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Abstract A novel valence bond based automatic diabatisation method by compression, called valence 

bond based compression approach for dibatization (VBCAD), is presented in this letter. It is a “black-

box” type method that provides an automatic diabatisation from a classical valence bond (VB) 

perspective. In VBCAD, a model space projection is performed by an eigenvalue decomposition 

algorithm followed by dimensional reduction based on a sequence of Householder transformations. 

Our diabaticity criterion is implemented in a way that maximizes the diversity of VB structure weights 

between different diabatic states. Owing to the rigorous Householder transformations employed in this 

entire procedure, the invariance of the target eigensubspace is preserved. This is illustrated on two 

prototypical examples.  
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It is well established that the Born-Oppenheimer (B.O.) approximation breaks down near conical 

intersections or avoided crossings, where at least two adiabatic states are degenerate or nearly 

degenerate. As a consequence, the molecular Hamiltonian must account for non-adiabatic coupling 

terms (NACT) among more than one adiabatic states, which still represents a challenge for its 

implementation within quantum dynamics simulations. The typical procedure relies on a unitary 

change of electronic basis, the so-called diabatic states, which are defined so as to reduce the magnitude 

of NACTs and make them negligible in molecular Hamiltonians. As such, the singular kinetic NACT 

vectors can be replaced by coupled potential energy surfaces that are smoothly varying functions of 

the nuclear coordinates. In principle, the construction of approximate diabatic states is not unique. The 

direct way that stems from their formal definition requires the determination of all derivative couplings 

over an extended range of nuclear coordinates, which involves large computational efforts
1-4

. 

Therefore, some alternative strategies have been proposed over the years, based on the properties of 

the adiabatic wave functions, whereby the adiabatic-to-diabatic (ATD) transformation is defined in 

order to enforce the smoothness of physical properties
5-9

, or of the expressions of the electronic wave 

functions in terms of configurations
10-16

. As large non-adiabatic couplings are related to fast changes 

of the adiabatic wave functions with respect to the nuclear coordinates, the key of these strategies is to 

construct the ATD transformation from its ability to reduce the changes. In particular, the diabatic 

states can be obtained from the concept of block-diagonalization of the Hamiltonian
17-19

, which can be 

derived from a least action principle.  

In classical VB theory, the wave function of a many-electron system can be generally expressed 

as a linear combination of VB structures
20

,  

   (1) 

where CK is the coefficient of VB structure FK. In classical VB theory, the VB structures are 

constructed by using VB orbitals that are strictly localized on an atom or fragment. To do so, each VB 

orbital is defined as a linear combination of a subset of the basis functions, including the basis functions 
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centered only on a chosen atom or fragment. Among various classical VB methods, VBSCF, which 

optimizes structure coefficients and orbitals simultaneously, is the basic method of ab initio classical 

VB theory. Each VB structure is defined by a particular configuration of electrons (understood as a 

given occupancy of the VB orbital set) together with a specific spin function. As such, each VB 

structure corresponds to a particular bonding scheme that is kept invariant irrespective of the variations 

of molecular geometries, and, can be mapped to a specific Lewis structure. Therefore, classical VB 

theory appears as a natural choice from a chemical perspective in the construction of diabatic states. 

Recently, ab initio classical VB methods and block-localized wave function (BLW), which is a type of 

semi-localized VB method that uses a single-determinantal wave function built on semi-localized 

molecular orbitals, have been successfully employed in the direct construction of diabatic states, based 

on the assumption that an educated inspection of dominant VB structure sets can be associated with 

the diabatic states
21-23

. 

In this letter, we go beyond this assumption and present a novel method named valence bond 

based compression approach for dibatization (VBCAD). In the VBCAD scheme, diabatic states are 

obtained by a sequence of rigorous unitary transformations that keeps the invariance of the target 

eigensubspace. The whole procedure is schematically presented in the flowchart displayed in Figure 

1. The central idea of VBCAD is to employ first a projection to reduce the full Hamiltonian to a low 

rank matrix that preserves the target eigensubspace. This is followed by a sequence of Householder 

transformations (prediagonalisation) coupled to a VB based diabatisation criterion that produces the 

diabatic low rank and low dimension block of interest. The whole procedure ensures smoothness of 

the final diabatic matrix elements with respect to variations in the nuclear coordinates (molecular 

geometry). The different steps of the VBCAD procedure are detailed in the following. 

 

(Figure 1. near here) 

In order to facilitate the following eigenvalue decomposition (ED) formalism with the non-orthogonal 



VB structure set, which is used in VBSCF calculation, it is convenient but not unique to start with a 

symmetric Löwdin orthogonalization
24-25

, i.e.:  

         (2)  

where H and M are the VB Hamiltonian and overlap matrices, respectively.  

The rank reduction trick starts from ED, which is a factorization of the form, 

   (3) 

where: i) Q is an orthogonal matrix (QQT=I) made of the VB structure coefficients for each adiabatic 

state wave function ; and: ii)  is a square diagonal matrix with the eigenvalues , ..., , where n 

is the number of VB structures.  

HL
 can be expanded into two matrices by the relation: 

  (4) 

where and denote the diagonal matrices with eigenvalues , ...,  and , ...,  

respectively, with r the number of electronic states that are required to describe the system under study 

over a representative range of nuclear coordinates (i.e.: r is the dimension of the target space). The 

feature of the projected ED approach is that the model subspace is isolated. This means that the 

following matrix compression will be performed on He
 with reduced rank r rather than on HL with full 

rank n.  

 

A series of Householder matrices are then used to achieve the dimensional reduction in the proposed 

method. In this sense, the symmetric high dimension (n×n) matrix He
 can be reduced into a low 

dimension (r×r) matrix Hpre-dia
, which is termed “pre-diabatic”:  

           (5) 

Hpre-dia 
is obtained by the following recursion formula:  
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  (i=1, 2, … , n-1) (6) 

in which the ith
 transformation Pi is defined as: 

  (7) 

where  is a column unit vector related to the matrix elements in . The detailed definition of  

is provided in Appendix.  

Sequentially, the VB structure coefficients of pre-diabatic wave functions are obtained by the 

relations: 

  (8) 

where Ce
 is a coefficient matrix of dimension (n×r) with the eigenvector of on each column 

respectively, and  comes from the symmetric Löwdin orthogonalization. It should be noticed 

here that this Householder reduction algorithm is feasible for any number of states of interest. 

 

The final transformation from the pre-diabatic Hamiltonian to the diabatic Hamiltonian is achieved by 

the following unitary transformation: 

  (9) 

For the special case r=2, the unitary matrix U can be defined as a two-step Householder transformation 

with two variables, by the relation:   

  (10) 

where U1(a) and U2(b) are Householder matrices defined by eq.7, in which 

w1 = (sina, cosa,0,…,0)
T
; w2 = (sinb, cosb,0,…,0)

T
    (11) 

Now the key point becomes how to characterize the diabatic states. This means that a specific 

diabaticity criterion is required so as to act as a constraint to make eq.9 nonarbitrary. Taking advantage 

of the characteristics of classical VB structures, principally their direct and unchanged connection with 
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specific Lewis structures, we propose here a novel approach, whereby the diabaticity criterion is 

chosen as a quantity that maximizes the separation of VB structure weights in different states. This 

criterion was implemented in VBCAD to obtain the diabatic states in such a way that, in eq.9, 

is determined by maximizing the quantity  defined as:  

  (12) 

where n is the number of VB structure, 1 and 2 correspond to the two diabatic states, WK,i is the weight 

of structure K in the diabatic state i. Among various available definitions of structure weights, the 

simplest renormalized definition of VB weights was employed here. Within this definition, the VB 

structure weights WK are obtained as:  

  (13) 

where is the coefficient of structure K in a given diabatic state.  

This particular choice of  will be referred to as max in the following. Therefore, 

the diabatic Hamiltonian Hdia
 is obtained from eq.9: 

  (14) 

The VB coefficients of both diabatic states, which are denoted as , are obtained from: 

   (15) 

Subsequently, the attribution of pointwise diabatic states can be determined according to the minimum 

change in coefficients. 

 

Two examples, the torsion of ethylene (C2H4) and the photo-dissociation of formaldehyde (H2CO), are 

presented to illustrate our method. For the torsion of ethylene the adiabatic states were calculated by 

the VBSCF method with six active electrons in six active orbitals. The strictly-localized valence 

orbitals were recombined in symmetry-adapted semi-localized orbitals to match the symmetry of the 
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D2 point group at all twisted geometries. The dihedral angle ÐH-C-C-H was varied from 0° to 180°, 

while the bond lengths of the four C-H bonds and C-C bond were fixed at 1.070 Å and 1.355 Å 

respectively. The energies of the lowest two adiabatic states of A symmetry together with the diabatic 

energy curves obtained through the VBCAD procedure are presented in Figure. 2.  

(Figure 2. near here) 

Note that the first A state is the ground state (N state), while the second A state is essentially the doubly 

excited state for the ππ* system (Z state). As expected, our results show that the two corresponding 

adiabatic energies exhibit an avoided crossing around the perpendicular geometry, while the character 

of the two states switches along the pathway. This is reflected by the crossing of the H11 and H22 curves. 

The two diabatic states thus transform smoothly with the variation of the dihedral angle. Furthermore, 

the VBCAD scheme deals correctly with the region of the avoided crossing, in the middle of the 

reaction path. This means that the numerical values of H12, which have the meaning of a “diabatic 

coupling”, vary little with respect to the central value that can be calculated directly when H11 = H22, 

   (16) 

where E1 and E2 are the energies of the adiabatic states. Further from the avoided crossing region the 

diabatic coupling term, H12, varies smoothly and decays to nearly zero at the planar geometries. 

In order to estimate the variance between pre-diabatic and diabatic states, the overlaps of the wave 

functions, , are computed pointwise, as shown in Figure 3. It comes out that the average 

values of the overlaps are close to 1 along the pathway, which means that the “pre-diabatic” states are 

already good approximations of the diabatic states that were obtained by further maximizing the 

difference of composition of the wave functions in terms of VB structures.  

(Figure 3. near here) 

 

Let us now move to our second numerical example. The photoexcitation of formaldehyde can 
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lead either to the loss of H2 (molecular dissociation), or to the loss of H (radical dissociation) 
26

. The 

non-adiabatic reaction path for the H2 + CO molecular dissociation along a CS symmetry-preserving 

pathway is explored here. The six electronic states that should be considered in a complete treatment 

of this dissociation pathway are displayed in Figure 3, and will be referred to as S0-S6 in the following. 

As can be seen on the figure, an avoided crossing occurs between the S0 and S2 states of A’ symmetry, 

which will be a particularly interesting region to test the efficiency of our VBCAD methodology.  

An accurate treatment of this dissociation pathway requires an active space of eight electrons into 

seven active orbitals, leading to a set of 490 VB structures on which the different states expand (eq 1). 

The full VBSCF adiabatic energy curves of the six states are shown in Figure 4. From the adiabatic 

curves we can see that two adiabatic states exhibit an S0/S2 avoided crossing along the reaction 

coordinate around point 10. It should be noted here that around the dissociation region, the excited 

states are highly degenerate and a more detailed analysis of them is beyond the scope of this paper. As 

a consequence, the region around the S0/S2 avoided crossing (from point 9 to point 12 in Figure 4.) 

can be simplified as a two-state case. The results are presented in Figure 5. The absolute value of the 

off-diagonal element does not vary much as a function of the reaction coordinate. This is indicative of 

the diabatic character of the representation produced by VBCAD. As can be seen from Figures 6 (a) 

and (b), in contrast with the sudden change in the electronic nature of the adiabatic states, the diabatic 

states preserve their respective natures and are mainly governed by VB structure groups with specific 

electron occupation: one (green curve) is dominated by a group of VB structures with a doubly-

occupied lone-pair on the O atom with a single electron on C(σ), while the other (red curve) is 

dominated by that of a singly-occupied lone-pair on the O atom with two electrons on C(σ). The 

analysis from Figure 6 (c) suggests a possible electron transfer between the O and C atoms around the 

avoided crossing region. Such information on the chemical nature of the diabatic states was obtained 

automatically through VBCAD but was not so obvious a priori from a simple inspection of VB 

structures. This illustrates the capabilities of our approach in situations where diabatic states are not 



obvious from the onset.  

 

(Figures.4, 5 and 6 near here) 

 

In order to further verify the diabaticity of states obtained by VBCAD, the residual non-adiabatic 

coupling (RNAC) is evaluated numerically. The RNAC is expressed as: 

   (17) 

where α and β are the labels of the two states, Q is the set of nuclear coordinates, K is the index of 

the degree of freedom. For the states to be (quasi) diabatic, the non-adiabatic coupling must satisfy 

the following criterion: 

   (18) 

Thus, evaluating the overlap between the two states along a pathway will give a measure of diabaticity: 

it has to be near for the non-adiabatic coupling to be small. Since the diabaticity of each VB 

structure is maintained by the electron-pairing pattern, and it varies little with the variation of the 

nuclear coordinates, the overlap between the two states along a pathway can be approximately obtained 

by the “dot product” of VB structure coefficients of the two states, which becomes a feasible way to 

evaluate the RNAC. The numerical results are shown in Table.1, which suggest that the values of 

RNAC are small, as expected for genuine diabatic states. 

 

(Table.1 near here) 

In summary, a novel valence bond based automatic diabatisation method by compression, referred 

to as VBCAD, is presented. It allows a low-dimensional effective Hamiltonian to be built, based on a 

diabatic VB expansion. VBCAD is “black-box” with no parameter involved in the whole procedure. 
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This is also a pointwise method which thus can be turned into a global diabatisation technique without 

line-integration along a path. In VBCAD, the model space projection is implemented by an eigenvalue 

decomposition (ED) algorithm followed by a sequence of Householder compressions, then the 

diabaticity criterion that makes use of maximally separated VB character is imposed through a final 

Householder transformation step. This diabatisation procedure keeps the invariance of the subspace 

spanned by each eigenstate of interest during the compression. It is appealing that the automation in 

VBCAD strategy provides a practical way of automatic inspection of VB structures based on the 

contributions of each diabatic state. The examples shown here illustrate that there is a real possibility 

for ab initio VB calculations to achieve the production of diabatic states by Householder matrix 

compression. Finally, it should be noted that we did not consider dynamic correlation here. VBSCF 

calculations for strongly correlated systems may not be accurate enough, and can be improved by using 

post-VBSCF methods
27-31

. This will be considered and developed in the future, as well as the 

generalization of the algorithm used for VBCAD to cases with more than two states. 

 

The computational details are summarized as follows: The full Hamiltonian and overlap matrices 

were calculated with the Xiamen Valence Bond (XMVB) program
32

. The reaction path of 

formaldehyde was obtained with the GAUSSIAN16 software
33

. The basis set 6-31G* was used in all 

calculations. The diabatisation procedure was performed by a post-processing algorithm with the 

MATLAB program version 2018b
34

. 

  



Appendix 

Here we introduce the Householder compression in a detailed way. In the main body of the paper, we 

focus on a special case with r=2 as an illustration, in which the Householder tri-diagonalization35
 and 

Householder compressor36
 algorithms are well suited for the proposed method.  

For the 1
st
 to (n-2)

th
 step of transformation in eq.5,   

wi = [ai,1; ai,2;…; ai,n-i; 0; …; 0]
T
       

 
(A-1) 

  (A-2) 

where wi is a column vector related to the matrix elements in , with the non-zero coefficients ai,k 

defined in the following. Because the transformation with Pi (eq.6) leaves the last (i-1) row and column 

unaltered, hence the last several elements of wi are chosen to be zero.  

First, and Gi are defined by,  

  (A-3) 

  (A-4) 

Then  is obtained with each of the non-zero element computed by the relations, 

  (A-5) 

  (A-6) 

After the Householder tri-diagonalization, the He with rank r can be reduced to a (r+1)×(r+1) 

tridiagonal matrix. In the next step, it can be further transformed perfectly into a smaller r×r full rank 

submatrix by means of a two-side Householder compressor Pn-1. Here we define u as a column vector 

corresponding to the one-dimensional null-space after tri-diagonalization of He
, ui is the i-th element, 

expressed by  
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  (A-7) 

The (n-1)
th

 transformation in eq.6 defined by eq.7 acts as a compressor, in which wn-1 is computed 

by the relations,  

  (A-8) 

With these choices of n-1 Householder matrices above, He
 becomes a full-rank matrix Hpre-dia

 with 

rank r. 
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Figure 1. Flowchart representing the different steps of the VBCAD framework, with n the full 

dimensionality of the problem into study, and r the dimensionality of the reduced target space. 

  



 

Figure 2. Black continuous curves: energy evolution (E1 and E2) of the lowest two adiabatic A 

states of C2H4 along the torsion coordinate describing a D2-symmetry preserving pathway; red and 

green dashed lines: the diagonal diabatic energies H11 and H22 as obtained through the VBCAD 

procedure; blue dotted line: the diabatic coupling term H12.  



 

 

Figure 3. Wave function overlap between pre-diabatic and diabatic states along the distortion 

pathway. 

  



 

Figure 4. Energy curves for the photodissociation of formaldehyde along a Cs pathway. Black lines 

correspond to the three lowest lying A’ states, blue lines to the three lowest lying A” states.  

  



 
Figure 5. VBCAD results for the photodissociation of formaldehyde along a Cs pathway around the 

avoided crossing region. The black lines correspond to the two lowest lying A’ adiabatic states. Green 

and red dashed lines represent the diabatic energy curves (diagonal terms of the Hamiltonian), and 

the blue dotted line the coupling term (off-diagonal term of the Hamiltonian) between them. The zero 

point is the S0 state at point 9, corresponding to the value 3.36 eV in Figure 4. 

 



 

Figure 6. The specific VB structure group weights of two diabatic states around the avoided crossing region. The curve with red and green dots 

denotes the H11 and H22 diabatic states respectively. Y-axis displays the sum of weights of VB structures that describe the electron occupation on: 

(a) C(σ) orbital; (b) O(n) orbital; (c) both C(σ) orbital and O(n) orbital. 

 



 
 <9|9.5> <9.5|10> <10|10.5> <10.5|11> <11|11.5> 

Diab_a 0.9940 0.9951 0.9754 0.9548 0.9762 

Diab_b 0.9989 0.9982 0.9970 0.9947 0.9958 

 

Table 1. The values for the two diabatic states; Rx and Ry denote successive points 

along the reaction coordinate.  
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