovanadate 1 mM, 

supplemented with Complete Ultra tablets and Phosstop Phosphatase Inhibitor Cocktail tablets) and lysed 

with a cell disruptor (One Shot Model - Constant System Ltd., France) at 2.6 kbar. Non-lysed bacteria and 

cell debris were eliminated by centrifugation at 9000 x g. Protein concentrations of clarified lysates were 

quantified with Biorad DC Assay kit (Biorad). Equal amounts of lysate (3.1 mg) from each condition were 

reduced and alkylated with 5 mM Dithiothreitol (DTT) and 20 mM Iodoacetamide, respectively. Urea 

concentration was reduced to 1 mM by 8-fold dilution with Ammonium Bicarbonate 50 mM. The samples 

were then incubated overnight at 37°C with Trypsin at a ratio 1/100 (w/w, trypsin/proteins). After digestion, 

peptides were desalted using Sep-Pak columns (Waters; tC18 6cc 500 mg) following the provider 

instructions. Peptides were then dried down under vacuum and kept at -20°C. 
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Phospho-peptide enrichment. Titansphere TiO2 beads (5 µm; GL Sciences 5020 75000) were pre-washed 

in TiO2 loading buffer (80% MeCN, 5% Trifluoroacetic acid (TFA), 1 M glycolic acid). Peptide pellets 

(500 µg per sample) were suspended in TiO2 loading buffer (1 µg/µL), and incubated with conditioned TiO2 

beads (6 mg of beads per mg of peptides) for 20 min under agitation at room temperature. Beads were then 

washed with washing buffer (60% acetonitrile 1% TFA) and loaded onto a home-made column (200 µL tip 

with an EMPORE C18 filter). Packed TiO2 beads were washed once with washing buffer and phospho-

peptides were eluted twice with 1% NH4OH. Pooled eluates were acidified with TFA before being dried 

down under vacuum.  

NanoLC-MS/MS Analysis. Peptides and phospho-peptides were analyzed by nanoLC-MS/MS using an 

UltiMate 3000 RSLCnano system (Dionex, Amsterdam, The Netherlands) coupled to a Q-ExactivePlus 

mass spectrometer (ThermoScientific, Bremen, Germany). Peptides were suspended in 5% acetonitrile, 

0.05% TFA spiked with iRT (Biognosis 1X). 25% of each sample were loaded onto a C-18 precolumn (300-

µm inner diameter x 5 mm, Dionex) at 20 µl/min in 5% acetonitrile, 0.05% TFA. After 5 min of desalting, 

the precolumn was switched online with the analytical C-18 column (75 μm inner diameter × 50 cm; in-

house packed with Reprosil C18) equilibrated in 95% solvent A (5% acetonitrile, 0.2% formic acid) and 5% 

solvent B (80% acetonitrile, 0.2% formic acid). The peptides were eluted using a 4% to 40% gradient of 

solvent B at 300 nl/min flow rate for 240 min. The mass spectrometer was operated in data-dependent 

acquisition mode with the XCalibur software. Survey MS scans were acquired in the Orbitrap on the 400-

1600 m/z range with a resolution of 70000, the 10 most intense ions per survey scan were selected for HCD 

fragmentation and resulting fragments were analyzed at a resolution of 17500 in the Orbitrap. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange (24) Consortium via the PRIDE 

(25) partner repository with the dataset identifier PXD012553. 

Protein identification and quantification. Raw MS files were analyzed by MaxQuant version 1.5.5.1. Data 

were searched with the Andromeda search engine against M. smegmatis entries of the Swissprot protein 

database (strain ATCC 700084 / mc(2)155 Uniprot IDs UP000000757 and UP000006158 with 6602 and 
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6585 entries, respectively). In case of discrepancies in the residue numbering between the two combined 

databases of Msm, both phosphorylation site positions were reported, separated by the symbol “|”. The 

search included methionine oxidation, serine, threonine and tyrosine phosphorylation as variable 

modifications, and carbamidomethylation of cysteine as a fixed modification. Validation was performed 

through a false discovery rate set to 1% at protein and peptide spectral match (PSM) level determined by 

target-decoy search in MaxQuant. Specificity of trypsin digestion was set for cleavage after lysine or 

arginine, and up to two missed cleavages were allowed. The precursor mass tolerance was set to 20 ppm for 

the first search and 4.5 ppm for the main Andromeda database search. The mass tolerance in MS/MS mode 

was set to 20 ppm. For label-free relative quantification of the samples, the “match between runs” option of 

MaxQuant was enabled to allow cross-assignment of MS features detected in the different runs.  

Statistical analysis. The quantitative phosphoproteomic analysis was performed using the statistical 

package R (R Development Core Team, 2012; http://www.R-project.org/) and R scripts related to the 

analysis can be found online (https://github.com/mlocardpaulet/PhosphoSmegPKNB). Phosphorylation site 

relative quantification was performed with the intensities from the mono-phosphorylated peptides of the 

“Phospho (STY)” tables of MaxQuant with a localisation score ≥ 75%. Intensities were first normalized for 

instrument variation using spiked-in standards. Protein entries identified as potential contaminants by 

MaxQuant were eliminated from the analysis, as well as PSMs with a PEP value ≤ 0.01. Log2-transformed 

values of technical repeats were averaged. Each phosphorylation site relative quantities across the conditions 

were normalized to its cognate protein relative quantities determined by its LFQ values in the proteome 

(peptides analysis before phospho-enrichment). Then, missing values of the phosphorylation sites with < 1 

data point across the 3 experiments were replaced for each condition (empty vector, PknB-K40M, PknB-

WT) with the 1% quantile of the entire data set. In order to identify the PknB-dependent phosphorylation 

sites, we systematically performed two-sided unpaired Welch t-tests followed by Benjamini-Hochberg 

corrections of the p-value between the conditions. Phosphorylation sites were considered statistically 

http://www.r-project.org/
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significant when they presented a corrected p-value ≤ 0.05 and a minimum absolute log2-transformed fold 

change ≥ 1 (corresponds to a two-fold change) (see Table S1 for the results of the statistical analysis).  

 

Drug susceptibility testing. Colorimetric tetrazolium microplate assay was used to determine drug 

susceptibility of M. smegmatis. Non-frozen cell pellets from 30 mL cultures were vortexed with 2 mm glass 

beads and resuspended with 2 mL 7H9/0.02% Glycerol broth. The suspensions were then centrifuged at 100 

x g to eliminate glass beads and bacterial clumps. The supernatants were used to prepare mycobacterial 

suspension at OD600 of 0.1. In a 96-well microplate (Nunc), 2 µL was added from two-fold dilution series 

of antibiotics in DMSO. For no inhibition control wells, 2 µL of DMSO was added instead. Next, 100 µL 

of 7H9/0.02% Glycerol broth was added into all wells, followed by 100 µL of mycobacteria suspension. 

The microplates were incubated at 37°C with moderate shaking (120 RPM). After 24h, 50 µL of Thiazolyl 

Blue Tetrazolium Bromide solution (Sigma) at 1 mg/mL was added to each well and re-incubated for 4h. In 

living bacteria, tetrazolium salts were reduced to insoluble formazan, which were solubilized by adding 

50 µL of SDS 20%. When the formazan crystals were totally dissolved, absorbance at 570 nm was read with 

a microplate reader Clariostar (BMG Labtech, Germany). The inhibition curves (log10-transformed 

inhibitor concentration vs. Normalized response) were plotted using Graph Pad Prism 5.0. 
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RESULTS 

 

The Msm Ser/Thr phosphatase PstP modulates cell envelope mycolates. 

Given that PstP is the only known mycobacterial Ser/Thr protein phosphatase, we hypothesized that 

decrease of PstP activity would result in systemic perturbation of phosphorylation balance, and result in a 

phenotypic change in cell wall content. To test this hypothesis, we first examined the impact of PstP 

depletion on the different MA-containing lipids produced by Msm. We used a Msm mutant strain where the 

essential pstP gene was placed under the Tet-OFF promoter, which allowed us to induce PstP expression in 

the presence of anhydrotetracyclin (ATc) as described previously (26). The phosphatase depletion was 

confirmed by immunoblot (Fig. 1A). Following saponification of whole bacterial cells and lipid extraction, 

analysis of the resulting fatty acid (FA) and MA content showed no difference in their respective amounts 

between the wild-type (PstP+) and PstP-depleted (PstP-) strains (Table S1). However, when total bacterial 

lipids were solvent-extracted to yield the “total extractable lipid” fraction (triglycerides, glycopeptidolipids, 

phospholipids, trehalose-linked mycolic acids, etc.), we observed a significant (+90%) increase of the 

amount of TMM present in the PstP- strain compared to PstP+ (Table S1, Fig. 1B and 1C). TMMs are the 

mycoloyl donors of the major mycolate-containing lipids of the mycomembrane (TDM and mycoloyl 

arabinogalactan-peptidoglycan). Thus, their increase notably impacts the TMM/TDM balance, with a ratio 

enhanced in the PstP- strain by 1.7 fold. 

Our results show that PstP depletion is responsible for a significant increase of TMM abundance in Msm. 

This indicates that synthesis, transport or transfer of TMM may be regulated by phospho-Ser/Thr levels. 

Knowing that MA biosynthesis is regulated by Pkn kinase activities and given the essential and ubiquitous 

nature of PknB, we hypothesized that PknB could play a major role in MA metabolism, thereby participating 

in maintaining cell wall integrity. We decided to verify this hypothesis in a more controlled system through 

overexpression of PknB.  
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PknB plays a key role in maintaining cell envelope integrity.  

To assess the role of PknB-mediated phosphorylation on the cell wall constituents, full length PknB from 

Mtu was overproduced with a N-terminal His-tag in Msm. As a control, we also expressed the mutant Mtu 

pknB_K40M, which is known to be enzymatically inactive (21). This ensured that the observed phenotypic 

differences between the strains expressing pknB or pknB_K40M were specific to PknB kinase activity, and 

not due to changes in protein quantity. The induction of Mtu pknB overexpression reduced Msm growth rate 

compared to wild type Msm or Msm expressing Mtu pknB_K40M 4h after induction (Fig. 2A, inset), which 

is in agreement with previously published data (22). We thus decided to perform all the experiments 

presented here (lipidomics, proteomics, drug sensitivity, etc) 4h following pknB variant induction. Indeed, 

at this time point the different strains have a similar growth rate, comparable biomass and total lipid/protein 

contents (Fig. 2), which allowed us to compare the phosphoproteomes and quantity of MA-containing lipids. 

Western blot analysis of the protein extracts from the different strains confirmed the overproduction of PknB 

and PknB_K40M (Fig. 2B), and their relative quantification by mass spectrometry indicated that they were 

expressed in similar amounts (Fig. S1).  

 In order to evaluate the possible impact of PknB kinase activity on the cell envelope integrity and/or 

remodeling, we compared the impact of large (rifampicin (RIF) and vancomycin (VAN)) compounds that 

enter the cells by diffusion through the lipid domain of the MM, and hydrophilic (isoniazid (INH) and 

ethambutol (EMB)) compounds that enter via pore-forming proteins (porins) (27,28), on the Msm strains 

expressing pknB or its inactive K40M mutant. Interestingly, the strain expressing Mtu pknB was specifically 

more sensitive to both large molecules, RIF (hydrophobic) and VAN (hydrophilic) (Fig. 2C, 2D), compared 

to the control and the mutant variant. This might be explained by a higher fluidity of the mycomembrane, 

permitting a better diffusion of the drugs. On the other hand, no significant change in the susceptibility to 

the small hydrophilic anti-TB drugs EMB and INH was measured in strains overexpressing PknB versus 

PknB_K40M. Altogether, these results indicate a measurable alteration of the cell wall properties resulting 

from induction of PknB kinase activity. 
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PknB activity regulates synthesis and transport of mycolic acids.  

We hypothesized that the increase of Msm sensitivity to RIF and VAN upon induction of PknB kinase 

activity could result from an alteration of the cell envelope composition. To investigate the impact of PknB 

kinase activity on FA and MA content, bacteria were harvested after induction of the pknB variants 

expression. In order to monitor MA production, and improve the sensitivity of detection of fine changes in 

metabolism, cells were harvested 3h post-induction and labelled with 14C-acetate for 1h. Whole bacterial 

cells were either saponified (to obtain total MAs and FAs) (Fig. 3A), or extracted with organic solvents 

(CHCl3/CH3OH) to yield total non-covalently linked extractable lipids (TEL) (Fig. 3B). Samples were then 

resolved and detected by radio-thin layer chromatography (Fig. 3; Table S2). The incorporation of labelled 

acetate into total FAs and MAs dramatically decreased in Msm overexepressing Mtu PknB (-34% and -60%, 

respectively), compared to the control strain harboring the empty vector and the strain expressing the 

inactive K40M isoform. Thus, MA production was reduced upon induction of PknB kinase activity. In 

parallel, in the non-covalently linked (organic solvent-extracted) lipids, mycolates in the form of TMMs 

notably accumulated (+42%) while TDM quantities significantly decreased (-58%) (Fig. 3B; Table S2) in 

the PknB-overexpression strain. Previously, this imbalance of TMM/TDM ratio in favor of TMM (>3-fold 

increase) was observed upon inhibition of MmpL3, either using small molecule inhibitors (29,30) or in 

conditional mycobacterial mmpL3 mutants (31). Interestingly, triglyceride quantification showed no 

difference in the incorporation of radioactivity between the three strains (Fig. S2), whereas incorporation of 

radioactivity into FAs, precursors of phospholipids and MA chains, also decreased (Fig. S2 and Table S2). 

Taken together, our data suggest that PknB kinase activity impacts not only FA and MA synthesis, but the 

transport of MAs to the cell wall as well, an insight that has not been documented before. 

 

PknB kinase overexpression identifies proteins of the cell envelope as major substrates 

To explore the possibility that PknB affects MA transport via direct phosphorylation of protein(s) involved 

in this process, we performed a large-scale quantitative phoshophoproteomic analysis of the different Msm 

strains. Three independent cultures of Msm transformed with empty vector, pknB and pknB_K40M were 
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prepared. Bacteria were lysed, proteins were trypsin-digested and phosphorylated peptides were then 

enriched using titanium dioxide beads. Peptides before and after phospho-enrichment were analyzed by 

liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to determine relative abundance 

of protein and phosphorylation sites across samples, respectively (Fig. 4A). We then performed two-sided 

unpaired t-tests followed by a Benjamini-Hotchberg correction of the p-values to determine the proteins and 

phosphorylation sites regulated upon induction of PknB kinase activity. We identified four times as many 

phosphorylation sites upon Mtu PknB overproduction compared to both controls (Fig. S3 panel A). The 

phosphorylation sites quantified in both control conditions exhibited similar relative abundance, as expected 

(Fig. S3 panel B). Kinase activity of Mtu PknB increased both the number of phosphorylated sites and their 

intensity in Msm, as all phosphopeptides detected upon induction of Mtu PknB were more abundant than in 

any of the control conditions (Fig. S3 panels C and D). 

Interestingly, while phosphoproteomics data indicate a systems-wide increase in phosphorylation upon 

induction of PknB activity, less than 1% of the Msm proteome was significantly altered upon expression of 

Mtu PknB compared to the controls (Dataset S1). This suggests that the differences observed between the 

three strains are more likely due to the phosphorylation status of protein substrates, rather than to differences 

in protein expression.  

Moreover, number and nature of significantly regulated phosphorylation sites (Fig. S3 panel E) indicate 

prevalence of phospho-threonines over phospho-serines and phospho-tyrosines, which is in agreement with 

the reported “bias” of mycobacterial STPK towards threonines (32). 

Our analysis identified 2256 phosphorylation sites on 1194 proteins (Dataset S1), amongst which 1385 

phosphorylation sites (from 811 proteins) were differentially regulated between the strains displaying 

enhanced PknB kinase activity compared to the inactive PknB_K40M (Fig. S3A). Differentially regulated 

sites were identified on proteins known to be regulated by PknB, such as PknB itself, GarA (a FHA domain-

containing protein), PtsP (Ppp) and Wag31 (DivIVA), an essential protein organizing cell wall biosynthesis 

at the growing cellular poles (11) (Fig. S4). In addition to confirming results from previous studies (32,33), 

we identified a significant number of previously unreported phosphorylated proteins in the MA pathway, 
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thus expanding the mycobacterial phosphoproteome. Notably, we document that threonine 22 (T22) on de 

novo fatty acid synthase FAS-I displayed differential PknB activity-dependent phosphorylation, as well as 

proteins involved in the biosynthetic pathway of MAs: dehydratase HadA, -ketoacyl-ACP reductase MabA 

(FabG), acyl-CoA carboxylase subunits AccA3 (T533) and AccD5 (T2, S8 and T29), and the mycolic 

condensing enzyme Pks13 (T14, T1445, T1450) (Fig. 4B). Some of our data recapitulates previously 

reported link between PknB activity on substrates such as adenylating enzyme FadD32 and Pks13 (Fig. 4B; 

(32,34). Moreover, we also describe sites which were not previously known to be subject to PknB 

phosphorylation such as those on ACCases. 

Importantly, among the highly regulated phosphorylation sites, we identified threonine 984 (T984) on 

MmpL3, further supporting the proposed role of PknB activity in regulation of MA trafficking (Fig. 4B). 

Collectively, our lipidomic and phosphoproteomic analyses reveal that PknB plays a global regulatory role, 

not only on the production of MAs, but on their export to the mycomembrane as well, thus participating in 

the remodeling of the cell envelope (Fig. 5).  
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DISCUSSION  

Mycobacterial STPKs have emerged as critical regulators of viability and survival, for example by 

phosphorylating substrate proteins involved in MA biosynthesis known to be critical for Mtu cell wall 

adaptation. Such mechanisms rely on a tight and reversible balance of Ser/Thr 

phosphorylation/dephosphorylation. In Mtu, and closely related Msm, PknB is one of the best characterized 

kinases that is central for regulation of mycobacterial signaling, although additional kinases are relevant as 

well given that Mtu genome codes for 11 STPKs, while PstP is the only phosphatase identified to date. 

Therefore, the interplay between PknB and PstP activities is expected to be critically important for 

mycobacterial physiology. While we were preparing this work, two independent studies characterizing PstP 

were published, both suggesting that this phosphatase plays a central role in regulating cell division (26,35), 

as well as cell wall biosynthesis and global phosphorylation levels (35). Here, we provide more granular 

evidence that PstP plays an important role in regulating MA biosynthesis based on the observation that PstP 

depletion significantly increased the quantities of TMM, a precursor for mycolic acids.  

To further investigate this phenotype, we produced the ubiquitous and essential protein kinase PknB from 

Mtu and its enzymatically inactive K40M mutant in Msm, to study the importance of PknB-dependent 

phosphorylation in regulating the MA metabolism. Although induction of Mtu PknB overexpression had 

little impact on the Msm proteome, it caused a major change in the permeability of the cells to the large-size 

drugs RIF and VAN, indicating remodeling of the envelope. As expected (22), a specific reduction of the 

growth rate of pknB-expressing Msm was observed after 4h of induction. Accordingly, labeling of bacterial 

cells with 14C-acetate following PknB-induction showed a drastic decrease of MA synthesis and a specific 

and dramatic change in the balance of trehalose mycolates in the overexpressing strain. An accumulation of 

TMM was observed, with a decrease of the quantities of TDM, the final acceptor of MAs. These 

observations were dependent on the kinase activity of PknB since no effect was observed in Msm 

overexpressing the inactive K40M mutant, and comparable to those obtained upon inhibition of trehalose 

monomycolate transport from the cytosol to the cell wall by MmpL3.  
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Consistently, a comparative analysis of the phosphoproteomes of these mycobacterial strains demonstrated 

the phosphorylation of several proteins involved in both the synthesis and transport of MAs, especially 

MmpL3 (Fig. 4). In fact, phosphorylation of MmpL3 pheno-copied both mycobacterial depletion of this 

protein and inhibition of the cell wall lipid TMM export by MmpL3 inhibitors. This identifies for the first 

time the negative modulation of MmpL3 activity by STPK-regulation, and adds MmpL3 as a new “piece” 

in the landscape of cell wall biogenesis proteins negatively-regulated by STPK phosphorylation (36) (Fig. 

5). 

Altogether, our results not only confirm previously known PknB-dependent phosphorylation sites on 

proteins involved in MA biosynthesis, but also identified new phosphorylated proteins involved in MA 

biosynthesis and trafficking, thus expanding the mycobacterial phosphoproteome. These data brought to 

light the phospho-dependent regulation of Msm cell envelope integrity through regulation of enzymes 

involved in FA and MA metabolism (Fig 4B).  These findings support a working model in which 

phosphorylation of FAS-II enzymes reduce the production of MAs, which transport by MmpL3 is in turn 

negatively regulated by phosphorylation, thus generating the accumulation of TMM and the reduction of 

their final acceptors, i.e. TDM and cell-wall arabinogalactan (Fig. 5). 

Cell envelope biogenesis —and in particular MA synthesis— is a validated pathway for anti-TB 

drug discovery. The present study provides a set of phosphorylation sites that are under control of PknB 

kinase activity. These include known PknB substrates (FadD32, HadA, MabA), as well as new sites 

potentially involved in drug resistance and adaptation to the host (20,37). These data, together with our 

lipidomics analysis of cell wall remodeling upon Ser/Thr phosphorylation, indicate that cell wall biogenesis 

relies on phosphorylation of proteins involved in MA synthesis and transport, including MmpL3, an 

essential mycolate transporter and the proposed target of many anti-mycobacterial inhibitors under 

development (29-31,38). These findings are in line with a recent study pointing to mycobacterial cell 

envelope lipid alteration and the decreased phosphorylation of MmpL3 upon treatment with PknA and PknB 

inhibitors (39). Overall, these data highlight the critical role of MA regulation by STPKs and, as such, 



18 

confirm that phospho-regulation of the essential cell wall metabolism represents a promising target for anti-

mycobacterial drug discovery. 
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FIGURE LEGENDS 

Fig. 1. Depletion of PstP in M. smegmatis affects mycolic acid content. (A) Immunoblot analysis showing 

depletion of PstP in Msm mc²-cd-pstP cultures, grown in the absence (PstP+) or presence of ATc (PstP-) for 

12h. Whole cell lysates of each culture were obtained, resolved on SDS-PAGE, transferred to nitrocellulose 

membrane and probed with anti-FLAG antibodies HRP-conjugates. (B) HPTLC profile of Total Extractable 

Lipids (TEL) of both strains obtained following CHCl3/CH3OH extraction, as described in Experimental 

Procedures. 75µg of TEL of each condition were loaded, and plate was developed with 

CHCl3/CH3OH/H2O (30/8/1 v/v) as solvent system and stained with primuline, then revealed with 

Chemidoc Imaging System. (C) Quantification of trehalose monomycolate (TMM) was performed using 

ImageLab (BioRad). Data are means ± SD of three independent replicates, p-values were calculated with 

Student’s t-test (GraphPad Prism); ** p ≤ 0.01. M: molecular marker. 

 

Fig. 2. Overexpression of PknB affects M. smegmatis growth and enhances mycobacterial 

susceptibility to large antibiotics. (A) In vitro growth curves upon induction of PknB or PknB_K40M 

expression. Planktonic growth was established at 37 °C in 7H9-based medium supplemented with Tyloxapol 

and monitored as described in Experimental Procedures. All cultures were inoculated at an initial OD600 

of 0.02 then IPTG-induced at OD600 of 0.6. Growth curves are represented in semi-logarithmic scale. Data 

are means ± SD of three independent experiments. The insert zooms on the PknB-dependent growth 

reduction indicated by an arrow. (B) Staining (Instant Blue) and immunoblot (anti-PknB antibodies) analysis 

to control PknB and PknB_K40M overproduction in M. smegmatis. Whole-cell lysates were obtained from 

pellets harvested at 4h post-induction, fractionated by SDS-PAGE and revealed as indicated. (C) Dose-

inhibition curves of M. smegmatis overexpressing empty vector (“Control”), PknB or PknB_K40M in the 

presence of Vancomycin (VAN), rifampicin (RIF), isoniazid (INH) and ethambutol (EMB). Data are means 

± SD of three independent experiments. The calculated (GraphPad Prism) IC50 (half inhibitory 

concentrations) for the different antibiotics are presented in panel (D). 
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Fig. 3. PknB kinase activity impacts production of cell wall mycolic acids. Radio-TLC profiles of whole 

cell fatty acids (A) and total extractable lipids (B) in M. smegmatis overexpressing the void vector (Control), 

PknB or PknB_K40M (K40M). Cultures were radio-labeled at 3h post-induction for 1h. (A) Radio-labeled 

fatty acids were saponified and extracted as described in Experimental Procedures. Same amounts of radio-

labeled lipid extract of each strain were loaded onto a TLC plate developed with CH2Cl2. The quantification 

data (in arbitrary units AU) of total FAs (A1) and MAs (A2) (alpha (), alpha prime (’) and epoxy (ep)) 

in the three strains are presented. (B) Radio-labeled TLE were extracted using CHCl3/CH3OH as described 

in Experimental Procedures, loaded onto a TLC plate developed with CHCl3/CH3OH/H2O (30/8/1 v/v/v). 

Spots were revealed and quantified with PhosphoImager: trehalose dimycolate TDM (B1), trehalose 

monomycolate TMM (B2). triglycerides TG, glypeptidolipids GPLs, phospatidylethaloamine (PE), 

phosphotidylglycerol (PG), phosphotidylinositol (PI), phosphatidylinositol mannosides (PIM). The figure 

is representative of three independent experiments. Data are means ± SD of three replicates, p-values were 

calculated with Student’s t-test (GraphPad Prism). *p≤ 0.05, ** p ≤ 0.01, ****p<0.001. 

 

Fig. 4. Label-free quantitative analysis of PknB-dependent phosphoproteome in M. smegmatis. (A) 

Schematic workflow of sample preparation and data analysis. Three independent cultures of Msm 

transformed with empty vector, pknB- or pknB_K40M-expressing vectors were prepared. Bacteria were 

lysed, proteins were trypsin-digested and phospho-containing peptides (pSTY) were then enriched using 

titanium dioxide (TiO
2
) beads. Peptides before and after phospho-enrichment were analyzed by LC-MS/MS 

to determine the protein and phosphorylation site relative quantities across samples, respectively. 

Phosphorylation site relative quantities were normalized using their cognate protein relative quantities in 

order to correct for variations in protein expression across conditions. The normalized data were then 

subjected to statistical analysis to determine PknB-dependent phosphorylation events. (B) Heatmap of log2-

transformed MS signal obtained for phosphorylation sites of interest across the 3 triplicate samples. The 

log2-transformed fold changes (PknB Vs PknB_K40M) are represented with the horizontal bar plot on the 

right-hand side. Fold changes in red highlight the phosphorylation sites that passed our statistical thresholds 
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(PknB Vs PknB_K40M, corrected p-value of two-sided unpaired Welch t-test ≤ 0.05 and minimum 2-fold 

change). Missing values are in grey.  

 

Fig. 5. Proposed model of cell wall remodeling by multistep STPK-regulation of mycolic acid 

biogenesis. Phosphorylation of the mycobacterial de novo fatty acid synthase FAS-I would lead to reduced 

production of acyl-CoA pools, precursors of different lipids including triacylglycerol, phospholipids and 

mycolic acids. For mycolic acid synthesis, proteins of the FAS-II-mediated fatty acid elongation, chain 

activation (FadD32, AccA3/AccD5) and mycolic acid condensation (Pks13) to yield (after reduction by 

CmrA) trehalose monomycolate (TMM) are phosphorylated by PknB, resulting in decreased MA synthesis. 

Phosphorylation of MpmL3 impairs its TMM export to the outer membrane, leading to cytoplasmic TMM 

accumulation and severe decrease in TDM. TMM, the mycoloyl donor, is transferred by the 

mycoloyltransferases (Ag85 complex) to the biologically active mycolate-containing compounds (TDM, 

glucose monomycolates, glycerol monomycolates), as well as to arabinogalactan to form the mAGP 

complex. The negative control of key enzymes in MA biogenesis pathway, in addition to modulation of 

TMM amounts, result in overall cell wall remodeling. Red asterisks: PknB-regulated proteins identified 

and/or confirmed in this study. 

 


