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a b s t r a c t

In this paper, we study the problem of optimal fishing for regime switching in the
growth dynamics of a given fish species which is described by the differential stochastic
logistic model with two states: prior or during floods and after. The resulting dynamic
programming principle leads to a system of two variational inequalities. By using
viscosity solutions approach, we prove the existence and uniqueness of the value
functions. Then numerical approximation of the obtained system is used to determine
the optimal fishing effort for a sustainable fishery.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The usual population model commonly used in fisheries is the logistic growth model extended to include catch
(see [1]):

dB
dt

= rB
(
1 −

B
K

)
− qEB

here B is the biomass of the population, r is the intrinsic rate of growth, K (the carrying capacity) is the biomass the
population would tend toward if unfished, q is a catchability parameter describing the efficiency of the fishing gear, and
E is the fishing effort. Notice that C = qEB is the catch proportional to fishing effort E and to population size B. However,
t ignores the inherent environmental variability faced by fishers. It is more convenient to incorporate this random effect
nto a model by changing the differential equation to a stochastic differential equation. As Brites et al. [2], the state of
iomass B(t) is described by the following stochastic differential equation:

dB(t) = rB(t)
(
1 −

B(t)
K

)
dt − qE(t)B(t)dt + σB(t)dW (t) (1)

where σ is the positive constant volatility measuring the strength of environmental fluctuations, W (t) is the
one-dimensional standard brownian motion.
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Environmentally driven long-term changes in fish populations, which can play a major role in determining how such
opulations respond to fishing pressure, are rapidly being recognized as a critical problem in fisheries science [3]. The life
ycle of African fish species of river is closely related to the seasons — reproduction almost always occurring just prior to,
r during, floods [4–6]. Floods appear to be essential for the completion of their reproductive cycle for most species: the
bsence of floods due to the drought in the Sahel has caused a decline in fish reproduction in the central Niger Delta, the
enegal River and Lake Chad (Stauch, personal communication). There is some evidence that flood intensity acts in favor
f reproduction, as it has been observed that the structured age class related to the high floods in the Kafu were more
aried [7].
In this view, we consider only two seasons in this paper: (i) the flood period with reduced fishing and intensive

eproduction, and (ii) the dry season with intensive fishing and reduced reproduction. This generates a drift and a volatility
epending of the season. If we denote flood period by 1 and the dry season by 2, the above SDE Eq. (1) of the state process
(t) is extended to the following SDE which captures the regime switching:

dB(t) = rα(t)B(t)
(
1 −

B(t)
Kα(t)

)
dt − qα(t)Eα(t)(t)B(t)dt + σα(t)B(t)dW (t) (2)

where α(t) ∈ {1, 2} refers to regime.
In [2] and [8], the instantaneous profit from the harvest of the population biomass denoted by π (Bt , ht ) is defined by:

π (Bt , ht ) = Ptht − c(Bt , ht ) (3)

where ht (= qEtBt ) is the volume of harvest, Bt is the stock of the resource, c(Bt , ht ) is the cost function, and Pt is the price
f the harvest at the time of decision making.
Many authors [8–10] considered the price of the harvest P(t) as a stochastic process. In this paper, we assume as

Kvamsdal et al. [9] that the price Pt is a mean-reverting or Ornstein–Uhlenbeck process defined by:

dPt = θ (p̄0 − p̄1ht − Pt )dt + σPdWP (t) (4)

where the positive constant parameters are, the reversion speed θ , the maximum price p̄0, the slope of the inverse demand
curve p̄1, and the volatility of the spot price σP . Note that the mean (or long-term) price p̄0 − p̄1ht may depend upon the
harvest level and WP (t) is the standardized Brownian motion.

Authors [2,8,9,11–13] maximize the present value of the fisherman’s profit. More formally, they solve the optimization
problem, in the infinite horizon time, defined by:

maxht

∫
+∞

0
e−βtπ (Bt , ht )dt (5)

where β > 0 is the continuous discount rate and e−βt is the opportunity cost of holding money in hands instead of
investing it.

These frameworks did not take into account the utility of the fisherman. In others words, they did not consider the
behavior of the fisherman with respect to risk. It is important to notice that the authors [14–16] find that all fishers are
risk-averse. Consequently, we will examine this problem of fishery using expected utility approach of the Mathematical
Economics. The main idea of this approach is to maximize the present value of the expected utility of the fisherman’s

profit. In this paper, we choose the constant relative risk-aversion (CRRA) utility function defined by U(x) =
x1−γ

1 − γ
where

signifies the lottery prize and γ is the CRRA coefficient to be estimated: with γ = 0 denoting risk neutrality, γ > 0
ndicating risk aversion, and γ < 0 denoting risk loving [17].

In addition, the approach considered in Eq. (5) use infinite time horizon. This requires the existence of linear growth
onditions on drift part of the logistic process for our solution to hold, raising the question of whether another solution
ay exist or not. Since, the time horizon also plays a crucial role in optimal policies, we consider in this paper the finite

ime horizon T.
The main contribution of this paper is to study the fisherman problem in finite time horizon by using the expected

tility approach in the regime switching environment.
The outline of this paper is as follows. In Section 2, we describe the model setup and we formulate a stochastic optimal

ontrol problem. In Section 3, we use the dynamic programming principle, under some additional assumptions, to prove
he continuity of the value functions and we derive that these are unique viscosity solutions. In Section 4, we apply
umerical method on optimal control problem to implement these value functions and we display some simulations
or optimal effort given values of (known and new) parameters. In Section 5, we give some concluding remarks. In the
ppendix, we prove some theorems, which allow us to derive the existence and uniqueness of the viscosity solution.

. Mathematical model

.1. Stochastic logistic growth model

Throughout this paper, (Ω,F, {Ft}t∈[0,T ],P) is a complete probability space with a filtration {Ft}t∈[0,T ] satisfying the
sual conditions (i.e. it is increasing and right continuous while F0 contains all P-null sets). Let W (t) and WP (t), t ≥ 0,
e scalar independent Brownian motions defined on this probability space.
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As we specify in Introduction, the stochastic model for biological growth that we use in this paper is defined by the
SDE (2). This equation can be rewritten as the following 2 equations:

dB(t) = f (t, B(t), i)dt + g(t, B(t), i)dW (t); i = 1, 2 (6)

where

f (t, B(t), i) = riB(t)
(
1 −

B(t)
Ki

)
− qiEi(t)B(t) and g(t, B(t), i) = σiB(t), (7)

with the initial condition B(0) = b such that 0 < b < K . In the following, we define more formally α(t) = i ∈ {1, 2} and
its related parameters:

α(t) is a right-continuous-time Markov chain, Ft-adapted with finite state space S = {1, 2} and generator Q = (qij) ∈

R2
× R2 such that qij ≥ 0 for i ̸= j and

∑2
j=1 qij = 0. We assume that the Markov chain α(.) is independent of the

Brownian motions WP (.) and W (.),

rα(t) intrinsic rate of growth in regime α(t),

Kα(t) carrying capacity in regime α(t),

qα(t) catchability parameter in regime α(t),

Eα(t)(t) is the fishing effort which depends on the current regime α(t),

α(t) is volatility in regime α(t).

otice that we have

f : R+ × R+ × S → R and g : R+ × R+ × S → R.

The resulting stochastic differential equations do not satisfy the standard assumptions for existence and uniqueness of
solutions, namely, linear growth and the Lipschitz condition. Nevertheless, for any positive initial condition, the solution
exists and is unique under a hypothesis that both f and g satisfy the local Lipschitz condition. The solution of this equation
is (for more details see supplementary material)

Bt,i =

Ki exp
[∫ t

0

(
ri − qiEi(s) −

1
2
σ 2
i

)
ds +

∫ t

0
σidWs

]
Ki/B0,i + ri

∫ t

0
exp

[∫ s

0

(
ri − qiEi(τ ) −

1
2
σ 2
i

)
dτ +

∫ s

0
σidWτ

]
ds
.

2.2. Optimization problem

We consider, as the authors [2,18,19], the cost of harvest defined by the quadratic function in the effort:

c(Bt , Et ) = (c1 + c2E(t))E(t) (8)

where c1, c2 > 0 are constants. By substituting this cost function in Eq. (3), the profit function becomes:

π (Bt , Pt , E) = (qBtPt − c1 − c2E(t))E(t).

We introduce a performance criterion for each i ∈ S denoted by Vi and defined by: for a time t in the horizon [0, T ],
for bt and pt ∈ R+,

Vi(t, bt , pt ) = Ebt ,pt ,i

[∫ T

t
e−β(s−t)U(π (Bt,bt

s , P t,pt
s , Es))ds + e−β(T−t)Vi(B

t,bt
T )

]
where U is crra utility function and Ebt ,pt ,i is the conditional expectation given B(t) = bt , P(t) = pt and α(t) = i under P.
In the details we have

Vi(t, bt , pt ) = Ebt ,pt ,i

[∫ T

t
e−β(s−t) π (B

t,bt
s , P t,pt

s , Es, i)1−γ

1 − γ
ds + e−β(T−t)Vi(B

bt
T )

]
.

t is important to notice that Vi is the objective function given the regime i, and the effort E(t) is the control process.

hroughout this paper, we set: l(s, Bt,bt
s , P t,pt

s , Es, i) =
π (Bt,bt

s , P t,pt
s , Es, i)1−γ

1 − γ
and m(T , BT ) = Vi(B

bt
T ).

Considering the initial data (t0, b0, p0) = (0, b, p) the objective function becomes

Vi(0, b, p) = Eb,p,i

[∫ T

0
e−βsl(s, Bb

s , P
p
s , Es, i)ds + e−βTm(T , Bb

T )
]
. (9)

We say that the control process E(t) is admissible if the following three conditions are satisfied:
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. the SDE Eq. (2) for the state process B(t) has a unique strong solution;

2. the SDE Eq. (4) for the state process P(t) has a unique strong solution;

3. Eb,p,i

[∫ T
0

⏐⏐⏐⏐e−βt π (B
b
t , P

p
t , Et , i)1−γ

1 − γ

⏐⏐⏐⏐ dt +
⏐⏐e−βTV (Bb

T )
⏐⏐] < ∞.

Throughout this paper, A is the set of admissible controls. Since the effort is bounded (for more details see [2]), A is the
set of admissible bounded controls.

The stochastic control problem is to find an optimal control E∗
∈ Ai such that:

vi(b, p) = sup
E∈Ai

Vi(b, p).

3. Dynamic programming and viscosity solutions

The Hamilton–Jacobi–Bellman equations associated with this problem is a variational inequality involving, at least
heuristically, a nonlinear second order parabolic differential equations:

∂vi

∂t
(t, bt , pt ) + sup

E∈Ai

{
−βvi(t, bt , pt ) +

π (bt , pt , Et )1−γ

1 − γ
+ Lvi(t, bt , pt )

}
= 0, (10)

vi(T , bt , pt ) = κγ
b1−γt

1 − γ
for i ∈ {0, 1} and κ > 0 (11)

where L is an operator defined by:

Lvi(t, bt , pt ) = θ (p̄0 − p̄1qEtbt − pt )
∂vi

∂p
(t, bt , pt ) + f (bt , Et )

∂vi

∂b
(t, bt , pt )

+
1
2
σ 2
P
∂2vi

∂p2
(t, bt , pt ) +

1
2
g2(bt , Et )

∂2vi

∂b2
(t, bt , pt ) + qij(vj(t, bt , pt ) − vi(t, bt , pt )). (12)

As it is well-known, there is not, in general, a smooth solution of the Eq. (10) hence we find the solution in the
viscosity sense, as introduced by [20], in Section 3.2. We denote by E∗

re the regular optimal solution in the absence of
control constraints of Eq. (10). The optimal harvest E∗(t) is a composite bang-regular-bang solution, consequently

E∗(t) =

{0 if E∗
re(t) < 0

E∗
re(t) if 0 ≤ E∗

re(t) ≤ Emax
Emax if Emax < E∗

re(t)

}
.

In addition to these, we know that the fishery is valueless if the population goes extinct and therefore add the condition
Vi(0, Pt ) = 0, which must hold for all Pt and i.

3.1. On the regularity of value functions

In this section, we study the growth and continuity properties of the value functions.
We shall make the following assumptions: there exists ρ > 0 such that for all s, t ∈ [0, T ], b, b′

∈ R+, p, p′
∈ R+ and

E ∈ A

|l(t, b, p, E) − l(s, b′, p′, E)| + |m(b, p) − m(b′, p′)| ≤ ρ
[
|t − s| + |b − b′

| + |p − p′
|
]
, (13)

and the global linear growth conditions:

|l(t, b, p, E)| + |m(b, p)| ≤ ρ [1 + |b| + |p|] . (14)

Lemma 3.1. For any k ∈ [0, 2] there exists C = C(k, K , T ) > 0 such that for all h, t ∈ [0, T ], b, p, bt , pt ∈ R+:

E|Bt,bt
h |

k
≤ C(1 + |bt |k); E|P t,pt

h |
k
≤ C(1 + |pt |k).

E|Bt,bt
h − bt |

k
≤ C(1 + |bt |k)h

k
2 ; E|P t,pt

h − pt |
k
≤ C(1 + |pt |k)h

k
2 .

E|Bt,bt
h − Bt,b′

t
h |

k
≤ C |bt − b′

t |
2
; E|P t,pt

h − P t,p′
t

h |

k
≤ C |pt − p′

t |
2
.

E
[
sup
0≤s≤h

|Bt,bt
h |

]k
≤ C(1 + |bt |k)h

k
2 ; E

[
sup
0≤s≤h

|P t,pt
h |

]k
≤ C(1 + |pt |k)h

k
2 .



Nyassoke Titi G. C., Sadefo Kamdem J. and Fono L. A. / Results in Applied Mathematics 7 (2020) 100125 5

3

i

f

D

Proof of Lemma 3.1 is available as supplementary material.

Proposition 3.1. For any i ∈ S , the value function denoted by vi(s, b, p) satisfies a linear growth condition and is also Lipschitz
in couple (b, p) uniformly in t. There exists a constant C > 0, such that

0 ≤ vi(s, bs, ps) ≤ C(1 + |bs| + |ps|), ∀(s, bs, ps) ∈ [0, T ] × R+ × R+.

|vi(s, bs, ps) − vi(s, b′

s, p
′

s)| ≤ C(|bs − b′

s| + |ps − p′

s|), ∀s ∈ [0, T ], bs, b′

s ∈ R+, ps, p′

s ∈ R+.

Proposition 3.2. Under assumptions (13) and (14) the value function v ∈ C0([0, T ] × R+ × R+). More precisely, there exists
a constant C > 0 such that for all t, s ∈ [0, T ], bt , bs ∈ R+, pt , ps ∈ R+,

|vi(t, bt , pt ) − vi(s, bs, ps)| ≤ C
[
(1 + |bt | + |pt |)|s − t|

1
2 + |bt − bs| + |pt − ps|

]
.

Proofs of Propositions 3.1 and 3.2 are available as supplementary material.

.2. Existence of viscosity solution

In this section, we will first define what we mean by viscosity solutions. Then we will prove that the value function
s a viscosity solution.

From the optimization problem given by Eqs. (10) and (11), we have the Hamilton–Jacobi–Bellman equations as
ollows:

∂vi

∂t
(t, bt , pt ) + sup

E∈Ai

{
−βvi(t, bt , pt ) +

π1−γ

1 − γ
+ θ (p̄0 − p̄1qEibt − pt )

∂vi

∂p
(t, bt , pt )

+

[
ribt
(
1 −

bt
Ki

)
− qiEibt

]∂vi
∂b

(t, bt , pt ) +
1
2
σ 2
P
∂2vi

∂p2
(t, bt , pt ) +

1
2
σ 2b2t

∂2vi

∂b2
(t, bt , pt )

+qij(vj(t, bt , pt ) − vi(t, bt , pt ))
}
= 0. (15)

The corresponding pseudo-Hamiltonian has the following form:

H
(
i, s, bs, ps, ui,

∂ui

∂s
,
∂ui

∂b
,
∂ui

∂p
,
∂2ui

∂b2
,
∂2ui

∂p2

)
=
∂ui

∂s
(s, bs, ps) + sup

E∈Ai

{
−βui(s, bs, ps) +

π (bs, ps, Es)1−γ

1 − γ
+ Lui(s, bs, ps)

}
= 0.

We have the following systems:⎧⎪⎨⎪⎩H
(
i, s, bs, ps, ui,

∂ui

∂s
,
∂ui

∂b
,
∂ui

∂p
,
∂2ui

∂b2
,
∂2ui

∂p2

)
= 0 for (i, s, bs, ps) ∈ S × [0, Ti] × R+ × R+

ui(T , bs, ps) = κγ
b1−γs
1−γ for i, j ∈ {0, 1} κ > 0.

(16)

We recall that

π (Bs, Ps, Es) = (qBsPs − c1 − c2E(s))E(s).

In order to study the possibility of existence and uniqueness of a solution of (16), we use a notion of viscosity solution
introduced by [20].

Let denote the set of measurable functions on [0, T ] × R+ × R+ with polynomial growth of degree q ≥ 0 as,

Cq([0, T ] × R+ × R+)
= {φ : [0, T ] × R+ × R+,measurable | ∃C > 0, |φ(t, b, p)| ≤ C(1 + |b|q + |p|q)}.

efinition 3.1. We say that ui ∈ C0([0, T ] × R+ × R+) is called

i. a viscosity subsolution of (16) if for any i ∈ S , ui(T , b, p) ≤ κγ b1−γ
1−γ , for all b ∈ R+, p ∈ R+ and for all functions

φ ∈ C1,2,2([0, T ]×R+ ×R+)∩C2([0, T ]×R+ ×R+) and (t̄, b̄, p̄) such that ui −φ attains its local maximum at (t̄, b̄, p̄),

H
(
i, t̄, b̄, p̄, φ(t̄, b̄, p̄),

∂φ(t̄, b̄, p̄)
∂s

,
∂φ(t̄, b̄, p̄)

∂b
,
∂φ(t̄, b̄, p̄)

∂p
,
∂2φ(t̄, b̄, p̄)

∂b2
,
∂2φ(t̄, b̄, p̄)

∂p2

)
≥ 0, (17)
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ii. a viscosity supersolution of (16) if for any i ∈ S , ui(T , b, p) ≥ κγ b1−γ
1−γ , for all b ∈ R+, p ∈ R+ and if for all functions

φ ∈ C1,2,2([0, T ]×R+ ×R+)∩C2([0, T ]×R+ ×R+) and (t, b, p) such that ui −φ attains its local minimum at (t, b, p),

H

(
i, t, b, p, φ(t, b, p),

∂φ(t, b, p)

∂s
,
∂φ(t, b, p)

∂b
,
∂φ(t, b, p)

∂p
,
∂2φ(t, b, p)

∂b2
,
∂2φ(t, b, p)

∂p2

)
≤ 0, (18)

iii. a viscosity solution of (16) if it is both a viscosity sub- and a supersolution of Eq. (16).

heorem 3.1. Under assumption (13), the value function v is a viscosity solution of Eq. (15).

roof of Theorem 3.1. See Appendix A.

.3. Comparison principle: uniqueness of the viscosity solution

In this section, we prove a comparison result from which we obtain the uniqueness of the solution of the coupled
ystem of partial differential equations. In proving comparison results for viscosity solutions, the notion of parabolic
uperjet and subjet defined by Crandall, Ishii and Lions [20] is particularly useful. Thus, we begin by

efinition 3.2. Given v ∈ Co([0, T ] × R × R × S) and (t, b, p, i) ∈ [0, T ) × R × R × S , we define the parabolic superjet:

P2,+v(t, b, p, i) =

{
(c, q,M) ∈ R × R2

× S2
: v(s, b′, p′, i) ≤ v(t, b, p, i)

+c(s − t) + q.((b′
− b), (p′

− p)) +
1
2
((b′

− b), (p′
− p)).M((b′

− b), (p′
− p))

+o(|((b′
− b), (p′

− p))|2) as (s, b′, p′) → (t, b, p)
}

and its closure:

P̄2,+v(t, b, p, i) =

{
(c, q,M) = lim

n→∞
(cn, qn,Mn)

with (cn, qn,Mn) ∈ P2,+v(tn, bn, pn, i) and

lim
n→∞

(tn, bn, pn, v(tn, bn, pn, i)) = (t, b, p, v(t, b, p, i))
}
.

Similarly, we define the parabolic subjet P̄2,−v(t, b, p, i) = −P̄2,+(−v)(t, b, p, i) and its closure P̄2,−v(t, b, p, i) =

−P̄2,+(−v)(t, b, p, i).

It is proved in [21] that

P2,+(−)v(t, b, p, i) =

{(
φ

∂t
(t, b, p, i),D(b,p)φ(t, b, p, i),D2

(b,p)φ(t, b, p, i)

and v − φ has a global maximum (minimum) at (t, b, p, i)
)}

.

The previous notions lead to new definition of viscosity solutions.

Definition 3.3. ui ∈ C0([0, T ] × R∗
+

× R∗
+
) satisfying the polynomial growth condition is a viscosity solution of (16) if

(1) for any test-function φ ∈ C1,2,2([0, T ] × R∗
+

× R∗
+
), if (t, b, p) is a local maximum point of ui(., ., .) − φ(., ., .) and if

(c, q, L1) ∈ P̄2,+u(t, b, p, i) with c = ∂φ(t, b, p)/∂t , q = D(b,p)φ(t, b, p) and L1 ≤ D2
(b,p)φ(t, b, p), then

H
(
i, s, b, p, ui,

∂ui

∂s
,
∂ui

∂b
,
∂ui

∂p
,
∂2ui

∂b2
,
∂2ui

∂p2

)
≤ 0,

in this case u is a viscosity subsolution;
(2) for any test-function φ ∈ C1,2,2([0, T ] × R∗

+
× R∗

+
), if (t, b, p) is a local minimum point of ui(., ., .) − φ(., ., .) and if

(c, q, L2) ∈ P̄2,−u(t, b, p, i) with c = ∂φ(t, b, p)/∂t , q = D(b,p)φ(t, b, p) and L2 ≥ D2
(b,p)φ(t, b, p), then

H
(
i, s, b, p, ui,

∂ui

∂s
,
∂ui

∂b
,
∂ui

∂p
,
∂2ui

∂b2
,
∂2ui

∂p2

)
≥ 0,

in this case u is a viscosity supersolution.
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a

a

(

The authors [22] proved that Definitions 3.2 and 3.3 are equivalent. The second definition is particular suitable for the
discussion of a maximum principle which is the backbone of the uniqueness problem for the viscosity solutions theory.

Before state next lemma, we first introduce the inf and sup-convolution operations we are going to use.

Definition 3.4. For any usc (upper semi-continuous) function U : Rm
→ R and any lsc (lower semi-continuous) function

V : Rm
→ R, we set

Rα[U](z, r) = sup
|Z−z|≤1

{
U(Z) − r · (Z − z) −

|Z − z|
2α

}

Rα[V ](z, r) = inf
|Z−z|≤1

{
V (Z) + r · (Z − z) +

|Z − z|
2α

}
Rα[U](z, r) is called the modified sup-convolution and Rα[V ](z, r) the modified inf-convolution. Notice that Rα[V ](z, r) =

−Rα[−U](z, r).

Lemma 3.2 (Nonlocal Jensen–Ishii’s Lemma [22]). For any i ∈ S , let ui(., ., .) and vi(., ., .) be, respectively, a usc and lsc function
defined on [0, T ]×R+×R+ and φ ∈ C1,2,2([0, T ]×R2

+
×R2

+
)∩C2([0, T ]×R2

+
×R2

+
) if (t̂, (b̂1, p̂1), (b̂2, p̂2)) ∈ [0, T ]×R2

+
×R2

+

is a zero global maximum point of ui(t, b, p) − vi(t, b′, p′) − φ(t, (b, p), (b′, p′)) and if c − d := Dtφ(t̂, (b̂1, p̂1), (b̂2, p̂2)),
q := D(b,p)φ(t̂, (b̂1, p̂1), (b̂2, p̂2)), r := −D(b′,p′)φ(t̂, (b̂1, p̂1), (b̂2, p̂2)), then for any K > 0, there exists α(K ) > 0 such that, for
ny 0 < α < α(K ), we have: there exist sequences tk → t̂ , (bk, pk) → (b̂1, p̂1), (b′

k, p
′

k) → (b̂2, p̂2), qk → q, rk → r, matrices
Mk, Nk and a sequence of functions φk, converging to the function φα := Rα[φ](((b, p), (b′, p′)), (q, r)) uniformly in R2

+
× R2

+

nd in C2(B((t̂, (b̂1, p̂1), (b̂2, p̂2)), K )), such that

ui(tk, (bk, pk)) → ui(t̂, (b̂1, p̂1)), vi(tk, (b′

k, p
′

k)) → vi(t̂, (b̂2, p̂2))

tk, (bk, pk), (b′

k, p
′

k)) is a global maximum of ui(., (., .)) − vi(., (., .)) − φ(., (., .), (., .))

(ck, qk,Mk) ∈ P̄2,+ui(tk, (bk, pk))

(−dk, rk,Nk) ∈ P̄2,−vi(tk, (b′

k, p
′

k))

−
1
α

(
I 0
0 I

)
≤

(
Mk 0
0 −Nk

)
≤ D2

(b,p),(b′,p′)φ(tk, (bk, pk), (b
′

k, p
′

k))

Here ck − dk = ∇tφ(tk, (bk, pk), (b′

k, p
′

k)), qk = ∇(b,p)φ(tk, (bk, pk), (b′

k, p
′

k)), rk = ∇(b′,p′)φ(tk, (bk, pk), (b′

k, p
′

k)) and
φα(t̂, (b̂1, p̂1), (b̂2, p̂2)) = φ(t̂, (b̂1, p̂1), (b̂2, p̂2)), ∇φα(t̂, (b̂1, p̂1), (b̂2, p̂2)) = ∇φ(t̂, (b̂1, p̂1), (b̂2, p̂2)).

We refer the reader to the mentioned paper for a proof. Now we can state our comparison result.

Theorem 3.2 (Comparison Principle). If ui(t, b, p) and vi(t, b, p) are continuous in (t, b, p) and are, respectively, viscosity
subsolution and supersolution of the HJB system (15) with at most linear growth, then

ui(t, b, p) ≤ vi(t, b, p) for all (t, b, p, i) ∈ [0, T ] × R+ × R+ × S.

Proof of Theorem 3.2. See Appendix B.

The following corollary follows from Theorems 3.1 and 3.2.

Corollary 3.1. The value function v is a unique viscosity solution of Eq. (15) that has at most a linear growth.

4. Numerical approximation and simulation

To numerically approximate the optimal effort, we use the parameter values (r1, K1, q, Emax, B0, p0, β , c1, c2) from [2]
and (θ , p̄0, p̄1, σ , σp) from [9], to which we add assumed parameter values (T , r2, K2, κ , Bmin and γ ). We get Table 1. Notice
that we did not consider rigorous statistical methods to estimate stochastic parameters.

4.1. Monotone finite difference

In this section, we present a numerical solution. We consider the switching process α(t) where α(t) ∈ S = {1, 2}
represents the season. In particular, α(t) = 1 stands for the flood period with reduced fishing and intensive reproduction
and α(t) = 2 the dry season with intensive fishing and reduced reproduction. The generator of α(t) is given by(

0.5 −0.5
−0.5 0.5

)
.

Note that the generator’s values are chosen arbitrarily and one can choose other values without affecting the conclusion.
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Table 1
Parameters and their values.
Parameters Description Values Units

r1 , r2 Intrinsic growth rate 0.71, 0.68 yr−1

K1 , K2 Carrying capacity 80.5 × 106 , 0.75 × K1 kg
q = q1 = q2 Catchability coefficient 3.30 × 10−6 SFU−1 yr−1

Emax Maximum fishing effort 0.7r/q SFU
Bo Initial population size 0.5K kg
Bmin Minimum population size 0.4K kg
β Discount factor 0.05 yr−1

p0 Price per unit yield 1.59 $kg−1

c1 Linear cost parameter 0.96 × 10−6 $SFU−1 yr−1

c2 Quadratic cost parameter 0.10 × 10−6 $SFU−2 yr−1

θ Mean-reversion speed 0.59
p̄0 Price of the harvest 12.65 × 10−1 $kg−1

p̄1 Strength of demand 0.00839 × 10−1 $kg−1

σ Volatility of the fish stock 0.3
σp Volatility of the fish price 0.3
T Time horizon 5 yr
γ Risk aversion coefficient 0.3
κ Utility function coefficient 0.7

For our problems we need to ensure that our discretization methods converge to the viscosity solution and determine
he optimal effort. Using the basic results of [23], this ensures that our numerical solutions convergence to the viscosity
olution. Since it is well known that the fully implicit upwind scheme is unconditionally monotone, regardless of the size
f the time step, we employ an implicit scheme and use upwind differences for the first order derivatives for stability
easons. Second order derivatives are approximated by central spaces differences. For details see [24].

Define a variable τ = T − t and a function w(τ , b, p) = v(t, b, p). The HJB equations (10) and (11) can be rewritten as

−
∂wi

∂t
(τ , b, p) + sup

E∈Ai

{
−βwi(τ , b, p) +

π (b, p, E)1−γ

1 − γ
+ Lwi(τ , b, p)

}
= 0, (19)

wi(0, b, p) = κγ
b1−γ

1 − γ
for i ∈ {0, 1} and κ > 0. (20)

To approximate the solution to (19) we discretized variables τ , b and p with stepsizes ∆τ , ∆b and ∆p respectively.
e consider 0 ≤ τ ≤ T , Bmin ≤ b ≤ 2K and also, 0 ≤ p ≤ pmax.
Discretize time τ and spatial variables b and p:

∆τ =
T
N
, ∆b =

2K − Bmin

Nb
, ∆p =

pmax

Np

τn = n∆τ , 0 ≤ n ≤ N, bk = Bmin + k∆b, 0 ≤ k ≤ Nb, pl = l∆pmax, 0 ≤ l ≤ Np.

The value of wi at a grid point (τn, bk, pl) in the regime i is denoted by wn
k,l(i). The derivatives of wi are approximated by

∂wi

∂τ
≈
wn+1

k,l (i) − wn
k,l(i)

∆τ
,
∂2wi

∂p2
≈
wn+1

k,l+1(i) + wn+1
k,l−1(i) − 2wn+1

k,l (i)
(∆p)2

,
∂2wi

∂b2
≈
wn+1

k+1,l(i) + wn+1
k−1,l(i) − 2wn+1

k,l (i)
(∆b)2

,

Θi
∂wi

∂b
≈

⎧⎪⎪⎨⎪⎪⎩
Θi
wn+1

k+1,l(i) − wn+1
k,l (i)

∆b
if Θi > 0

Θi
wn+1

k,l (i) − wn+1
k−1,l(i)

∆b
if Θi < 0

and

Φi
∂wi

∂p
≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φi
wn+1

k,l+1(i) − wn+1
k,l (i)

∆p
if Φi > 0

Φi
wn+1

k,l (i) − wn+1
k,l−1(i)

∆p
if Φi < 0.

Discretizing Eq. (19) with an initial condition wi(0, b, p) = κγ
b1−γ

. We get the following five-point stencil.

1 − γ
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wn
k−1,l

wn
k,l−1

wn
k,l w

n
k+1,l

wn
k,l+1

If we define the vector and constants

wn′

=

[
wn

1,1, w
n
2,1, . . . , w

n
Nb,1, w

n
1,2, w

n
2,2, . . . , w

n
Nb,2, . . . , w

n
Nb,Np

]
.

ai = 1 + β∆τ +
σ 2
p∆τ

(∆p)2
+
σ 2
B b

2
k∆τ

(∆b)2
+ qij∆τ +

∆τ

∆p
θ |p̄0 − p̄1qEibk − pl| +

∆τ

∆b

⏐⏐⏐⏐ribk (1 −
bk
Ki

)
− qEibk

⏐⏐⏐⏐ .
bi = −

σ 2
B b

2
k∆τ

2(∆b)2
−

max
(
ribk

(
1 −

bk
Ki

)
− qEibk; 0

)
∆b

∆τ .

ci = −
σ 2
B b

2
k∆τ

2(∆b)2
+

min
(
ribk

(
1 −

bk
Ki

)
− qEibk; 0

)
∆b

∆τ .

di = −
σ 2
p∆τ

2(∆p)2
−

max (θ (p̄0 − p̄1qEibk − pl); 0)
∆p

∆τ .

ei = −
σ 2
p∆τ

2(∆p)2
+

min (θ (p̄0 − p̄1qEibk − pl); 0)
∆p

∆τ .

fi = −
(qEibkpl − c1Ei − c2E2

i )
1−γ

1 − γ
∆τ .

We obtain a more manageable form of the difference equation:

inf
E∈Ai

{
aiwn+1

k,l + biwn+1
k+1,l + ciwn+1

k−1,l + diwn+1
k,l+1 + eiwn+1

k,l−1

−qij∆twn+1
k,l (j) + fi

}
= wn

k,l. (21)

Writing (21) in an appropriate matrix form,

inf
E∈Ai

{
AE
i w

n+1
i − Λjiwn+1

j + Fn+1
i

}
= wn

i .

4.2. Howard’s algorithm and the optimal effort

The study of the convergence of Howard’s algorithm (also known as the ‘‘policy iteration algorithm’’) was already done
by previous authors. We refer the reader to [25].

We denote by wn
i and wn+1

i the approximations at time n and n + 1.

Step 0: start with an initial value for the control E0 and with an initial value for the value function w0
i . Compute

the solution w1
i of AE0

i x − Λjiwn+1
j + Fn+1

i − wn
i = 0.

Step j → j + 1: given w
j
h, find E j+1

∈ Ai minimizing AE
i w − Λjiwn+1

j + Fn+1
i . Then compute the solution w

j+1
h of

AEj+1

i x − Λjiwn+1
j + Fn+1

i − wn
i = 0.

Final step: if |wj+1
i − wj

i| < ϵ, then set wn+1
i = wj+1

i .

In the practical implementation of the Howard’s algorithm, our main focus is estimating effort value i.e find the
argument of the minimum at each node. For doing so, we need to replace the controls set A by a finite subset of controls
A (see [26], Appendix A). This idea is compatible with the fishing activity.
N
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Table 2
Sustainable effort and the sensitivity analysis.
Regime Initial population size Constant harvesting effort

1 0.5 × K1 1.5061 × 103

2 0.5 × K2 1.4424 × 103

1 0.6 × K1 (sensitivity) 1.5061 × 103

2 0.6 × K2 (sensitivity) 1.4424 × 103

1 0.7 × K1 (sensitivity) 1.5061 × 103

2 0.7 × K2 (sensitivity) 1.4424 × 103

Fig. 1. The value functions and the corresponding optimal policy. On top K1 = 180.5 × 106 , r1 = 0.71 for regime 1, on bottom K2 = 0.75 × K1 ,
2 = 0.68 for regime 2, and A2 .
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w

Finite subsets for numerical tests are specified as following: A1 = {0, Emax}: bang–bang type optimal controls set,
A2 = {E0, E1, E2, . . . , E10}, A3 = {E ′

0, E
′

1, E
′

2, . . . , E
′

100}, where En = 0.1n × Emax, and E ′
n = 0.01n × Emax respectively. The

reader might choose his own discretization of controls set.
As shown in Fig. 1, the Howard’s algorithm based on finite subsets produces the estimate 0 except in few points of

the grid where we have exactly the same value, E1 or E ′

1. Furthermore, the value function is not typically monotone with
respect to the biomass population and the fish price when the subset contains estimate 0. That motivates us to establish
the optimal sustainable policy i.e estimate a constant harvesting effort.

We repeated exactly the same simulations as previously except that we have A4 = {0.01× Emax, 0.1× Emax, Emax}. We
found that the monotone convergence of the scheme based on the last subset generally occurs in 100 − 160 iterations
and in each point of the grid, we have the value 0.01× Emax. So, the maximal fishing effort Emax is not optimal for averse
risk fishers.

Finally, we varied initial population size in all simulations and displayed the estimate of the constant harvesting effort.
From Table 2, we found that the level of optimal effort was higher when the state of nature i = 1 i.e during the floods

ith the higher intrinsic growth rate, and it was lower when the state of nature i = 2 i.e in the dry season with the lower
intrinsic growth rate. Our results suggest that, the fishers should consider the climate changes in order to establish their
risk-averse decision rules.

5. Conclusion

This paper studied an finite-horizon optimal fishery problem in switching diffusion models. Using the dynamic
programming principle and stating some estimates, we proved that the value function is the solution of the associated
system of HJB equations in the viscosity sense. As an application, the optimal effort is deduced by using Howard’s
algorithm. Based on our initial choice of parameter values, the major result was that dry season and flood period have
a very strong effect on the fish reproduction and on the optimal effort. The dry season corresponds to the reduced
reproduction and the lower optimal effort than the flood period with the intensive reproduction.

These methodologies can be applied to similar comparison studies and other fishery models. Regarding further
research, one could investigate the effects of risk aversion in fishing effort, and the sensitivity of fishing policies to the
parameter values.
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Appendix A. Proof of Theorem 3.1

We establish the viscosity super- and sub-solution properties, respectively in the following two steps.

Step 1. vi(t, bt , pt ), i = 1, 2 is a viscosity super-solution of Eq. (15).
We already know that v ∈ C0([0, T ]×R+×R+). We first note that vi(T , b, p) = κγ b1−γ

1−γ so, the boundary condition
at time t = T is clearly satisfied. Let (s, bs, ps) ∈ [0, T ]×R+×R+, i ∈ S and φ ∈ C1,2,2([0, T ]×R+×R+)∩C2([0, T ]×

R+ × R+) such that vi(., ., .) − φ(., ., .) has a local minimum at (s, bs, ps). Let N(bs, ps) to be a neighborhood of
(s, bs, ps) where vi(., ., .) − φ(., ., .) take its minimum, we introduce a new test-function ψ as follows:

ψ(., ., ., j) =

{
φ(., ., .) + [vi(s, bs, ps) − φ(s, bs, ps)], if j = i,
vi(., ., .), if j ̸= i.

(A.1)

This helps us to suppose without any loss of generality that this minimum is equal to 0.
Let τα be the first jump time of α(t)

(
= α(t)bs,ps,i

)
, i.e. τα = min{t ≥ s : α(t) ̸= i}. Then τα > s, a.s. Let θs ∈ (s, τα)

be such that the state (Bbs,i, Pps,i) starts at (b , p ) and stays in N(b , p ) for s ≤ t ≤ θ . Applying the generalized
t t s s s s s



12 Nyassoke Titi G. C., Sadefo Kamdem J. and Fono L. A. / Results in Applied Mathematics 7 (2020) 100125
Itô’s formula to the switching process e−βtψ(t, Bt , Pt , α(t)), taking integral from t = s to t = θs ∧ h, where h > 0
is a positive constant, and then taking expectation we have

Ebs,ps,i

[
e−βθs∧hψ(θs ∧ h, Bθs∧h, Pθs∧h, α(θs ∧ h))

]
= e−βsψ(s, Bs, Ps, i) + Ebs,ps,i

[ ∫ θs∧h

s
e−βt

{
−βψ(t, Bt , Pt , α(t)) +

∂ψ(t, Bt , Pt , α(t))
∂t

+

[
riBt

(
1 −

Bt

K

)
− qEBt

]∂ψ(t, Bt , Pt , α(t))
∂b

+ θ (p̄0 − p̄1qEBt − Pt )
∂ψ(t, Bt , Pt , α(t))

∂p

+
1
2
σ 2B2

t
∂2ψ(t, Bt , Pt , α(t))

∂b2
+

1
2
σ 2
P
∂2ψ(t, Bt , Pt , α(t))

∂p2

+qα(t)j(ψ(t, Bt , Pt , j) − ψ(t, Bt , Pt , α(t)))
}

dt

]
, α(t) ̸= j. (A.2)

From hypothesis, for any t ∈ [s, θs ∧ h]

vi(t, B
bs
t , P

ps
t ) ≥ φ(t, Bbs

t , P
ps
t ) + vi(s, bs, ps) − φ(s, bs, ps) ≥ ψ(t, Bbs

t , P
ps
t , i). (A.3)

Recalling that (Bbs
s , P

ps
s ) = (bs, ps) and using Eqs. (A.1) and (A.3), we have

Ebs,ps,i

[
e−βθs∧hψ(θs ∧ h, Bθs∧h, Pθs∧h, α(θs ∧ h))

]
≥

+e−βsvi(s, bs, ps) + Ebs,ps,i

[ ∫ θs∧h

s
e−βt

{
−βvi(t, Bt , Pt ) +

∂ψ(t, Bt , Pt , α(t))
∂t

+

[
riBt

(
1 −

Bt

K

)
− qEBt

]∂ψ(t, Bt , Pt , α(t))
∂b

+ θ (p̄0 − p̄1qEBt − Pt )
∂ψ(t, Bt , Pt , α(t))

∂p

+
1
2
σ 2B2

t
∂2ψ(t, Bt , Pt , α(t))

∂b2
+

1
2
σ 2
P
∂2ψ(t, Bt , Pt , α(t))

∂p2

+qij(vj(t, Bt , Pt ) − vi(t, Bt , Pt ))
}

dt

]
. (A.4)

By Bellman’s principle

e−βsψ(s, bs, ps, i) = e−βsvi(s, bs, ps) = sup
E∈Ai

Ebs,ps,i

[ ∫ θs∧h

s
e−βt l(i, t, Bs,bs

t , P s,ps
t , Et )dt

+e−β(θs∧h)vi(θs ∧ h, Bs,bs
θs∧h, P

s,ps
θs∧h)

]
≥ sup

E∈Ai

Ebs,ps,i

[ ∫ θs∧h

s
e−βt l(i, t, Bs,bs

t , P s,ps
t , Et )dt

+e−β(θs∧h)ψ(θs ∧ h, Bs,bs
θs∧h, P

s,ps
θs∧h, i)

]
. (A.5)

Setting τ = E(θs ∧ h) combining (A.4) and (A.5) and multiplying both sides by 1/(τ − s) > 0, we obtain

sup
E∈Ai

Ebs,ps,i

[
1

τ − s

∫ θs∧h

s
e−βt

{
βvi(t, Bt , Pt ) −

∂ψ(t, Bt , Pt , α(t))
∂t

−

[
riBt

(
1 −

Bt

K

)
− qEBt

]∂ψ(t, Bt , Pt , α(t))
∂b

− θ (p̄0 − p̄1qEBt − Pt )
∂ψ(t, Bt , Pt , α(t))

∂p

−
1
2
σ 2B2

t
∂2ψ(t, Bt , Pt , α(t))

∂b2
−

1
2
σ 2
P
∂2ψ(t, Bt , Pt , α(t))

∂p2

−qij[vj(t, Bt , Pt ) − vi(t, Bt , Pt )] − l(i, t, Bs,bs
t , P s,ps

t , Et )
}

dt

]
≥ 0. (A.6)



Nyassoke Titi G. C., Sadefo Kamdem J. and Fono L. A. / Results in Applied Mathematics 7 (2020) 100125 13
Letting τ ↓ s and using the dominated convergence theorem, it turns out that

e−βs

[
−
∂ψ(s, bs, ps, i)

∂t
+ inf

E∈Ai

{
βvi(s, bs, ps) −[

ribs
(
1 −

bs
K

)
− qEbs

]∂ψ(s, bs, ps, i)
∂b

− θ (p̄0 − p̄1qEbs − ps)
∂ψ(s, bs, ps, i)

∂p

−
1
2
σ 2b2s

∂2ψ(s, bs, ps, i)
∂b2

−
1
2
σ 2
P
∂2ψ(s, bs, ps, i)

∂p2

−qij[vj(s, bs, ps) − vi(s, bs, ps)] − l(i, s, bs, ps, Es)
}]

≥ 0. (A.7)

This shows that the value function vi(t, bt , pt ), i = 1, 2, satisfies the viscosity super-solution property (18).
Step 2. vi(t, bt , pt ), i = 1, 2, is a viscosity sub-solution of (15).

We argue by contradiction. Assume that there exist an i0 ∈ S , a point (s, bs, ps) ∈ [0, T ] ×R∗
+

×R∗
+
and a testing

function φi0 ∈ C1,2,2([0, T ]×R∗
+

×R∗
+
)∩C2([0, T ]×R∗

+
×R∗

+
) such that vi0 (., ., .)−φi0 (., ., .) has a local maximum

at (s, bs, ps) in a bounded neighborhood N(bs, ps), vi0 (s, bs, ps) = φi0 (s, bs, ps), and

min

[
−
∂φi0 (s, bs, ps)

∂t
+ inf

E∈Ai0

{
βvi0 (s, bs, ps) −[

ri0bs
(
1 −

bs
K

)
− qEbs

]∂φi0 (s, bs, ps)
∂b

− θ (p̄0 − p̄1qEbs − ps)
∂φi0 (s, bs, ps)

∂p

−
1
2
σ 2b2s

∂2φi0 (s, bs, ps)
∂b2

−
1
2
σ 2
P
∂2φi0 (s, bs, ps)

∂p2
− qi0j[vj(s, bs, ps) − vi0 (s, bs, ps)]

−l(i0 , s, bs, ps, Es)
}
, vi0 (T , bs, ps) − κγ

b1−γs

1 − γ

]
> 0, i0 ̸= j. (A.8)

By the continuity of all functions involved in (A.8)(vi0 , φ
′

i0
, φ′′

i0
, qij, l, . . .), there exists a δ > 0 and an open ball

Bδ(bs, ps) ⊂ N(bs, ps) such that,

−
∂φi0 (t, bt , pt )

∂t
+ inf

E∈Ai0

{
βvi0 (t, bt , pt ) −[

ri0bt
(
1 −

bt
K

)
− qEbt

]∂φi0 (t, bt , pt )
∂b

− θ (p̄0 − p̄1qEbt − pt )
∂φi0 (t, bt , pt )

∂p

−
1
2
σ 2b2s

∂2φi0 (t, bt , pt )
∂b2

−
1
2
σ 2
P
∂2φi0 (t, bt , pt )

∂p2
− qi0j[vj(t, bt , pt ) − vi0 (t, bt , pt )]

−l(i0 , t, bt , pt , Et )
}
> δ, i0 ̸= j, (t, bt , pt ) ∈ Bδ(bs, ps) (A.9)

and

vi0 (T , bt , pt ) − κγ
b1−γt

1 − γ
> δ (t, bt , pt ) ∈ Bδ(bs, ps).

Let θδ = min{t ≥ s : (t, Bt , Pt ) ̸∈ Bδ(bs, ps)} be the first exit time of (t, Bt , Pt ) (= (t, Bs,bs
t , P s,ps

t )) from Bδ(bs, ps). Let
θs = θδ ∧ τα where τα is the first stopping time of α(t)bs,ps,i0 . Then θs > 0, a.s. For 0 ≤ t ≤ θs, we have

βvi0 (t, Bt , Pt ) −
∂φi0 (t, Bt , Pt )

∂t

−

[
ri0bt

(
1 −

Bt

K

)
− qEi0Bt

]∂φi0 (t, Bt , Pt )
∂b

− θ (p̄0 − p̄1qEBt − Pt )
∂φi0 (t, Bt , Pt )

∂p

−
1
2
σ 2b2s

∂2φi0 (t, Bt , Pt )
∂b2

−
1
2
σ 2
P
∂2φi0 (t, Bt , Pt )

∂p2
− qi0j[vj(t, Bt , Pt ) − vi0 (t, Bt , Pt )]

−l(i0 , t, Bt , Pt , Et ) > δ, i0 ̸= j, (t, Bt , Pt ) ∈ Bδ(bs, ps) (A.10)

and

vi0 (T , bt , pt ) − κγ
b1−γt

> δ (t, bt , pt ) ∈ Bδ(bs, ps). (A.11)

1 − γ
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As previously, we can replace φi0 by a new test-function ψ defined as follows:

ψ(., ., ., j) =

{
φi0 (., ., .), if j = i0,
vi0 (., ., .), if j ̸= i0.

(A.12)

For any first exit time τ ∈ [s, T ]. Applying Itô’s formula to the switching process e−βtψ(t, Bt , Pt , α(t)), taking
integral from t = s to t = (θs ∧ τ )− and then taking expectation yield

Ebs,ps,i

[
e−βθ∧τψ(θs ∧ τ , Bθs∧τ , Pθs∧τ , α(θs ∧ τ ))

]
= e−βsvi0 (s, bs, ps) + Ebs,ps,i

[ ∫ (θs∧τ )−

s
e−βt

{
−βψ(t, Bt , Pt , α(t)) +

∂ψ(t, Bt , Pt , α(t))
∂t

+

[
riBt

(
1 −

Bt

K

)
− qEiBt

]∂ψ(t, Bt , Pt , α(t))
∂b

+ θ (p̄0 − p̄1qEBt − Pt )
∂ψ(t, Bt , Pt , α(t))

∂p

+
1
2
σ 2B2

t
∂2ψ(t, Bt , Pt , α(t))

∂b2
+

1
2
σ 2
P
∂2ψ(t, Bt , Pt , α(t))

∂p2

+qα(t)j[vj(t, Bt , Pt ) − ψ(t, Bt , Pt , α(t))]
}

dt

]
, α(t) ̸= j (A.13)

in which we used Ebs,ps,i

[
e−βθs∧τψ(θs ∧ τ , Bθs∧τ , Pθs∧τ , α(θs ∧ τ ))

]
= Ebs,ps,i

[
e−βθs∧τψ(θs ∧ τ , Bθs∧τ , Pθs∧τ , α(θs ∧

τ )−)
]

due to continuity. Noting that the integrand in the RHS of (A.13) is continuous in t. Using (A.10), (A.11)

and that vi0 (t, Bt , Pt ) ≤ φi0 (t, Bt , Pt ) in (A.13). Also noting that α(t) = i0 for 0 ≤ t ≤ θs, it follows

e−βsvi0 (s, bs, ps)

≥ Ebs,ps,i0

[
e−βθs∧τφi0 (θs ∧ τ , Bθs∧τ , Pθs∧τ , α(θs ∧ τ ))

+

∫ (θs∧τ )

s
e−βt

{
βvi0 (t, Bt , Pt ) −

∂φi0 (t, Bt , Pt )
∂t

−

[
riBt

(
1 −

Bt

K

)
− qEiBt

]∂φi0 (t, Bt , Pt )
∂b

− θ (p̄0 − p̄1qEBt − Pt )
∂φi0 (t, Bt , Pt )

∂p

−
1
2
σ 2B2

t
∂2φi0 (t, Bt , Pt )

∂b2
−

1
2
σ 2
P
∂2φi0 (t, Bt , Pt )

∂p2

−qi0j[vj(t, Bt , Pt ) − vi0 (t, Bt , Pt )]
}

dt

]
, i0 ̸= j (A.14)

i.e

e−βsvi0 (s, bs, ps)

≥ Ebs,ps,i0

[
e−βτvi0 (τ , Bτ , Pτ , α(τ ))1{τ<θ} + e−βθsvi0 (θ, Bθs , Pθs , α(θs))1{τ≥θs}

+

∫ (θs∧τ )

s
e−βt{l(i0 , t, Bt , Pt , Et ) + δ

}
dt
]

≥ Ebs,ps,i0

[
e−βτ

[κγ
B1−γ
T

1 − γ
+ δ]1{τ<θs} + e−βθsvi0 (θs, Bθs , Pθs , α(θs))1{τ≥θs}

+

∫ (θs∧τ )

s
e−βt{l(i0 , t, Bt , Pt , Et ) + δ

}
dt
]

≥ Ebs,ps,i0

[
+

∫ (θs∧τ )

s
e−βt{l(i0 , t, Bt , Pt , Et )

}
dt + e−βθvi0 (θs, Bθs , Pθs , α(θs))1{τ≥θs}

+e−βτ
[κγ

b1−γs
]1{τ<θs}

]
+δEbs,ps,i0

[∫ (θs∧τ )

e−βtdt + e−βτ1{τ<θs}

]
. (A.15)
1 − γ s
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Now considering the estimate of the term Ebs,ps,i0

[∫ (θs∧τ )
s e−βtdt + e−βτ1{τ<θs}

]
, there exists a positive constant

C0 such that,

Ebs,ps,i0

[∫ (θs∧τ )

s
e−βtdt + e−βτ1{τ<θs}

]
≥ C0

(
1 − Ebs,ps,i0

[
e−βτα

])
.

For details see [27]. It follows that

vi0 (s, bs, ps)

≥ sup
τ∈[s,T ],E∈A

Ebs,ps,i0

[
+

∫ (θ∧τ )

s
e−βt{l(i0 , t, Bt , Pt , Et )

}
dt

+e−βθvi0 (θ, Bθ , Pθ , α(θ ))1{τ≥θ} + e−βτ
[κγ

B1−γ
T

1 − γ
]1{τ<θ}

]
+C0δ

(
1 − Ebs,ps,i0

[
e−βτα

])
(A.16)

which is a contradiction to the DP principle since Ebs,ps,i0

[
e−βτα

]
< 1. Therefore the value function vi(t, bt , pt ),

i = 1, 2, is a viscosity sub-solution of the system (2.8).

This completes the proof of Theorem 3.1.

Appendix B. Proof of Theorem 3.2

For ϱ, ϵ, δ, λ > 0, we define the auxiliary functions φ : (0, T ] × R2
+

× R2
+

→ R and Ξ : [0; T ] × R2
+

× R2
+

× S by

φ(t, (b, p), (b′, p′)) =
ϱ

t
+

1
2ϵ

|(b, p) − (b′, p′)|2 + δeλ(T−t)(|(b, p)|2 + |(b′, p′)|2)

nd

Ξ (t, (b, p), (b′, p′), i) = vi(t, b, p) − ui(t, b′, p′) − φ(t, (b, p), (b′, p′)).

By using the linear growth of vi and ui, we have for each i ∈ S

lim
|(b,p)|+|(b′,p′)|→∞

Ξ (t, (b, p), (b′, p′), i) = −∞.

hen, since vi and ui are uniformly continuous with respect to (t, b, p) on each compact subset of [0, T ]×R+ ×R+ ×S and
that S is a finite set,Ξ attains its global maximum at some finite point belonging to a compact K ⊂ [0, T ]×R2

+
×R2

+
×S say,

(tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ). Observing that 2Ξ
(
tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ

)
≥ Ξ

(
tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ

)
Ξ
(
tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ

)
and using the uniform continuity of vi and ui on K we have

1
ϵ
|(b1δϵ, p1δϵ) − (b2δϵ, p2δϵ)|2

≤ vi (tδϵ, (b1δϵ, p1δϵ))− vi
(
t̂δϵ, (b2δϵ, p2δϵ)

)
+ ui (tδϵ, (b1δϵ, p1δϵ))− ui (tδϵ, (b2δϵ, p2δϵ))

≤ 2C |(b1δϵ, p1δϵ) − (b2δϵ, p2δϵ)|.

hus,

|(b1δϵ, p1δϵ) − (b2δϵ, p2δϵ)| ≤ 2Cϵ (B.1)

here C is a positive constant independent of ϱ, ϵ, δ, λ. From the inequality,

2Ξ (T , (0, 0), (0, 0), αδϵ) ≤ 2Ξ (tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ)

nd the linear growth for vi and ui, we have:

δ (|(b1δϵ, p1δϵ)) |2+|
(
b2δϵ, p2δϵ |2

)
≤ e−λ(T−tδϵ )

[
vi (tδϵ, b1δϵ, p1δϵ)− vi (T , 0, 0)

+ui
(
T , 0, 0

)
− ui (tδϵ, b2δϵ, p2δϵ)

]
≤ e−λ(T−tδϵ )C2 (1 + |(b1δϵ, p1δϵ)| + |(b2δϵ, p2δϵ)|) . (B.2)

It follows that

δ
(
|(b1δϵ, p1δϵ)

)
|
2
+|(b2δϵ, p2δϵ |2)

≤ C2.
(1 + |(b1δϵ, p1δϵ)|+|(b2δϵ, p2δϵ)|)
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T

n
l

w
v

R

I

Consequently, there exists Cδ > 0 such that,

|(b1δϵ, p1δϵ)| + |(b2δϵ, p2δϵ)| ≤ Cδ. (B.3)

his inequality implies that for any fixed δ ∈ (0, 1), the sets {(b1δϵ, p1δϵ), ϵ > 0} and {(b2δϵ, p2δϵ), ϵ > 0} are bounded
by Cδ independent of ϵ. It follows from inequalities (B.2) and (B.3) that, possibly if necessary along a subsequence,
amed again

(
tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ

)
that there exists (b1δ0, p1δ0) ∈ R2

+
, tδϵ0 ∈ (0, T ] and αδϵ0 ∈ S such that:

imϵ↓0(b1δϵ, p1δϵ) = (b1δ0, p1δ0) = limϵ↓0(b1δϵ, p1δϵ), limϵ↓0 tδϵ = tδ0, limϵ↓0 αδϵ = αδ0.
If tδϵ = T then writing that Ξ

(
t, (b, p), (b, p), αδϵ

)
≤ Ξ

(
T , (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ

)
, we have

ui(t, b, p) − vi(t, b, p) −
ϱ

t
− 2δeλ(T−t)(|(b, p)|2)

≤ ui(T , (b1δϵ, p1δϵ)) − vi(T , (b2δϵ, p2δϵ)) −
ϱ

T

−
1
2ϵ

|(b1δϵ, p1δϵ) − (b2δϵ, p2δϵ)|2 − δ(|(b1δϵ, p1δϵ)|2 + |(b2δϵ, p2δϵ)|2)

≤ ui(T , (b1δϵ, p1δϵ)) − vi(T , (b2δϵ, p2δϵ))

= [ui(T , (b1δϵ, p1δϵ)) − vi(T , (b1δϵ, p1δϵ))]

+[vi(T , (b1δϵ, p1δϵ)) − vi(T , (b2δϵ, p2δϵ))]

≤ C1|(b1δϵ, p1δϵ) − (b2δϵ, p2δϵ)|

here the last inequality follows from the uniform continuity of vi and by assumption that ui(T , (b1δϵ, p1δϵ)) = κγ
b1−γ1δϵ
1−γ =

i(T , (b1δϵ, p1δϵ)). Sending ϱ, ϵ, δ ↓ 0 and using estimate (B.1), we have: ui(t, b, p) ≤ vi(t, b, p). Assume now that tδϵ < T .
Applying Lemma 3.2 with ui, vi and φ(t, (b, p), (b′, p′)) at the point (tδϵ, (b1δϵ, p1δϵ), (b2δϵ, p2δϵ), αδϵ) ∈ (0, T ) × R2

+
×

2
+

× S, for any ζ ∈ (0, 1) there are d ∈ R,Mδϵ,Nδϵ ∈ S2 such that:(
d −

ϱ

t2δϵ
− λδeλ(T−tδϵ )(|(bδϵ, pδϵ)|2 + |(b′

δϵ, p
′

δϵ)|
2),

1
ϵ
((bδϵ, pδϵ) − (b′

δϵ, p
′

δϵ))

+2δeλ(T−tδϵ )(bδϵ, pδϵ),Mδϵ + 2δeλ(T−tδϵ )I

)
∈ P̄2,+u(tδϵ, bδϵ, pδϵ, i)(

d,
1
ϵ
((bδϵ, pδϵ) − (b′

δϵ, p
′

δϵ)) − 2δeλ(T−tδϵ )(b′

δϵ, p
′

δϵ),Nδϵ − 2δeλ(T−tδϵ )I

)
∈ P̄2,−v(tδϵ, b′

δϵ, p
′

δϵ, i)

and

−
1
ζ

(
I 0
0 I

)
≤

(
Mδϵ 0
0 −Nδϵ

)
≤ D2

(b,p),(b′,p′)φ(tδϵ, (bδϵ, pδϵ), (b
′

δϵ, p
′

δϵ))

+ζ

(
D2
(b,p),(b′,p′)φ(tδϵ, (bδϵ, pδϵ), (b

′

δϵ, p
′

δϵ))
)2

≤
ϵ + ζ (2 + 4δϵeλ(T−t))

ϵ2

(
I −I

−I I

)
+ (2δ + 4ζ δ2ϵeλ(T−t))eλ(T−t)

(
I 0
0 I

)
.

Letting δ ↓ 0 and taking ζ =
ϵ

2
, we obtain

−
1
ϵ

(
I 0
0 I

)
≤

(
Mδϵ 0
0 −Nδϵ

)
≤

2
ϵ

(
I −I

−I I

)
.

t follows that

(bδϵ, pδϵ)Mδϵ

(
bδϵ
pδϵ

)
− (b′

δϵ, p
′

δϵ)Nδϵ

(
b′

δϵ

p′

δϵ

)

= ((bδϵ, pδϵ), (b′

δϵ, p
′

δϵ))
(
Mδϵ 0
0 −Nδϵ

)⎛⎜⎜⎝
(
bδϵ
pδϵ

)
(
b′

δϵ
′

)
⎞⎟⎟⎠
pδϵ
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w

≤ ((bδϵ, pδϵ), (b′

δϵ, p
′

δϵ))
[
2
ϵ

(
I −I

−I I

)]⎛⎜⎜⎝
(
bδϵ
pδϵ

)
(
b′

δϵ

p′

δϵ

)
⎞⎟⎟⎠

≤
2
ϵ
|(bδϵ, pδϵ) − (b′

δϵ, p
′

δϵ)|
2
.

Furthermore, the definition of the viscosity subsolution ui and supersolution vi implies that

min

[
βui0 (tδϵ, bδϵ, pδϵ) −

(
d −

ϱ

t2δϵ
− λδeλ(T−tδϵ )(|(bδϵ, pδϵ)|2 + |(b′

δϵ, p
′

δϵ)|
2)
)

+ inf
E∈Ai0

{
−

[
ri0bδϵ

(
1 −

bδϵ
K

)
− qEbδϵ

](1
ϵ
(bδϵ − b′

δϵ) + 2δeλ(T−t)bδϵ
)

−θ (p̄0 − p̄1qEbδϵ − ps)
(1
ϵ
(pδϵ − p′

δϵ) + 2δeλ(T−t)pδϵ
)

−
1
2
(σbδϵ; σP )(Mδϵ + 2δeλ(T−t)I)

(
σbδϵ
σp

)
−qi0j[uj(tδϵ, bδϵ, pδϵ) − ui0 (tδϵ, bδϵ, pδϵ)]

−l(i0 , tδϵ, bδϵ, pδϵ, Etδϵ )
}
, ui0 (T , bδϵ, pδϵ) − κγ

b1−γδϵ

1 − γ

]
≤ 0, i0 ̸= j

and

min

[
βvi0 (tδϵ, bδϵ, pδϵ) − d + inf

E∈Ai0

{
−

[
ri0bδϵ

(
1 −

bδϵ
K

)
− qEbδϵ

](1
ϵ
(bδϵ − b′

δϵ) + 2δeλ(T−t)b′

δϵ

)
−θ (p̄0 − p̄1qEbδϵ − ps)

(1
ϵ
(pδϵ − p′

δϵ) + 2δeλ(T−t)p′

δϵ

)
−

1
2
(σb′

δϵ; σP )(Nδϵ − 2δeλ(T−t)I)
(
σb′

δϵ

σp

)
−qi0j[vj(tδϵ, b

′

δϵ, p
′

δϵ) − vi0 (tδϵ, b
′

δϵ, p
′

δϵ)]

−l(i0 , tδϵ, b
′

δϵ, p
′

δϵ, Etδϵ )
}
, vi0 (T , bδϵ, pδϵ) − κγ

b1−γδϵ

1 − γ

]
≥ 0, i0 ̸= j.

Let us define operators AE(x, v, φ, X, Z) and BE(x, v).

AE(t, b, p, w, X, YZ) =

[
ri0b

(
1 −

b
K

)
− qEb

]
X + θ (p̄0 − p̄1qEb − ps)Y +

1
2
wZw′

BE(t, b, p, v) = qi0j[vj(t, b, p) − vi0 (t, b, p)].
By subtracting these last two inequalities and remarking that min(x; y)−min(z; t) ≤ 0 implies either x−z ≤ 0 or y−t ≤ 0,
e divide our consideration into two cases:

Case 1

β
[
ui0 (tδϵ, bδϵ, pδϵ) − vi0 (tδϵ, bδϵ, pδϵ)

]
+
ϱ

t2δϵ
+ λδeλ(T−tδϵ )(|(bδϵ, pδϵ)|2 + |(b′

δϵ, p
′

δϵ)|
2)

≤ sup
E∈Ai0

{
l(i0 , tδϵ, bδϵ, pδϵ, Etδϵ ) − l(i0 , tδϵ, b

′

δϵ, p
′

δϵ, Etδϵ )
}

+ sup
E∈Ai0

{
AE
(
tδϵ, bδϵ, pδϵ, (σbδϵ; σP ),

1
ϵ
(bδϵ − b′

δϵ) + 2δeλ(T−tδϵ )bδϵ,

1
ϵ
(pδϵ − p′

δϵ) + 2δeλ(T−tδϵ )pδϵ,Mδϵ + 2δeλ(T−tδϵ )I
)

−AE
(
tδϵ, b′

δϵ, p
′

δϵ, (σb
′

δϵ; σP ),
1
ϵ
(bδϵ − b′

δϵ) + 2δeλ(T−t)b′

δϵ,
1
ϵ
(pδϵ − p′

δϵ) + 2δeλ(T−tδϵ )p′

δϵ,

Nδϵ − 2δeλ(T−tδϵ )I
)}

+ sup
{

BE(tδϵ, bδϵ, pδϵu) − BE(tδϵ, b′

δϵ, p
′

δϵv)
}
≡ I1 + I2 + I3. (B.4)
E∈Ai0
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In view of condition (13) on l and from estimate 3.1, we have the classical estimates of I1 and I2:

I1 ≤C |(bδϵ, pδϵ) − (b′

δϵ, p
′

δϵ)|

I2 ≤C(
1
ϵ
|(bδϵ, pδϵ) − (b′

δϵ, p
′

δϵ)|
2) + 2δeλ(T−tδϵ )(1 + |(bδϵ, pδϵ)|2 + |(b′

δϵ, p
′

δϵ)|
2).

Using the Lipschitz condition for u and v, we have

I3 ≤ 2C |(bδϵ, pδϵ) − (b′

δϵ, p
′

δϵ)|.

Writing that Ξ (t, (b, p), (b, p), i) ≤ Ξ (tδϵ, (bδϵ, pδϵ), (bδϵ, pδϵ), i) for i ∈ S and using the inequality (B.4),

ui(t, b, p) − vi(t, b, p) −
ϱ

t
− 2δeλ(T−t)

|(b, p)|2 ≤

vi(tδϵ, bδϵ, pδϵ) − ui(tδϵ, bδϵ, pδϵ) −
ϱ

tδϵ
− 2δeλ(T−t)

|(bδϵ, pδϵ)|2 ≤

1
β

[
I1 + I2 + I3

]
−

ϱ

βt2δϵ
−
λ

β
δeλ(T−tδϵ )(|(bδϵ, pδϵ)|2 + |(b′

δϵ, p
′

δϵ)|
2)

this implies

ui(t, b, p) − vi(t, b, p) −
ϱ

t
− 2δeλ(T−t)

|(b, p)|2 ≤

1
β

[
I1 + I2 + I3

]
−
λ

β
δeλ(T−tδϵ )(|(bδϵ, pδϵ)|2 + |(b′

δϵ, p
′

δϵ)|
2).

Sending ϵ ↓ 0, with the above estimates of (I1) − (I2) − (I3), we obtain:

ui(t, b, p) − vi(t, b, p) −
ϱ

t
− 2δeλ(T−t)

|(b, p)|2 ≤
2δ
β

eλ(T−t0)
[
C(1 + 2|(b0, p0)|2) − λ|(b0, p0)|2

]
.

Choose λ sufficiently large positive (λ ≥ 2C) and send ϱ, δ → 0+ to conclude that ui(t, b, p) ≤ vi(t, b, p).
Case 2 The second case occurs if

ui0 (T , bδϵ, pδϵ) − vi0 (T , bδϵ, pδϵ) ≤ 0

and finally that ui(t, b, p) ≤ vi(t, b, p).

This completes the proof.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.rinam.2020.100125.
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