K. E. Tipirneni, J. M. Warram, and L. S. Moore, Oncologic procedures amenable to fluorescence-guided surgery, Ann. Surg, 2016.

A. L. Vahrmeijer, M. Hutteman, J. R. Van-der, and . Vorst, Image-guided cancer surgery using near-infrared fluorescence, Nat. Rev. Clin. Oncol, vol.10, pp.507-518, 2013.

J. D. Predina, D. Fedor, and A. D. Newton, Intraoperative molecular imaging: the surgical oncologist's north star, Ann. Surg, vol.266, pp.42-44, 2017.

S. Keereweer, P. B. Van-driel, and T. J. Snoeks, Optical image-guided cancer surgery: challenges and limitations, Clin. Cancer Res, vol.19, pp.3745-3754, 2013.

A. V. Dsouza, H. Lin, and E. R. Henderson, Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging, J. Biomed. Opt, vol.21, 2016.

Q. T. Nguyen and R. Y. Tsien, Fluorescence-guided surgery with live molecular navigation-a new cutting edge, Nat. Rev. Cancer, vol.13, pp.653-662, 2013.

E. L. Rosenthal, J. M. Warram, E. De, and . Boer, Successful translation of fluorescence navigation during oncologic surgery: a consensus report, J. Nucl. Med, vol.57, pp.144-150, 2016.

S. Gioux, H. S. Choi, and J. V. Frangioni, Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation, Mol. Imaging, vol.9, pp.237-255, 2010.

J. Parrish-novak, E. C. Holland, and J. M. Olson, Image guided tumor resection, Cancer J. Sudbury Mass, vol.21, p.206, 2015.

Q. T. Nguyen and R. Y. Tsien, Fluorescence-guided surgery with live molecular navigation -a new cutting edge, Nat. Rev. Cancer, vol.13, pp.653-662, 2013.

M. J. Koppe, O. C. Boerman, W. J. Oyen, and R. P. Bleichrodt, Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies, Ann. Surg, vol.243, pp.212-222, 2006.

T. C. Chua, J. Esquivel, J. O. Pelz, and D. L. Morris, Summary of current therapeutic options for peritoneal metastases from colorectal cancer, J. Surg. Oncol, vol.107, pp.566-573, 2013.

M. C. Boonstra, S. W. De-geus, and H. A. Prevoo, Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins, Biomark. Cancer, vol.8, pp.119-133, 2016.

C. H. Heath, N. L. Deep, and L. N. Beck, Use of Panitumumab-IRDye800 to image cutaneous head and neck Cancer in mice. otolaryngol-head neck surg off, J. Am. Acad. Otolaryngol.-Head Neck. Surg, 2013.

M. L. Korb, Y. E. Hartman, and J. Kovar, Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer, J. Surg. Res, vol.188, pp.119-128, 2014.

A. G. Terwisscha-van-scheltinga, G. M. Van-dam, and W. B. Nagengast, Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies, J. Nucl. Med, vol.52, pp.1778-1785, 2011.

J. P. Tiernan, S. L. Perry, and E. T. Verghese, Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting, Br. J. Cancer, vol.108, pp.662-667, 2013.

C. E. Hoogstins, B. Weixler, and L. S. Boogerd, In search for optimal targets for intraoperative fluorescence imaging of peritoneal metastasis from colorectal cancer, Toxicology Reports, vol.6, pp.409-415, 2019.

, Biomark. Cancer, vol.9, 2017.

T. K. Nikolouzakis, L. Vassilopoulou, and P. Fragkiadaki, Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review), Oncol. Rep, vol.39, pp.2455-2472, 2018.

S. Hammarström, The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues, Semin. Cancer Biol, vol.9, pp.67-81, 1999.

S. Saadatmand, E. M. De-kruijf, and A. Sajet, Expression of cell adhesion molecules and prognosis in breast cancer, Br. J. Surg, vol.100, pp.252-260, 2013.

M. Gutowski, B. Framery, and M. C. Boonstra, SGM-101: An innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery, Surg. Oncol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02371819

B. K. Soni, J. P. Langan, and M. Genotoxicity-of-cleartaste, Toxicol. Rep, vol.5, pp.196-206, 2018.

P. Clarke, J. Mann, and J. F. Simpson, Mice transgenic for human carcinoembryonic antigen as a model for immunotherapy, Cancer Res, vol.58, pp.1469-1477, 1998.

Y. Zhang, M. Huo, J. Zhou, and S. Xie, PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput. Methods Programs Biomed, vol.99, pp.306-314, 2010.

J. P. Mach, A. Pèlegrin, and F. Buchegger, Imaging and therapy with monoclonal antibodies in non-hematopoietic tumors, Curr. Opin. Immunol, vol.3, pp.685-693, 1991.

D. M. Goldenberg, R. M. Sharkey, and G. Paganelli, Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy, J. Clin. Oncol, vol.24, pp.823-834, 2006.

D. M. Goldenberg, F. Deland, and E. Kim, Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning, N. Engl. J. Med, vol.298, pp.1384-1386, 1978.

J. P. Mach, S. Carrel, and M. Forni, Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation, N. Engl. J. Med, vol.303, pp.5-10, 1980.

S. P. Kang and M. W. Saif, Infusion-related and hypersensitivity reactions of monoclonal antibodies used to treat colorectal cancer-identification, prevention, and management, J. Support. Oncol, vol.5, pp.451-457, 2007.

C. H. Chung, Managing premedications and the risk for reactions to infusional monoclonal antibody therapy, Oncologist, vol.13, pp.725-732, 2008.

B. A. Baldo, Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses, Oncoimmunology, vol.2, p.26333, 2013.

L. S. Boogerd, C. E. Hoogstins, and D. P. Schaap, Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study, Lancet Gastroenterol. Hepatol, pp.30395-30398, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02284980

C. E. Hoogstins, L. S. Boogerd, B. G. Sibinga, and . Mulder, Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent, Ann. Surg. Oncol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02289226

R. R. Zhang, A. B. Schroeder, and J. J. Grudzinski, Beyond the margins: real-time detection of cancer using targeted fluorophores, Nat. Rev. Clin. Oncol, vol.14, pp.347-364, 2017.