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Abstract: In this work, we exploit the versatile function of cationic phosphonium-conjugated
polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery
and photodynamic therapy). The photophysical properties (absorption, emission and light-induced
generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular
weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize
surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation
in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular
location through confocal microscopy. The most promising polymers were then used as vectors for
siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively
self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells
expressing luciferase, leading to 30–50% of the gene-silencing effect. In parallel, the photodynamic
therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their
potential for combined PDT and gene therapy.

Keywords: combined therapy; conjugated polyelectrolyte; imaging; photodynamic therapy;
polythiophenes; siRNA delivery

1. Introduction

Cancer is a multifaceted and complex disease, which remains one of the main causes of
death, forcing researchers to continuously develop new anticancer treatments with high efficiency

Nanomaterials 2020, 10, 1432; doi:10.3390/nano10081432 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-6834-9597
https://orcid.org/0000-0003-1176-5335
https://orcid.org/0000-0003-4606-2576
https://orcid.org/0000-0002-7659-3864
https://orcid.org/0000-0002-8473-8197
http://dx.doi.org/10.3390/nano10081432
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/8/1432?type=check_update&version=3


Nanomaterials 2020, 10, 1432 2 of 15

and specificity [1,2]. Most current types of cancer treatments based on chemotherapy and radiotherapy,
although beneficial, present multiple side effects including toxicity, non-targeted damage of tissues,
neurotoxicity or multidrug resistance [3,4]. Today, photodynamic therapy (PDT) is considered as
an interesting alternative to these treatments. Indeed, this therapeutic approach is highly localized
and minimally invasive [5]. PDT uses photosensitizers (PSs), which generate reactive oxygen species
(ROS) from molecular oxygen under light illumination and thus can directly lead to the cancer cell
death mainly through apoptosis or necrosis, and indirectly by inducing tumor vasculature shutdown
and recruitment of immune mediators [6]. However, this operational dependence in oxygen in a tumor
microenvironment can lead to tumor hypoxia, trigger the signaling cascade mediated by hypoxia
inducible factor (HIF) and release pro-angiogenic growth factors, which are ultimately responsible for
cancer cell survival or tumor regrowth [7]. To enhance its therapeutic efficiency, the development of
oxygen-independent therapeutic approaches is required to collaborate with PDT [8–13].

In this respect, gene silencing using small interfering RNA (siRNA) to block gene expression
in a highly sequence-specific manner represents a valuable therapeutic approach to combine with
PDT [14,15]. Notably, the combination of PDT with silencing critical cancer-associated proteins using
siRNA has led to increased PDT efficacy and a remarkable antiproliferative effect [16–20]. To combine
PDT with gene delivery, cationic amphiphilic systems based on a hydrophobic PS embedded into
inorganic nanoparticles [14,21–23] or cationic micelles [13,15,24] are mostly studied. However, these
nanosystems can suffer from several drawbacks, such as an undesirable separation between a PS
and a carrier avoiding a synergistic effect or the possible aggregation of the PS leading to a reduced
generation of ROS [25,26]. For these reasons, alternative multifunctional systems that induce siRNA
release and cooperate with robust PDT are still required.

In this context, conjugated polyelectrolytes (CPEs), i.e., polymers with a π-conjugated backbone
and bearing ionic flexible side chains [27], have emerged as promising systems for such purpose. Indeed,
the presence of the ionic side groups enables their dissolution in aqueous media and their interaction
with biologically relevant targets such as DNA [28–33]. Besides, their conjugated backbone determines
their intrinsic optical properties, such as absorption, fluorescence, and light-harvesting ability, enabling
their use in the development of chemo- and biosensors, as well as in bioimaging applications [34–37].
Exploiting all these versatile features, CPEs were exploited as imaging systems and gene delivery
vehicles exhibiting low toxicity and good photostability, together with high delivery and transfection
efficiencies [38–42]. In particular, their ability to generate ROS under light illumination has been
proved to be a tool of choice in the release of nucleic acids from the endolysosomal compartment
to the cytoplasm by destabilizing their membranes and fostering the lysosomal escape [40,42–44].
Recently, Fan et al. even reported the combination of PDT with siRNA release in photo-induced
charge-variable CPE brushes that encapsulate up-conversion nanoparticles leading to a cumulative
antitumor effect between these two therapeutic approaches [45].

Herein, the therapeutic potential of cationic polythiophene-based CPEs as a multifunctional
platform in order to combine PDT with siRNA delivery is described. Cationic polythiophenes possess
suitable features for this purpose, such as an important affinity for nucleic acids as well as the ability to
photosensitize oxygen [43,44,46–49]. However, water-soluble polythiophenes are generally prepared
through a step-growth polymerization method, the resulting structural defects of which affect both
the optical properties (absorption, fluorescence) and DNA binding/condensing ability [43,47–49].
The availability of a versatile synthetic strategy, e.g., the Kumada Catalyst-Transfer Condensative
Polymerization (KCTCP) enables to overcome such drawbacks through a high degree of control over
the final structure and molecular weight [50,51]. As such, a detailed investigation of structure–property
relationships, notably the effect of molecular weight, an important parameter when considering gene
delivery applications influencing both cytotoxicity, complexation and transfection efficiency, can be
performed [52–54]. In this work, a series of phosphonium-based conjugated polythiophenes with
different molecular weights (11.5 kDa to 53 kDa) was synthesized. The choice of phosphonium head
group was motivated by the promising potential of phosphonium-containing polymers compared
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to their corresponding ammonium analogues in gene delivery applications [55]. Indeed, the more
localized positive charge distribution at the P atom is supposed to be the origin of the higher nucleic acid
binding ability [56]. Studies also revealed that phosphonium-containing polymer vectors result in lower
cell toxicity and increased transfection efficiency with respect to their ammonium analogues [56,57].
The photophysical properties (absorption, fluorescence emission, light-induced generation of singlet
oxygen) of the synthesized regioregular cationic polythiophenes were found to be dependent on
the molecular weight. Their fluorescent properties were exploited for imaging to determine their
intracellular location. Finally, their potential to deliver genetic material and act as a PS in a cooperative
manner was examined.

2. Materials and Methods

2.1. Polymer Synthesis and Characterisation

Poly(3-(6′-bromohexylthiophene)) (P3HT-Br) precursors were synthesized according to reported
procedures [31,58]. The polymer characteristics (number averaged (Mn) and weight-averaged (Mw)
molecular weights and the molecular weight distribution (Ð)) of P3HT-Br1 were estimated by size
exclusion chromatography (SEC). An Agilent liquid chromatograph integrating an Agilent degasser
(Diegem, Belgium), an isocratic HPLC pump with chloroform (CHCl3) as an eluent at a flow rate
of 1 mL min−1, an Agilent autosampler (loop volume = 100 µL) with a polymer concentration in
a solution of 2 mg mL−1, an Agilent-DRI refractive index detector (Diegem, Belgium), and three
columns (a PL gel 5 µm guard column and two PL gel Mixed-B 5 µm columns (linear columns for
separation of Mw of polystyrene (PS) ranging from 200 to 4 × 105 g mol−1)) was used. For the two
other poly(3-6′-bromohexyl)thiophene) precursors, SEC analyses were performed in THF at 35 ◦C.
A Polymer Laboratories liquid chromatograph was used. This chromatograph integrates a PL-DG802
degasser, an isocratic HPLC pump LC 1120 (flow rate = 1 mL min−1), a Marathon autosampler (loop
volume = 200 mL) with a polymer concentration in a solution of 1 mg mL−1, a PL-DRI refractive index
detector, and three columns: a PL gel 10 mm guard column and two PL gel Mixed-B 10 mm columns
(linear columns for the separation of Mw PS standards ranging from 500 to 106 Da). Calibration was
perfomed in both cases with polystyrene standards.

2.2. UV-Visible Absorption and Emission Properties

Absorption spectra were measured on a UV-3600 UV-visible double beam spectrophotometer
using Software UVProbe 2.33 (SHIMADZU, MARNE LA VALLEE, France). Fluorescence spectra were
measured on a Fluorolog FL3-222 spectrofluorimeter using Software DataMax 2.20 (HORIBA Jobin
Yvon, Longjumeau, France). The spectrofluorimeter is fitted with a 450 W Xenon lamp, a thermostated
cell compartment (25 ◦C), a UV-visible photomultiplier R928 (HAMAMATSU Photonics, Hamamatsu,
Japan) and an InGaAs infrared detector (DSS-16A020L Electro-Optical System Inc., Phoenixville, PA,
USA). Excitation and emission beams are diffracted by double-ruled grating SPEX monochromators
with the following features: 1200 grooves/mm blazed at 330 nm for excitation and 1200 grooves/mm
blazed at 500 nm for emission, respectively. The detection of singlet oxygen emission was performed by
using a double-ruled grating SPEX monochromator (600 grooves/mm blazed at 1 µm) and a long-wave
pass (780 nm). All spectra were recorded by using 4 faces quartz cells. All the emission spectra
(fluorescence and singlet oxygen luminescence) were recorded at the same absorbance (less than 0.2
at the excitation wavelength) by exploiting the lamp and photomultiplier corrections.

Fluorescence lifetime measurements were performed using a pulsed laser diode emitting at 407 nm
(LDH-P-C-400M, FWHM < 70 ps, 1 MHz) coupled with a driver PDL 800-D (PicoQuant GmbH, BERLIN,
Germany) for excitation and an avalanche photodiode SPCM-AQR-15 (EG & G, VAUDREUIL, Canada)
coupled with a 550 nm long-wave pass filter as a detection system for excitation. A PicoHarp 300
module with a 4-channel router PHR-800 (both PicoQuant GmbH, Berlin, Germany) was used for
acquisition. The single photon counting method was employed to record the fluorescence decays.
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The collection of data was performed up to 1000 counts. The data were accumulated in the maximum
channel and analyzed using Time Correlated Single Photon Counting (TCSPC) software Fluofit 4.2
(PicoQuant GmbH, Berlin, Germany) based on iterative reconvolution using a Levensberg–Marquandt
algorithm, which enables one to obtain multi-exponential profiles (mainly one or two exponentials in
our cases).

2.3. Singlet Oxygen Measurements

Singlet oxygen lifetimes have been measured exploiting a TEMPRO-01 spectrophotometer
(HORIBA Jobin Yvon, Longjumeau, France) equipped with a pulsed diode excitation source
SpectraLED-415 (λem = 415 nm), a cell compartment, a Seya–Namioka-type emission monochromator
(600–2000 nm) and a detection system (H10330-45 near-infrared photomultiplier tube with
thermoelectric cooler (HAMAMATSU Photonics, Hamamatsuç, Japan). A single photon counting
controller FluoroHub-B and the softwares DataStation 2.5.11 and DAS6 6.6 (HORIBA Jobin Yvon,
Longjumeau, France) were used to monitor the system.

2.4. Dynamic Light Scattering (DLS) and Zeta Potential

Hydrodynamic diameter and zeta potential were estimated using a Zetasizer Nano ZS (Malvern
Instruments Ltd., Malvern, UK). The cationic polythiophenes (5µM) and cationic polythiophenes/siRNA
polyplexes at a P+/P- ratio of 100 (5µM) were prepared in water. The measurements were then performed
after 30 min incubation at 37 ◦C to guarantee the complexation of siRNA. Particle size measurements
were carried out with transparent ZEN0040 disposable micro-cuvette (40 µL) at 25 ◦C. Zeta potential
measurements were performed at 25 ◦C and were carried out in DTS 1070 zeta potential cells made
with 18 runs for each.

2.5. Cell Culture Conditions

Human breast adenocarcinoma MDA-MB-231, the standard cell line or this expressing luciferase
and red fluorescent protein (MDA-MB-231 Luc RFP) were purchased from ATCC and AMSBIO
(Abingdon, UK), respectively. Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM),
incorporating 10% fetal bovine serum and antibiotic (0.05 mg mL−1 gentamycin). The cell growth was
performed in humidified atmosphere at 37 ◦C under 5% CO2.

2.6. In Vitro Cytotoxicity Assay

The in vitro cytotoxicity analyses were performed by using MDA-MB-231 cells seeded into
96-well culture plates, 2000 cells per well in 200 µL of culture medium, and allowing them to
grow for 24 h. The cells were then treated with different concentrations of phosphonium-based
polythiophene conjugated polyelectrolytes, and, after 3 days, a colorimetric assay of living cells (MTT,
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, assay) was performed, as previously
described [59].

2.7. In Vitro Phototoxicity Assay

In vitro phototoxicity assays were performed with MDA-MB-231 cells seeded into 96-well plates
at a concentration of ~2 × 103 cells/well in 100 µL of culture medium and allowed to grow for 24 h.
The cells were then incubated for 24 h in the presence or absence of polymer (5 µM in water). After
incubation with polymers, cells were submitted, or not, to light excitation (λ = 450 nm, 1.45 J cm−2) for
5 min. A total of 48 h after irradiation, the cytotoxicity or phototoxicity of the polymers were evaluated
using an MTT assay. Briefly, the incubation of cells was performed in the presence of MTT (0.5 mg
mL−1) during 4 h to determine mitochondrial enzyme activity. Then, the cell medium was aspirated
and the MTT precipitates were dissolved in an ethanol/DMSO (1:1) solution (150 µL) and a reading of
the absorbance at 540 nm was performed.
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2.8. Confocal Fluorescent Imaging on Living Cells

Confocal fluorescent imaging was perfomed on MDA-MB-231 cells seeded onto glass bottom
dishes (World Precision Instrument, Stevenage, UK) at a concentration of 106 cells cm−2. One day after
seeding, cells were incubated in the presence or absence of PTH1, PTH2 and PTH3 (10 µM) for 24 h.
The incubation of cells with Hoechst 33,342 (5 µg mL−1, Invitrogen) was performed for nuclear staining
for 15 min and cells were washed 3 times with culture medium. Fluorescence pictures were recorded
on confocal microscope (LSM 780 live, Carl Zeiss Microscope) under a 450 nm wavelength excitation
for polythiophenes detection and a 760 nm wavelength for nuclei imaging. A high magnification
(63×/1.4 OIL DIC Plan-Apo) was used for all images.

2.9. Gel Electrophoresis with siRNA

A total of 5 µL of a 20 µM siRNA, mixed with the appropriate amounts of polythiophenes (in
order to reach the desired P+/P- ratio) in RNase free water (final volume: 20 µL) was used to perform
gel retardation assays with siRNA and 4 µL of Blue 6X loading dye (Fisher Scientific, Hampton, NH,
USA) was then added. These samples were submitted to an electrophoresis performed with a 2%
wt/vol agarose gel in TBE (90 mM Tris-borate/2 mM EDTA, pH 8.2) at 50 V for 1 h. The standard was
a 100 bp DNA ladder (Sigma-Aldrich, Saint-Quentin-Fallavier, France). To visualize siRNA, a GelRed
nucleic acid gel stain (Interchim, Montluçon, France) was used allowing to detect siRNA through
an ultraviolet transilluminator (Infinity Gel documentation Imaging, Vilber Lourmat, Paris, France).

2.10. In Vitro Combined PDT and siRNA Delivery

MDA-MB-231 Luc RFP cells derived from MDA-MB-231 human breast cancer cells by the stable
transfection of firefly luciferase gene and RFP for red coloration and easy detection were used. They
were seeded in a multiwell plate (96 well white opaque tissue culture plates) at 2 × 103 cells cm−2

in 100 µL culture medium. Eight hours after seeding, the cells were incubated with or without
5 µM PTH2/siRNA and PTH3/siRNA polyplexes at a P+/P- ratio of 100 during the allocated 24 h.
The quantities of siRNA used for PHT2 and PTH3 complexation were 132 and 81 µM, respectively.
Cells were irradiated for 5 min using a standard fluorescent microscope (Leica DM IRB) with a mercury
lamp at 450 nm, magnification x4. Next day, cells were irradiated for a second time with the same
process. The day after, to quantify either the cell death or the transfection efficieny of a 21-mer siRNA
targeting the expression of luciferase inside MDA-MB 231 Luc RFP cells, cells were submitted to
an MTT assay and to luciferase activity assay, respectively. The siRNA targeting sequence (sense:
AACUUACGCUGAGUACUUCGA and anti-sense UCGAAGUACUCAGCGUAAGUU) for luciferase
was purchased from Eurogentec (Serring, Belgium). The addition into a culture medium of luciferin
(10−3 M, Promega, Charbonnières-les-bains, France) was used to determine the expression of luciferase.
A total of 10 min after, a plate reader CLARIOstar® High-Performance Monochromator Multimode
Microplate Reader (BMG Labtech, Ortenberg, Germany) was used to measure living cell luminescence.
The cytotoxicity or phototoxicity of polymers were evaluated by MTT assay.

2.11. Statistical Studies

Statistical analyses were carried out using student t-test, to compare paired groups of data.
A p-value of <0.05 was considered to be statistically significant.

3. Results and Discussion

3.1. Polymer Synthesis

The phosphonium-based polythiophene conjugated polyelectrolytes were synthesized according
to our previous reported procedures [31,58]. Briefly, poly(3-(6’-bromohexyl)thiophene) precursors
(P3HT-Br) were first synthesized by KCTCP (Scheme 1), which enables the preparation of
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polythiophenes with a high degree of control over the final structure and the molecular weight [50,58,60].
Indeed, due to the living chain-growth polymerization mechanism, a control on the molecular
weight of the polymer can be achieved by carefully tuning the feed ratio of monomer to the nickel
catalyst [50,60]. Using this method, three different well-defined polymer precursors were synthesized
in view of evaluating the effect of polythiophene molecular weight on the PDT effect and gene delivery
properties (Table 1). These precursors were then converted in 75–80% yield into the corresponding
phosphonium-based polythiophene CPEs by reaction with trimethylphosphine (Scheme 1) [31].
The polyelectrolyte nature of these CPEs prevents direct molecular weight determination using
size exclusion chromatography (SEC). Consequently, the molecular weights of these CPEs were
estimated from the number of units calculated from the P3HT-Br precursors and the molar mass of
the phosphonium repeating unit (321 g·mol−1) leading to Mn = 53 kDa (PTH1), Mn = 19 kDa (PTH2)
and Mn = 11.5 kDa (PTH3).
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Table 1. Characteristics of the synthesized P3HT-Br precursors.

Name Yield (%) Mn (g·mol−1) 1 Ð DP 2

P3HT-Br1 55 40,600 1.16 165
P3HT-Br2 72 14,500 1.28 59
P3HT-Br3 62 8,500 1.31 36

1 Mn determined by SEC in THF except for P3HT-Br3, which was performed in CHCl3. 2 Degree of polymerization
calculated from Mn.

3.2. Optical Properties of the Phosphonium-Based Polythiophene CPEs

The UV-visible absorption and emission spectra of CPEs are depicted in Figure 1
and the corresponding data are summarized in Table 2.

Table 2. Optical characteristics of phosphonium-based polythiophene CPEs in water.

Compound λabs max (nm) λem max (nm) 1 ΦF
2 τF (ns) Φ∆

PTH1 495 624 0.01 0.5 < 0.01
PTH2 464 605 0.07 0.7 0.13
PTH3 466 605 0.08 0.7 0.15

1 λexc = 466 nm, 2 measured using tris(bipyridine)ruthenium(II) chloride [Ru(bpy)3]Cl2 in water as a reference
(ΦF = 0.042) [61], 3 measured using [Ru(bpy)3]Cl2 in D2O as a reference (Φ∆ = 0.53) [62].

The UV-visible absorption spectra of these CPEs show a broad absorption band attributed to
a π-π* transition [63]. The maxima absorption wavelengths (λabs max) are observed at ~465 nm for
PTH2 and PTH3, while a red-shifted absorption is noticed (495 nm) for PTH1, indicating a significant
extent of the π-conjugation. The emission spectra of these CPEs are also dependent on the molecular
weight since a maxima emission wavelength of 605 nm is found for PTH2 and PTH3, whereas,
for PTH1, an emission broad band centered at ~620 nm is observed. These results suggest that
the cationic polythiophene PTH1 adopts a more ordered and planar conformation, which may be
due to the polymer aggregation in water. Indeed, compared to other CPEs, PTH1 exhibits a lower
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solubility in water due to its much higher molecular weight. To gain insight into the aggregation
behaviour of these polymers, the fluorescence quantum yields of the three cationic polythiophenes
were measured using tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2) in water as a reference
(ΦF = 0.042) [61]. As observed in Table 2, PTH2 and PTH3 exhibit similar fluorescence quantum yields
(7–8%) [48], whereas a strong decrease of the fluorescence quantum yields is noted for PTH1 (1%),
which is consistent with a significant aggregation in solution as a result of longer π-conjugated backbone
leading to increased interchain interactions and fluorescence self-quenching [64–66]. The increased
interchain contacts in solution for PTH1 in comparison with PTH2 and PTH3 are also evidenced
by the decrease in the singlet state emissive lifetime (0.5 ns vs. 0.7 ns) (Table 2 and Figure S1 in
the Supporting Information). These values of singlet state emissive lifetime are in good agreement with
those reported for poly(3-hexylthiophene) (P3HT) [67,68]. To evaluate the degree of aggregation of
these polymers, their size was then determined by Dynamic Light Scattering (DLS) leading to average
diameters of around 110 and 103 nm for PTH2 and PTH3, respectively, while, for PTH1, an average
diameter of around 527 nm is observed, confirming its aggregation in aqueous media (Figures S3–S5 in
the Supporting Information).

Figure 1. UV-vis. absorption spectra (solid line) and emission spectra (λexc = 466 nm) (dotted line) of
PTH1 (0.37 µM), PTH2 (0.68 µM) and PTH3 (0.81 µM) in water.

3.3. Cytotoxicity, Imaging and Photodynamic Therapy Activity

To demonstrate the in vitro biocompatibility of phosphonium-based polythiophene CPEs,
their cytotoxicity against MDA-MB-231 cells were estimated using the 3-[4,5-dimethylthiazol
-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) method, in which soluble MTT is converted into
formazan crystal by mitochondrial dehydrogenases, thus allowing one to measure the cell viability.
MDA-MB-231 cells were grown in 96-well culture plates and were then treated with PTH1, PTH2
and PTH3 for 72 h. Figure 2A shows the effect of PTH1, PTH2 and PTH3 with concentrations ranging
from 0 to 500 µM (relative to repeating unit) on the viability of MDA-MB-231 cells. Although these
cationic polymers displayed in vitro toxicity from a concentration of 10 µM, the cell viability is still
larger than 70% at a concentration of 50 µM. These values are in good agreement with those previously
reported for other CPEs, such as cationic polyfluorenes [38] and poly(fluorene-co-thiophenes) [69].
From Figure 2A, the half inhibitory concentrations (IC50) values for these cationic polymers were also
determined leading respectively to IC50 > 100 µM for PTH1 and PTH2 and IC50 > 250 µM for PTH3.
Based on these results, cationic polymers were then used at a concentration of 5 µM for investigating
PDT and gene delivery applications.

Considering PDT applications, we first evaluated the ability of phosphonium-based polythiophene
CPEs to generate singlet oxygen (1O2) by monitoring photoluminescence of 1O2 at 1270 nm in aerated
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D2O using Ru(bpy)3 as a reference (Φ∆ = 0.53) (Figure S2 in the Supporting Information) [62]. PTH2
and PTH3 showed relatively low 1O2 luminescence quantum yield: Φ∆ = 0.12 and = 0.14, respectively,
while PTH1 did not produce 1O2 likely due to aggregation in solution resulting in increased interchain
contacts and thus intermolecular charge transfer. Indeed, aggregation is known to lead to reduced ROS
generation as previously observed for conventional PSs, such as porphyrins in aqueous media [70,71].
Then, we explored their cellular uptake by MDA-MB-231 cells. The internalization of PTH1, PTH2
and PTH3 in MDA-MB-231 cells was clearly visualized by fluorescence microscopy (Figure 2B)
exploiting the fluorescence properties of phosphonium-based polythiophene CPEs. Indeed, the cationic
charge of the phosphonium side groups of these polythiophene-based CPEs enables their binding to
the negatively charged cell membrane and subsequently enhances their endocytosis by cells. As shown
in Figure 2B, the orange fluorescence of PTH1, PTH2 and PTH3 indicated that they are mainly
accumulated around the perinuclear region (located concurrently by Hoechst staining) [72]. Finally,
the efficiency of CPEs as PSs towards MDA-MB-231 cells was evaluated in vitro under illumination.
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Figure 2. (A) MDA-MB-231 cells were incubated with different concentrations of PTH1, PTH2
and PTH3 during 72 h. After treatment, cells were submitted to MTT assay to quantify the cell death.
(B) MDA-MB-231 cells were incubated with or without PTH1, PTH2 and PTH3 during the allocated
24 h. The cells were incubated with Hoechst 15 min. They were imaged at 450 nm for polythiophenes
and 760 nm for Hoechst using a confocal miscroscope. (C) MDA-MB-231 cells were incubated with
PTH1, PTH2 and PTH3 during the allocated 24 h. The cells were irradiated for 5 min using a standard
fluorescent microscope with a mercury lamp at 450 nm, magnification x4. Two days after irradiation,
cells were submitted to MTT assay to quantify the cell death. * Statistical significance (p < 0.05) of
the irradiated condition versus the non-irradiated condition using Student’s t-test.

To this aim, MDA-MB-231 cells were incubated for 24 h with phosphonium-based polythiophene
CPEs at 5 µM and then, submitted or not to monophotonic light excitation at 450 nm for 5 min.
An MTT assay was performed two days after illumination to determine the cells viability. As indicated
in Figure 2C, none of the cationic polymers showed significant cytoxicity in the dark (between 4
and 12% cell death at 5 µM). After illumination at 450 nm for 5 min, PTH2 and PTH3 exhibits efficient
phototoxicity, inducing around 60% cell death, whereas, in these conditions, no significant phototoxicity
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is noted for PTH1 due to its aggregation in aqueous media and thus its incapacity to generate 1O2

under illumination.

3.4. In Vitro Combined PDT and siRNA Delivery

The siRNA loading capability of PTH1, PTH2 and PTH3 was first studied. For this, an agarose-gel
electrophoresis assay was performed to estimate the siRNA complexation efficiency of these cationic
polythiophene according to the P+/P- molar ratio between the positively charged phosphonium groups
(P+) in the polymer and the negatively charged phosphodiester groups (P−). As shown in Figure 3A,
as the P+/P- ratio increases, the negative charges of siRNA were gradually neutralized and moved
to a positive electrode (retardation effect), except for PTH1, in which, regardless of the used P+/P-

ratio, the siRNA migration was not inhibited. In the case of PTH2 and PTH3, the migration of siRNA
was inhibited at P+/P- ratio of 100 and 50, respectively. Consequently, we decided to focus only
on cationic polythiophenes PTH2 and PTH3 for the further combination of in vitro PDT and gene
delivery since PTH1 did not generate 1O2 and was not able to complex siRNA. A P+/P- ratio of 100
was chosen for PTH2 and PTH3 for the further studies of the in vitro combined PDT and siRNA
delivery. The size of the PTH2/siRNA and PTH3/siRNA polyplexes at a P+/P- ratio of 100 was then
determined by Dynamic Light Scattering leading to polyplexes with average diameters of around
82 and 92 nm, respectively (Figures S6 and S7 in the Supporting Information), a suitable size for
facilitating endocytosis [73,74]. Furthermore, the positive zeta potential of PTH2/siRNA (ζ = 15 mV)
and PTH3/siRNA (ζ = 20 mV) polyplexes at a P+/P- ratio of 100 allows these polyplexes to interact
with the negatively charged cell membrane favorizing their cellular uptake (Figure S5 and S6 in
the Supporting Information) [40,75]. The in vitro PDT activity of PTH2/siRNA and PTH3/siRNA
nanoparticles was first examined, exploiting the same conditions as described above. As shown in
Figure 3B, siRNA complexation by cationic polythiophenes PTH2 and PTH3 led to the complete loss
of the PDT activity of the polymers since no phototoxicity was noticed upon illumination, while, for
polymers alone, around 60% cell death was observed. We speculate that this loss of PDT activity can
be attributed to the formation of aggregates and thus fluorescence self-quenching and reduced ROS
production [32,44].
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Figure 3. (A) Gel electrophoresis analysis showing the complexation of siRNA by the polythiophenes
under study. (B) MDA-MB-231 were incubated with PTH2/siRNA and PTH3/siRNA during
the allocated 24 h. The cells were illuminated during 5 min using standard fluorescent microscope
with a mercury lamp at 450 nm, magnification x4. Two days after illumination, cells were submitted to
an MTT assay to quantify living cells.

Finally, to evaluate the therapeutic potential of these polymers in PDT-siRNA combination therapy,
we set up experiments using siRNA targeting the expression of luciferase gene in MDA-MB-231 Luc
RFP cells. MDA-MB-231 Luc RFP cells were incubated for 24 h with PTH2/siRNA and PTH3/siRNA
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polyplexes at a P+/P- ratio of 100 at 5 µM and then submitted or not to one or two monophotonic
light irradiations at 450 nm for 5 min, with the second light irradiations occuring 24 h after the first
one. Figure 4 shows the obtained results for in vitro combined PDT and siRNA delivery exploiting
PTH2/siRNA and PTH3/siRNA polyplexes in MDA-MB-231 Luc RFP cells. As observed previously in
Figure 3B, the first light irradiation did not result in cell death, as confirmed in Figure 4A (red bars).
However, it enables the delivery of siRNA targeting the luciferase gene inside MDA-MB 231 Luc RFP
cells leading to 35% and 52% of luciferase gene silencing for PTH2 and PTH3, respectively (Figure 4B).
The siRNA decomplexation is confirmed by the restoration of the PDT activity of PTH2/siRNA
and PTH3/siRNA leading, respectively, to 44% and 49% of cell death after a second light irradiation
(Figure 4A). This second light irradiation (green bars) also results in a significant improvement in
the luciferase gene silencing, mainly for PTH2/siRNA leading to a 67% decrease in luminescence
(Figure 4B). We can note that, for PTH3/siRNA, the effect on luminescence decrease is maximal after
only one irradiation (48% at the first irradiation and 40% after 2 irradiations), suggesting that PTH3
can be more easily used for nucleic acid delivery. This light-triggered siRNA release will necesitate
deeper investigation, and the understanding of the mechanism responsible for this effect will help us
to develop highly potent polythiophenes for nucleic acid delivery under light stimulation. All in all,
these results show the remarkable synergistic effect of using these cationic polymers both as a polymer
vector for siRNA delivery and as a PS for PDT.
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Figure 4. (A) MDA-MB-231 Luc RFP cells were incubated with PTH2/siRNA and PTH3/siRNA at a P+/P-

ratio of 100 during 24 h. The cells were irradiated for 5 min using a standard fluorescent microscope
with a mercury lamp at 450 nm, magnification x4. After 24 h, the cells were irradiated a second time
with the same process. The day after, the cells were submitted to an MTT assay to quantify the cell
death. (B) Luciferase activity assay showing the transfection of a 21-mer siRNA targeting the expression
of luciferase inside MDA-MB-231 Luc RFP cells. The experiments were carried out with PTH2/siRNA
and PTH3/siRNA at a P+/P- ratio of 100 without or after one or two irradiations (450 nm, 5 min). *
Statistical significance (p < 0.05), of the irradiated condition versus non irradiated condition using
Student’s t-test.

4. Conclusions

Phosphonium-based conjugated polythiophenes with different molecular weight (going from
11.5 kDa to 53 kDa) were prepared by KCTCP and used as multifunctional platforms to complex
and deliver siRNA and to generate ROS species for PDT. Upon light irradiation, cationic polythiophenes
PTH2 and PTH3 with lower molecular weight were able to light-sensitize surrounding oxygen into
ROS, which could disturb the endosome-lysosome membrane and thus lead to an enhanced endosomal
escape and more efficient gene delivery. In contrast, these polymers are also fluorescent, allowing for
the imaging of intracellular location through confocal microscopy; thus, their good internalization
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was confirmed. The most promising conjugated polyelectrolytes, PTH2 and PTH3, were then used as
carriers for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found
to effectively self-assemble with siRNA, deliver siRNA targeting the luciferase gene in MDA-MB-231
cancer cells expressing luciferase and lead to 35 and 52% of the gene silencing effect. In parallel,
the photodynamic activity of these cationic polymers was restored after siRNA delivery, demonstrating
their potential for combined PDT and gene therapy. Nevertheless, further investigation will be needed
to determine the mechanism responsible for the light-triggered release of siRNA by these cationic
polythiophenes. This study illustrates that multiple functions can be achieved by exploiting the features
of conjugated polyelectrolytes and suitably tailoring their molecular structures (molecular weight,
nature of the ionic group, etc.). To go further, modifying the polymer structure by introducing notably
multiple cationic side groups per monomeric units will be necessary to improve their ability to bind
and condense nucleic acid and their solubility in aqueous medium, which will thus positively impact
their optical properties. In addition, two-photon excited photodynamic therapy and siRNA delivery
experiments will be conducted in the future to extend the scope of this multifunctional platform.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1432/s1,
Figure S1: Fluorescence decay of PTH1 (0.37 µM), PTH2 (0.68 µM) and PTH3 (0.81 µM) in water in D2O
(λexc = 407 nm), Figure S2: Singlet Oxygen emission spectra of PTH1, PTH2 and PTH3 in D2O (λexc = 466 nm),
Figure S3: Particle Size distribution of PTH1 in water (5 µM) at 25 ◦C, Figure S4: Particle Size distribution of
PTH2 in water (5 µM) at 25 ◦C, Figure S5: Particle Size distribution of PTH3 in water (5 µM) at 25 ◦C, Figure S6:
Particle size distribution (up) and zeta potential (down) of PTH2/siRNA polyplex in water (5 µM) at a P+/P- ratio
of 100 at 25 ◦C, Figure S7: Particle size distribution (up) and zeta potential (down) of PTH3/siRNA polyplex in
water (5 µM) at a P+/P- ratio of 100 at 25 ◦C. Figure S8: (A) MDA-MB-231 cells were incubated with PTH1, PTH2,
PTH3 during 72 h. Cells were irradiated using confocal microscope with a chameleon laser beam at 800 nm,
magnification x10, during 3 x 1.57 seconds. Two days after irradiation, cells were submitted to a MTT assay to
quantify the cell death. (B) MDA-MB-231 cells were incubated with or without PTH1, PTH2, PTH3 during 24 h.
Cells were incubated with Hoechst 15 min. They were imaged at 800 nm for polythiophenes and 760 nm for
Hoechst using confocal microscope.
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