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S-ARMA model and Wold decomposition for covariance
stationary interval-valued time series processes

Jules SADEFO KAMDEM∗, Babel Raïssa GUEMDJO KAMDEM†, Carlos OUGOUYANDJOU∗

July 17, 2020

Abstract

The main purpose of this work is to contribute to the study of set-valued random variables
by providing a kind of Wold decomposition theorem for interval-valued processes. As the
set of set-valued random variables is not a vector space, the Wold decomposition theorem as
established in 1938 by Herman Wold is not applicable for them. So, a notion of pseudovector
space is introduced and used to establish a generalization of the Wold decomposition theorem
that works for interval-valued covariance stationary time series processes. Before this, Set-
valued autoregressive and moving average (S-ARMA) time series process is defined by taking
into account an arithmetical difference between random sets and random real variables.

Keywords: Wold décomposition, stationary time series, interval-valued time series processes,
ARMA model

1 Introduction

No one can contest the great role played by point-valued time series in forecasting, merely because
they intervene in several disciplines ranging from econometrics, astronomy to meteorology. But,
the forecasts are not always efficient especially in cases where the values of the analyzed vary
a lot during the period of one recording. In those cases, it should be assumed that the values
belong to a range or even is equal to a set or an interval. For instance, economic increasing rates
are most often assumed to belong to a range. In weather forecasting, the weather of the next
day is always given as an interval bounded by the highest and lowest temperatures of the next
day. An example where point-valued are sometimes wrongly used is in forecasting stock prices.
For studying them, the closing prices are usually considered as the value of the studied index
for the day. It should be better to consider the smallest interval containing all the prices of the
day or to consider the set of the prices of the day as the value of the index. An interval-valued
observation in a time period contains more information than a point-valued observation in the
same time period as Ai Han and al. stated in [HHW12]. For some other references regarding
the applications of intervals time series in finance, see [SKJ12, MMA14b, MMA14a] and some
references therein.

A set-valued random variable is a random variable whose values are the subsets of the
d−dimensional Euclidean space Rd. When d = 1 and values are compact and convex, one
obtains an interval-valued random variable. Random sets started to be intensively studied after
the works of Robert Aumann [Aum65], where the author defined the expectation of a random set
on a probability space. Since the set of random variables is not a vector space, this expectation
does not allow the definition of variance as in the case of random real variables. It was necessary
to wait for Xuhua Yang and Shoumei Li [YL05] for the definition of the variance of a random
set, using the Dp−metric introduced in the same paper.
∗Université de Montpellier (MRE EA 7491)
†Institut de Mathématiques et de Sicence Physique, UAC, Bénin
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The development of the modeling of time series begins with the autoregressive (AR) process
of yule (1927). For interval-valued data, the Interval autoregression (IAR) model has been intro-
duced in [WL11]. In the latter paper, the prediction of interval-valued time series is addressed
using mean square error. In the present work, we give a new definition for I-AR and extend it to
interval-valued autoregressive moving average time series (I-ARMA) processes. This definition
takes into account the arithmetical differences between random sets and random real variables.
More precisely for point-valued time series, the equationsXt−

∑p
i=1 φiXt−i = K+εt+

∑q
i=1 θiεt−i

and Xt =
∑p

i=1 φiXt−i+K+εt+
∑q

i=1 θiεt−i are equivalent, which is not the case with set-valued
time series. We will work mainly with the ARMA process because it is a simple model that is
both linear in variable and in some of the parameters. The first linearity provides an easy to use
prediction formulas and the second allows estimation of the parameters. The main theoretical
justification for the use of ARMA processes instead of AR processes is the Wold theorem (1954)
which states that any stochastic, weakly stationary process can be rewritten as an infinite moving
average process.

Wold’s decomposition theorem for covariance stationary processes [Wol38] in theoretical
econometrics generalizes the idea that autoregressive processes can have a moving average rep-
resentation. Wold’s theorem consists of showing how to decompose any covariance stationary
time series process into a non-deterministic component motivated by uncorrelated linear inno-
vations and a deterministic component. It should be noted here that an abstract part of the
Wold decomposition theorem is stated in functional analysis and more precisely in algebra. This
abstract theorem makes it possible to decompose a Hilbert space as a sum of orthogonal sub-
spaces. However, Wold’s Theorem cannot be applied to interval-valued time series, since the set
of random intervals (or more generally random sets) is not a vector space.

To deal with Wold decomposition for interval-valued time series processes, this paper intro-
duces a notion of pseudovector space on the set of set random variables. The main difference of
this with vector spaces is that opposites (inverses for addition) of vectors do not exist in general.
To recover a kind of opposite, generalized Hukuhara difference [Ste10] is used.

This paper is structured as follows. In the present section, the work is introduced and
motivated. The next section is devoted to the theoretical framework, while Sections 3 and 4
describe set-valued time series processes. In Section 5, pseudo-vector space with some resulting
definitions and operations are introduced. The notion of difference operator is also defined as
well as the notion of Hilbert pseudo-vector space. The last section establishes properly and in
detail the Wold decomposition theorem for covariance stationary interval-valued processes. The
idea behind this proof comes from the classical one in [Bie].

2 Set-valued random variables

Let (Ω,A , P ) be a probability space with values in Rd, K(Rd) the set of nonempty closed subset
of Rd and Kkc(Rd) the set of nonempty compact and convex subsets of Rd. For A,B ∈ K(Rd)
and λ ∈ R, we recall the operations

A+B = {a+ b ; a ∈ A, b ∈ B} (1)
λA = {λa ; a ∈ A}. (2)

It is noteworthy that Kkc(Rd) is closed under those operations, but is not a vector space, since
A+ (−1)A is not necessarily {0}, unless A = {0}. For A ∈ Kkc(Rd), the support function of A
is the function s(·, A) : Rd → R defined by

s(x,A) = sup{ax ; a ∈ A}, (3)

for every x ∈ Rd. From the definition, the following Proposition is easy to verify.
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Proposition 2.1. For every x ∈ Rd, the map s(x, ·) : Kkc(Rd)→ R satisfies

s(x,A+B) = s(x,A) + s(x,B) (4)
s(x, λA) = λs(x,A), (5)

for all A,B ∈ Kkc(Rd) and λ ≥ 0.

For 1 ≤ p <∞, the dp metric is defined for A,B ∈ Kkc(Rd) by

dp(A,B) =

(∫
Sd−1

|s(x,A)− s(x,B)|pdx
)1/p

, (6)

where Sd−1 = {x ∈ Rd ; ‖x‖ = 1} is the unit sphere. A proof for the following Theorem can be
found in [DK94].

Theorem 1 ([DK94]). For each 1 ≤ p < ∞, (Kkc(Rd), dp) is a complete and separable metric
space. Moreover the metrics dp induce the same topology on Kkc(Rd).
Example 1. In R2, S1 = {(x1, x2) ∈ R2 ; x2

1 + x2
2 = 1} = {θ? = (cos θ, sin θ) ; θ ∈ [0; 2π]}.

Let A1 = [a1, b1] × [c1, d1] and A2 = [a2, b2] × [c2, d2] be two quadrilaterals in R2, with a1 ≤ a2,
b2 ≤ b1, c1 ≤ c2 and d2 ≤ d1. It is obvious to see that

s(θ?, A1) =


b1 cos θ + d1 sin θ if θ ∈ [0, π/2]

a1 cos θ + d1 sin θ if θ ∈ [π/2, π]

a1 cos θ + c1 sin θ if θ ∈ [π, 3π/2]

b1 cos θ + c1 sin θ if θ ∈ [3π/2, 2π]

. (7)

It follows that

d1(A1, A2) =

∫ π/2

0
|(b1 − b2) cos θ + (d1 − d2) sin θ|dθ +

∫ π

π/2
|(a1 − a2) cos θ + (d1 − d2) sin θ|dθ

+

∫ 3π/2

π
|(a1 − a2) cos θ + (c1 − c2) sin θ|dθ +

∫ 2π

3π/2
|(b1 − b2) cos θ + (c1 − c2) sin θ|dθ

d1(A1, A2) = 2(a1 − a2 + b1 − b2 + c1 − c2 + d1 − d2).

We prove the following result which will be used to show that the covariance operator on
random sets shares some useful properties with the covariance operator on random real variables.

Lemma 2.1. For all A,B ∈ Kkc(Rd) and λ ∈ R, dp(λA, λB) = |λ|dp(A,B).

Proof. For λ ≥ 0, the result follows from the fact that s(x, λA) = λs(x,A) and the same for
B. Now, since the maps x 7→ −x and a 7→ −a are bijective on Sd−1 and A respectively,
dp(−A,−B) = dp(A,B). Finally for λ < 0, d(λA, λB) = d(|λ|(−A), |λ|(−B)) = |λ|d(−A,−B) =
|λ|d(A,B).

A set-valued random variable (or a random set) is a map F : Ω→ K(Rd) such that for
every open subset O of Rd, one has F−1(O) ∈ A , where F−1(O) = {ω ∈ Ω ; F (ω) ∩ O 6= ∅}.
We denote by U [Ω,Kkc(Rd)] the set of set-valued random variables with values in Kkc(Rd). The
Dp metric is defined for F1, F2 ∈ U [Ω,Kkc(Rd)] by

Dp(F1, F2) =
(
E
[
dpp(F1, F2)

])1/p
. (8)

Let Lp[Ω,Kkc(Rd)] = {F ∈ U [Ω,Kkc(Rd)] ; E‖F‖pdp < +∞}, where ‖F‖dp = dp(F, {0}).
From [YL05] it is known that for any p ≥ 1, (Lp[Ω,Kkc(Rd)], Dp) is a complete metric space. In
1965, the expectation of a random set F is defined by Robert Aumann [Aum65] as

E[F ] =

{∫
Ω
fdP ; f ∈ SF

}
, (9)

where SF = {f : Ω→ Rd ; f(ω) ∈ F (ω) a.s and f is integrable}.
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Example 2. For F (ω) = [a(ω), b(ω)], E[F ] = [E(a), E(b)].

Since the set of random sets is not a vector space (with the addition (1) and the scalar
multiplication (2)), it was not easy to define variance and covariance for set-valued random
variables. It is about 40 years ago after the definition of the expectation that Yang and Li
[YL05] used the Dp metric on U [Ω,Kkc(Rd)] to define covariance of set-valued random variables
F1, F2 ∈ U [Ω,Kkc(Rd)] as

Cov(F1, F2) = E

[∫
Sd−1

(s(x, F1)− s(x,E(F1))) (s(x, F2)− s(x,E(F2)))µ(dx)

]
, (10)

and the variance of F ∈ U [Ω,Kkc(Rd)] as

V ar(F ) = Cov(F, F ) = E

[∫
Sd−1

(s(x, F )− s(x,E(F )))2 µ(dx)

]
= D2

2(F,E(F )). (11)

Proposition 2.2. For all F, F1, F2, F3 ∈ U [Ω,Kkc(Rd)] the following hold:

À V ar(C) = 0, for every constant C ∈ U [Ω,Kkc(Rd)];

Á V ar(F1 + F2) = V ar(F1) + 2Cov(F1, F2) + V ar(F2);

Â Cov(F1, F2) = Cov(F2, F1);

Ã Cov(F1 + F2, F3) = Cov(F1, F3) + Cov(F2, F3).

Ä V ar(λF ) = λ2V ar(F ), for every λ ∈ R;

Proof. Proof of items À-Á can be found in [YL05]. Items Â-Ã are obvious. The last item can
be proven using Lemma 2.1, V ar(λF ) = E

[
d2

2(λF,E(λF ))
]

= λ2E
[
d2

2(F,E(F ))
]

Example 3. For d = 1 and p = 2, d2
2([a1, b1], [a2, b2]) = |a1−a2|2 + |b1− b2|2 which implies that

for F (ω) = [a(ω), b(ω)], V ar(F ) = E
[
|a(ω)− E(a)|2 + |b(ω)− E(b)|2

]
. Hence V ar(F ) = 0 if

and only if F = E[F ] a.s, ie F (ω) = E[F ] for almost everywhere ω ∈ Ω.

3 Set-valued time series

Let (Xt)t∈Z be a set-valued time series with Xt ∈ U(Ω,Kkc(Rd)).

Definition 3.1. We say that (Xt)t∈Z is (covariance) stationary when:

À ∀t ∈ Z, E[Xt] = A, being A a constant compact convex set;

Á ∀t, s ∈ Z, Cov(Xt, Xs) = γ(t− s).

The set K and the sequence (γ(k))k∈Z are called expectation and auto-covariance function of
the time series (Xt)t∈Z respectively. The autocorrelation function (ρ(k))k∈Z of (Xt)t∈Z is defined
by

ρ(k) =
γ(k)

γ(0)
. (12)

Definition 3.2. Two set-valued time series (Xt)t∈Z and (Yt)t∈Z are said uncorrelated when

∀t, s ∈ Z, Cov(Xt, Ys) = 0. (13)

4



Definition 3.3. A set-valued time series (εt)t∈Z is called white nose if for any t, s ∈ Z,{
E[εt] = {0}
Cov(εt, εs) = σ2δts

, (14)

and we write
(εt) WN({0}, σ2). (15)

If moreover random intervals εt are independently and identically distributed then we write

(εt) IID({0}, σ2). (16)

4 Set-valued autoregressive moving-average process

Interval-valued autoregressive time series were introduced in [WL11] and studied in [WZL16].
This section introduces the set-valued autoregressive moving-average time series process in a
more suitable way.

Let (Xt)t∈Z be a stationary set-valued time series with expectation A and auto-covariance
function (γ(k)). We will say that Xt is a set-valued autoregressive moving-average (S-
ARMA) time series process of order (p, q) when the series satisfies

Xt −
p∑
i=1

φiXt−i = K + εt +

q∑
i=1

θiεt−i or Xt =

p∑
i=1

φiXt−i +K + εt +

q∑
i=1

θiεt−i, (17)

being K a constant compact convex set, φi ≥ 0 and θi ≥ 0 are the parameters of the model,
(εt)  IID({0}, σ2) and each εt is uncorrelated with X1, . . . , Xt−1. By taking expectation at
the both sides of (17) one finds

λA = K, (18)

where λ = 1−φ1−· · ·−φp. So if λ = 0 or the time series is centered (ie A = {0}) then K = {0}.
But contrary to real random variables, the new series X ′t = Xt− 1

λK does not satisfy a centered
ARMA equation, ie Equation (17) with K = {0}. In fact replacing Xt = X ′t + 1

λK in (17) one
obtains

X ′t −
p∑
i=1

φiX
′
t−i +

1

λ

(
K −

p∑
i=1

φiK

)
= K + εt +

q∑
i=1

θiεt−i, (19)

and K − φ1K − · · · − φpK 6= (1 − φ1 − · − φp)K unless K = {0} or φ1 = · · · = φp = 0.
When p = 0, the time series (Xt) is called a set-valued moving-average time series of order q,
S-MA(q), and when q = 0, one obtains a set-valued autoregressive time series of order p, S-
AR(p). Let L be the delay operator, thus LXt = Xt−1. Setting Φ(L) = φ1L + · · · + φpL

p and
Θ(L) = 1 + θ1L+ · · ·+ θqL

q, equation (17) can be written as

Xt − Φ(L)Xt = K + Θ(L)εt or Xt = Φ(L)Xt +K + Θ(L)εt. (20)

The functions Φ and Θ are called autoregressive and moving-average polynomials respectively.

Example 4 (S-MA(q)). If the autoregressive polynomial Φ = 0 then (20) leads to

Xt = K + εt +

q∑
i=1

θiεt−i, (21)

which is a set-valued moving-average process of order q, S-MA(q). It is clear that the latter has
a unique solution (Xt) and moreover this solution is always a stationary process. In fact,

E[Xt] = E[K] +

q∑
i=1

θiE[εt−i] = K,
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and

γ(k) = Cov(Xt−k, Xt) =


q∑
i=k

θiθi−kσ
2 if 0 ≤ k ≤ q

0 otherwise
,

where we have set θ0 = 1. The autocorrelation function is given by

ρ(k) =


q∑

i=k
θiθi−k

q∑
i=0

θ2i

if 1 ≤ k ≤ q

0 otherwise

. (22)

Hence the autocorrelation function is vanishing for k > q and ρ(q) = θq/(1 + θ2
1 + · · · + θ2

q) is
not vanishing when θq 6= 0. So in practice for determining the parameter q, one can compute
empirical autocorrelations and look when they become significantly zero.

Example 5 (S-AR(p)). If the moving-average polynomial Θ = 1 then (20) leads to

Xt − Φ(L)Xt = K + εt or Xt = Φ(L)Xt +K + εt. (23)

which is a set-valued autoregressive process of order p, S-AR(p). In this case, the existence and
the uniqueness of a stationary solution is not guaranteed. However when a stationary solution
exits, its expectation A is given by (18) and using Proposition 2.2 it is nothing to show that its
auto-covariance function satisfies

γ(k)−
p∑
i=1

φiγ(k − i) = 0, for any k ≥ 1. (24)

The above formula is for the particular case of S-AR processes. For the general case of an
S-ARMA process, one can prove the following. Taking covariance with Xt−k on both sides of
(17) we see that

γ(k)−
p∑
i=1

φiγ(k − i) = 0, for k ≥ q + 1 (25)

γ(q)−
p∑
i=1

φiγ(q − i) = θqσ
2. (26)

In the case of classical random variables, Wold decomposition is used to write any stationary
process as a sum of an MA(∞) plus a deterministic part. As the set of set-valued random
variables is not a vector space, it is not possible to apply directly Word decomposition theorem
in this case. To deal with Wold decomposition for set-valued random variables, we are going to
introduce a concept of pseudovector space, this is a space where opposites of vectors might not
exist.

5 Pseudovector space

Definition 5.1. A pseudovector space is a triplet (E ,+, ·) where E is a nonempty set, + :
E × E → E is an inner composition law, · : R × E× → E is an external composition law such
that:

À u+ (v + w) = (u+ v) + w, ∀u, v, w ∈ E (associativity);

Á u+ v = v + u, ∀u, v ∈ E (commutativity);
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Â ∃~0 ∈ E ;

(a) ~0 + u = u, ∀u ∈ E ;

(b) λ ·~0 = ~0, ∀λ ∈ R+;

(c) 0 · u = ~0, ∀u ∈ E ;

Ã λ · (u+ v) = λu+ λv, ∀λ ∈ R+, ∀u, v ∈ E ;

Ä (λβ) · u = λ · (β · u), ∀λ, β ∈ R, ∀u ∈ E ;

Å 1 · u = u, ∀u ∈ E .

Let (E ,+, ·) be a pseudovector space. Elements of E are called pseudovectors. In what follows,
λ · u will be denoted just λu and u + (−1)v is denoted u − v. Observe that in a pseudovector
space, there is no notion of inverse for the addition and u− u 6= ~0 in general.

Proposition 5.1. the pseudovector ~0 defined at the item Â of the definition is unique and called
the null pseudovector.

Proof. Let ~0′ be another pseudovector satisfying the points Â of Definition 5.1. Then for u = ~0
we have ~0 = ~0′ + ~0. As ~0 also satisfies item Â of the definition, for u = ~0′ one has ~0′ = ~0 + ~0′.
The commutativity property gives us ~0′ = ~0 +~0′ = ~0′ +~0 = ~0.

Example 6. • Any vector space is a pseudovector space.

• Let E and E ′ be two pseudovector spaces. Then the Cartesian product E × E ′ is a pseu-
dovector space, laws being given by

(u, u′) + (v, v′) = (u+ v, u′ + v′) and λ(u, u′) = (λu, λu′).

• It is nothing to check that Kkc(Rd) endowed with the addition (1) and the scalar multipli-
cation (2) is a pseudovector space, {0} being the null pseudovector.

• U [Ω,Kkc(Rd)] inherits from the pseudovector space structure of Kkc(Rd).

Definition 5.2. A subset F of E is called a pseudovector subspace if:

À ~0 ∈ F ;

Á u+ v ∈ F , ∀u, v ∈ F ;

Â λ · u ∈ F , ∀λ ∈ R, ∀u ∈ F .

Example 7. E = {[a, b] ; a ≤ 0 and b ≥ 0} is a pseudovector subspace of Kkc(R).

Proposition 5.2. Any pseudovector subspace is a pseudovector space, endowed with the restric-
tions of the composition laws.

Proof. With items À−Â of Definition 5.2 the restriction of the laws of E on F are with values
in F and since F is a subset of E , the axioms À−Å of Definition 5.1 are satisfied.

Proposition 5.3. Let (Fi)i∈I be a family of pseudovector subspaces of E . Then their intersection
F = ∩i∈IFi is a pseudovector subspace of E .

Proof. As Fi are pseudovector subspaces of E , ~0 ∈ Fi for all i ∈ I. Hence ~0 ∈ F . Let u, v ∈ F
and λ ∈ R then for every i ∈ I, u, v ∈ Fi. As Fi are pseudovector subspaces, it follows that
u + v ∈ Fi and λu ∈ Fi, ∀i ∈ I. Hence u + v ∈ F and λu ∈ F . Thus F is a pseudovector
subspace.
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Definition 5.3. Let F = (ui)i∈I be a family of pseudovectors of E . A Linear Combination
(LC) of F is a pseudovector u ∈ E such that there exists a family (λi)i∈I of scalars almost all
zero such that

u =
∑
i∈I

λiui.

Proposition 5.4. Let F = (ui)i∈I be a nonempty family of elements of E . Then the set F of
all LC of F is a pseudovector subspace.

Proof. Let u ∈ F , then 0 · u = ~0 ∈ F . Let u, v ∈ F and λ ∈ R. From the definition of F ,
the pseudovectors u and v are LC of F and so do for u + v and λu. Hence u + v ∈ F and
λu ∈ F .

Proposition 5.5. Let A be a subset of E . The smallest pseudovector subspace of E containing
A exists. We call it the pseudovector subspace spanned by A , denoted by Span(A ).

Proof. Let (Fi)i∈I be the family of all pseudovector subspaces of E containing A . (This family
is not empty since E is a pseudovector subspace of E containing A .) Then from Proposition
5.3, their intersection F = ∩i∈IFi is a pseudovector subspace of E containing A , and it is the
smallest in the sense of inclusion.

Proposition 5.6. Let F = (ui)i∈I be a nonempty family of elements of E . The pseudovector
subspace Span(F) is the set of all LC of F .

Proof. Let F be the set of all LC of F . As Span(F) is a pseudovector subspace containing
F , it contains all LC of F , thus F ⊂ Span(F). From Proposition 5.4, F is a pseudovector
subspace containing F . Hence Span(F) ⊂ F .

Let E1 and E2 be two pseudovector subspaces of E .

Definition 5.4. We call sum of E1 and E2 and we denote E1 + E2, the pseudovector subspace
Span(E1 ∪ E2).

Definition 5.5. We say that two pseudovector subspaces E1 and E2 are complementaries, or that
E is the direct sum of E1 and E2 and we denote E = E1 ⊕ E2 if the following are satisfied:

À E = E1 + E2;

Á E1 ∩ E2 = {~0}.

Example 8. For any d ≥ 1, Kc(Rd) is a pseudovector space which is not a vector space, and
{0} is the null pseudovector. For d = 1, the subsets E1 = {[a, b]; a, b ∈ R} = Kkc(Rd) and
E2 = {] − ∞, b], [a,+∞[; a, b ∈ R} ∪ {{0}} are two complementary pseudovector subspaces of
Kc(R).

Definition 5.6. Let F = (ui)i∈I be a family of elements of E . We say that F is linearly
independent when for any family (λi)i∈I of scalars almost all zero, if

∑
i∈I

λiui = 0 then for all

i ∈ I, λi = 0. Otherwise we say that F is linearly dependent.

A linearly independent family cannot contain the null pseudovector.

Definition 5.7. Saying that a family F = (ui)i∈I spans E means that E = Span(F).

Definition 5.8. A basis for E is a linearly independent family which spans E .

Example 9. B = {[0, 1]} is a basis of E = {[a, b] ; a ≤ 0 and b ≥ 0}.
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It is noteworthy that with operations of a pseudovector space, it is not possible to solve the
equations

u = v + x and v = u− x (27)

of unknown x. The following definition introduces an operator which for any given couple
(u, v) ∈ E 2, allows to solve at less one of the two equations in (27).

Definition 5.9. A difference operator in a pseudovector space E is a binary operator 	 :
E × E → E such that for all u, v, w ∈ E :

• w = u	 v ⇐⇒ u = v + w or v = u− w;

• u	 v = ~0 ⇐⇒ u = v;

• v 	 u = −(u	 v).

Example 10. • In a vector space, u	 v = u− v is a difference operator.

• The generalized Hukuhara difference [Ste10] is giving on Kkc(R) by

[u1, u2]	 [v1, v2] = [min(ui − vi),max(ui − vi)]. (28)

In absence of additional precision, Kkc(R) will always be endowed with this difference op-
erator.

We say that a given couple (u, v) has an even signature when u = v + (u	 v); otherwise we
say that (u, v) has an odd signature (this means that v = u−(u	v)). In the case where the both
equalities u = v + (u	 v) and v = u− (u	 v) hold (in a vector space for example) and without
other precision, we will say that (u, v) has an even signature and use rather u = v + (u	 v).

Definition 5.10. We define the signature map ε : E × E → {−1,+1}, by:

ε(u, v) =

{
+1 if (u, v) has an even signature
−1 otherwise

. (29)

It is clear that ε(v, u) = −ε(u, v).

Notation 1. We set εvu := ε(u, v) and u	εv := ε(u, v)(u	 v).

It is easy to verify that for all u, v ∈ E and λ ∈ R, λ(u	 v) = (λu)	 (λv).

Lemma 5.1. Let E be a pseudovector space endowed with a difference operator. Then

(u	εv) + (u′	εv′) =

{
(u+ u′)	ε(v + v′) if εu′u = εv

′
v

(u+ v)	ε(u′ + v′) otherwise
. (30)

Proof. If ε(u, v) = ε(u′, v′) = +1 then u = v + (u 	 v) and u′ = v′ + (u′ 	 v′). Hence u + u′ =
(v + v′) + ((u 	 v) + (u′ 	 v′)), which implies that (u 	 v) + (u′ 	 v′) = (u + u′) 	 (v + v′).
Similarly if ε(u, v) = ε(u′, v′) = −1 then v = u − (u 	 v) and v′ = u′ − (u′ 	 v′). Hence
v+v′ = (u+u′)− ((u	v) + (u′	v′)), which implies that (u	v) + (u′	v′) = (v+v′)	 (u+u′).
Finally if ε(u, v) = +1 and ε(u′, v′) = −1 then u = v + (u 	 v) and v′ = u′ − (u′ 	 v′). Hence
u+v′ = (v+u′)+((u	v)−(u′	v′)), which implies that (u	v)−(u′	v′) = (u+v′)	(v+u′).

Proposition 5.7. Let E be a pseudovector space endowed with a difference operator. Then

(u	εv) + (u	εv′) =

{
(u+ u)	ε(v + v′) if εvu = εv

′
u

v	εv′ otherwise
. (31)
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Proof. The first line is deduced from the first line of (30) by replacing u′ by u. For the second
line, it is nothing to check that v	εv′ = (u	εv) + (u	εv′) when εvu 6= εv

′
u .

We need the following Lemma to prove the next Proposition.

Lemma 5.2. Let E be a pseudovector space endowed with a difference operator. Then

(u	 v) + w =

{
(u+ w)	 v if ε(u, v) = +1

u	 (v − w) otherwise
. (32)

Proof. If ε(u, v) = +1 then u = v+ (u	 v). Hence u+w = v+ ((u	 v) +w), which implies that
(u+w)	v = (u	v)+w. Finally if ε(u, v) = −1 then v = u−(u	v). Hence v−w = u−((u	v)+w),
which implies that u	 (v − w) = (u	 v) + w.

Proposition 5.8. Let E be a pseudovector space endowed with a difference operator. Then

(u	εv)	ε(u	εv′) =

{
v	εv′ if εvu = εv

′
u

(u+ u)	ε(v + v′) otherwise
. (33)

Proof. If ε(u, v) = ε(u, v′) = −1 then v = u − (u 	 v) and v′ = u − (u 	 v′). Hence v 	 v′ =
(u + (v 	 u)) 	 (u + (v′ 	 u)). Using (30) one finds v 	 v′ = (u 	 u) + ((v 	 u) 	 (v′ 	 u)) =
(v 	 u) 	 (v′ 	 u). If ε(u, v) = ε(u, v′) = +1 then u = v + (u 	 v) and u = v′ + (u 	 v′).
If εv′v = −1 then we write u 	 v = (v′ + (u 	 v′)) 	 v and use (32) to turn the latter into
u	 v = (v′	 v) + (u	 v′), which implies that (v	ε v′) = (u	ε v)	ε (u	ε v′). If rather εv

′
v = +1

then we write v′	u = v′	(v−(v	u)) and use (32) to turn the latter into v′	u = (v′	v)+(v	u),
which implies that (v 	ε v′) = (u 	ε v) 	ε (u 	ε v′). Finally if ε(u, v) = +1 and ε(u, v′) = −1
then u = v + (u	 v) and v′ = u− (u	 v′). Hence

v + v′ + (u	 v) = u+ u− (u	 v′). (34)

Now, if ε(u + u, v + v′) = −1 then we turn (34) into u 	 v′ = (u + u) 	 (v + v′ + (u 	 v)).
The latter together with (32) gives us u 	 v′ = ((u + u) 	 (v + v′)) − (u 	 v), which implies
(u 	 v) 	 (v′ 	 u) = (u + u) 	 (v + v′). On the contrary if ε(u + u, v + v′) = +1 then we
turn (34) into u 	 v = ((u + u) − (u 	 v′)) 	 (v + v′). The latter together with (32) gives us
u	v = −((u+u)	(v+v′))−(u	v′), which implies (u	v)	(v′	u) = −((u+u)	(v+v′)).

From equations (31) and (33) one deduces that

u	εv =

{
(w	εu)	ε(w	εv) if εuw = εvw
(w	εu) + (w	εv) otherwise

. (35)

Definition 5.11. We say that a pseudovector space E has compatibles laws when for all u ∈ E
and α, β two scalar of the same sign, one has αu+ βu = (α+ β)u.

Proposition 5.9. The pseudovector subspace Kkc(R) has compatible laws.

Proof. Let u = [u1, u2] and α, β ∈ R. If α, β ≥ 0 then,

αu+ βu = [αu1, αu2] + [βu1, βu2] = [(α+ β)u1, (α+ β)u2] = (α+ β)u.

On the contrary if α, β ≤ 0 then,

αu+ βu = [αu2, αu1] + [βu2, βu1] = [(α+ β)u2, (α+ β)u1] = (α+ β)u.
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5.1 Hilbert pseudovector space

Definition 5.12. A pseudometric on a nonempty set E is a map d : E × E → R+ such that
for every x, y, z ∈ E,

À d(x, x) = 0;

Á d(x, y) = d(y, x);

Â d(x, z) ≤ d(x, y) + d(y, z).

The couple (E, d) is then called a pseudometric space. It is well-known that a pseudometric
space is not distinguishable. This implies that a sequence (xn)n may converge to many different
points.

Let E and E ′ be two pseudovector spaces.

Definition 5.13. A linear map from E to E ′ is a map f : E → E ′ such that

À f(u+ v) = f(u) + f(v), ∀u, v ∈ E ;

Á f(λu) = λf(u), ∀λ ∈ R, ∀u ∈ E .

As a consequence of the definition, one has f(~0) = ~0′.

Lemma 5.3. Let f : E → E ′ be a linear map between pseudovector spaces admitting difference
operators. Then

f(u	 v) = f(u)	 f(v), ∀u, v ∈ E . (36)

Proof. If εvu = +1 then u = v+ (u	 v) which implies that f(u) = f(v+ (u	 v)). As f is linear,
the latter equality leads to f(u) = f(v) + f(u	 v) and hence f(u	 v) = f(u)	 f(v). Similarly
if εvu = −1 then v = u− (u	 v) and one shows that in this case too f(u	 v) = f(u)	 f(v).

Definition 5.14. The kernel and the image of f are defined respectively by

Ker f = {u ∈ E ; f(u) = ~0′} and Imf = {f(u); u ∈ E }. (37)

Proposition 5.10. The subset Ker f and Imf are pseudovector subspaces of E and E ′ respec-
tively.

A linear map is above all a map between sets and notions such that injectivity, surjectivity
and bijectivity are applicable to them. However, linear maps between pseudovector spaces don’t
have the same properties as linear maps between vector spaces. It is obvious that if a linear
map f : E → E is injective then Ker f = {~0}, but the converse is not true in general. However
when E admits a difference operator, we may not expect a linear map to be injective since,
f(u− u) = f(u	 u) = f(~0) = ~0 but u− u is not necessarily ~0. Hence, the kernel of f contains
{u− u; u ∈ E }.

Definition 5.15. A linear form on E is a linear map ω : E → R. We denote by E ? the set of
all linear form on E .

A bilinear form on E is a map 〈·, ·〉 : E × E → R, which is linear with respect to each of
the two entries. In the same way, we define a multi-linear form on E .

The following comes directly from the definition of the difference operator.

Lemma 5.4. Let E be a pseudovector space admitting a difference operator. For any linear form
f : E → R one has f(u	 v) = f(u)− f(v) = f(u− v) for all u, v ∈ E .

Example 11. The kernel of the linear form f : Kkc(R) → R, [a, b] 7→ a + b is Ker f =
{[−a, a], a ∈ R+}.
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Definition 5.16. A pseudo-norm on E is a map ‖ · ‖ : E → R+ such that ∀u, v ∈ E , ∀λ ∈ R,

À ‖~0‖ = 0;

Á ‖λu‖ = |λ|‖u‖ (homogeneity);

Â ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (triangular inequality).

We call (E , ‖ · ‖) a pseudovector norm space.

From now on, E is a pseudovector space admitting a difference operator. Let ‖ · ‖ : E → R+

be a pseudo-norm on E such that

‖u	 v‖ = ‖u− v‖, ∀u, v ∈ E . (38)

We define on E the following relation

u<v ⇐⇒ ‖u	 v‖ = 0. (39)

Using (35) one shows that < defines an equivalence relation on E . We denote cl(u) the equivalence
class of an element u ∈ E and cls(E ) the set of all equivalence classes. Observe that ‖u‖ = 0 ⇐⇒
u ∈ cl(~0) and ‖u− v‖ = 0 ⇐⇒ cl(u) = cl(v).

Definition 5.17. A scalar product on E is a positive definite symmetric bilinear form 〈, 〉 :
E × E → R, that is a bilinear form satisfying:

À 〈u, v〉 = 〈v, u〉 (symmetric);

Á 〈u, u〉 ≥ 0 (positive);

Â if 〈u, u〉 = 0 then 〈u, v〉 = 0 for every v ∈ E (definite).

Let 〈·, ·〉 be a scalar product on E .

Proposition 5.11. Let ‖ · ‖ : E → R+ defined by

‖u‖ =
√
〈u, u〉. (40)

Then ‖ · ‖ is a pseudo-norm, called pseudo-norm associated to 〈·, ·〉.

Proof. One has ‖~0‖ =
√
〈~0,~0〉 = 0 as 〈·, ·〉 is bilinear and from Lemma 5.4, one deduces that.

〈u	 v, w〉 = 〈u,w〉 − 〈v, w〉 and ‖u	 v‖ = ‖u− v‖. (41)

Let u, v ∈ E and λ ∈ R. ‖λu‖ =
√
〈λu, λu〉 = |λ|‖u‖ and

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + ‖v‖2 + 2〈u, v〉.

It remains to show the following Cauchy-Schwarz inequality:

|〈u, v〉| ≤ ‖u‖‖v‖. (42)

If 〈u, u〉 = 0 then (42) is satisfied. If 〈u, u〉 > 0,

0 ≤ 〈〈u, v〉
〈u, u〉

u− v, 〈u, v〉
〈u, u〉

u− v〉 = 〈v, v〉 − 〈u, v〉
2

〈u, u〉
.
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Remark 5.1. Since 〈u−u, v〉 = 〈u	u, v〉 = 0, we may expect that for u ∈ E , (〈u, v〉 = 0 ∀v ∈ E )
=⇒ u = ~0. This is why the classical definite property is replaced by point Â in Definition 5.17.

It is nothing to check that the parallelogram identity

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 (43)

holds for all u, v ∈ E .
Let u, v ∈ E , λ ∈ R, u′ ∈ cl(u) and v′ ∈ cl(v). One has ‖λu− λu′‖ = |λ|‖u− u′‖ = 0 and

‖u+ v − u′ − v′‖ = ‖u− u′ + v − v′‖ ≤ ‖u− u′‖+ ‖v − v′‖ = 0.

Hence λu′ ∈ cl(λu) and u′ + v′ ∈ cl(u + v). So laws of E are compatible with the equivalence
relation and then cls(E ) is also a pseudovector space with operations

λcl(u) = cl(λu) and cl(u) + cl(v) = cl(u+ v).

The difference operator 	 is compatible with the equivalence relation and cl(u) 	 cl(v) =
cl(u)− cl(v) since ‖u	 v‖ = ‖u− v‖.

Definition 5.18. A pre-Hilbert pseudovector space is a pseudovector space (E , 〈·, ·〉) en-
dowed with a scalar product 〈·, ·〉.

Observe that in a pre-Hilbert space for u ∈ E ,

(〈u, v〉 = 0 ∀v ∈ E ) ⇐⇒ u ∈ cl(~0). (44)

Let (E , 〈·, ·〉) be a pre-Hilbert pseudovector space admitting a difference operator with com-
patible laws. As ‖u	 v‖ = ‖u+ (−v)‖ ≤ ‖u‖+ ‖v‖, the following is obvious.

Proposition 5.12. The formula
d(u, v) := ‖u	 v‖ (45)

defines a pseudometric d on E .

Observe that when the pseudo-norm is a norm, d becomes a metric. This happens for example
when we consider d on cls(E ) with the same formula (45). We endow E with the topology induced
by the derived pseudometric d. This is the topology induced by the open balls

B(u, r) = {v ∈ E ; d(u, v) < r}, u ∈ E , r > 0. (46)

Definition 5.19. A Hilbert pseudovector space is a pre-Hilbert pseudovector space where
any Cauchy sequence converges.

We assume now that (E , 〈, 〉) is a Hilbert pseudovector space.

Proposition 5.13. Let E be a Hilbert pseudovector space endowed with a difference operator 	
and (un)n a sequence that converges to u in E . If (un)n also converges to v then v ∈ cl(u).

Proof. As (un)n converges to u and v, for every ε > 0, there exists a large N such that n >
N =⇒ d(un, u) < ε/2 and d(un, v) < ε/2. This implies that d(u, v) ≤ d(u, un) + d(un, v) < ε
for any ε > 0. Hence d(u, v) = 0 which implies that cl(u) = cl(v).

Proposition 5.14. Let F be a pseudovector subspace of E. Then F⊥ is a pseudovector subspace
of E .

Theorem 2 (Riesz decomposition). Let F ⊂ E be a closed pseudovector subspace of a Hilbert
pseudovector space E with compatibles laws and endowed with a difference operator 	. Every
u ∈ E can be expressed as

u = v + w or u− w = v, with v ∈ F , w ∈ F⊥. (47)
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Proof. We assume that F 6= E . If u ∈ F then take v = u and w = ~0. We assume now that
u /∈ F . As F is closed, δ = d(u,F ) := inf{d(u, v); v ∈ F} > 0. For a positive integer n, let
vn ∈ F such that d(u, vn)2 < δ2 + 1/n. Then (vn) is a Cauchy sequence. In fact, by applying
the parallelogram identity (43) to u	εvp and u	εvq one shows that

‖(u	εvp) + (u	εvq)‖2 + ‖(u	εvp)	ε(u	εvq)‖2 = 2d(u, vp)
2 + 2d(u, vq)

2. (48)

From (31) and (33) one shows that

‖(u	εvp) + (u	εvq)‖2 + ‖(u	εvp)	ε(u	εvq)‖2 = ‖vp	εvq‖2 + ‖(u+ u)	ε(vp + vq)‖2.

Using the latter and the fact that the laws are compatibles, equation (48) leads to

d(vp, vq) = 2d(u, vp)
2 + 2d(u, vq)

2 − 4d(u,
vp + vq

2
)2 ≤ 2

(
1

p
+

1

q

)
. (49)

As E is complete, (vn) converge let’s say to v ∈ E . In addition as F is closed and d is continuous,
it follows that v ∈ F and d(u, v) = δ. By setting w = u	 v one has u = v +w or u−w = v. It
remains to show that w ∈ F⊥, ie 〈w, v′〉 = 0, ∀v′ ∈ F . Let v′ ∈ F and λ ∈ R. One has

δ2 ≤ ‖u	 (v + λv′)‖ = d(u, v)2 − 2λ〈w, v′〉+ λ2‖v′‖2.

Hence 0 ≤ −2λ〈w, v′〉+ λ2‖v′‖2 for every λ ∈ R, which implies that 〈w, v′〉 = 0.

In the above Theorem, the pseudovector v is called (orthogonal) projection of u on F and
denoted PFu, and w residual part. Therefore, any pseudovector u ∈ E can be expressed as
u = PFu + (u 	 PFu) or u − (u 	 PFu) = PFu. Let (xn)∞n=0 be a sequence in E . We set
Fn = Span(x0, . . . , xn) and F∞ = Span({xk}∞k=0). These are closed pseudovector subspaces
and hence Hilbert pseudospaces.

Lemma 5.5. Let u ∈ F∞ and un his projection on Fn. Then lim
n→∞

‖un 	 u‖ = 0.

Proof. If u ∈ Span({xk}∞k=0) then there exists n0 ∈ N such that u ∈ Fn0 and un ∈ Fn for every
n ≥ n0. Hence lim

n→∞
‖un	u‖ = 0 in this case. Let’s assume now that u /∈ Span({xk}∞k=1). Then

there exists a sequence (vn)n with vn ∈ Fn such that lim
n→∞

‖vn	u‖ = 0. The result follows from
the fact that for any n, ‖un 	 u‖ ≤ |‖vn 	 u‖|.

Lemma 5.6. Let û ∈ E , u the projection of û on F∞ with ε the residual and un the projection
of û on Fn with εn the residual. Then lim

n→∞
‖εn‖ = ‖ε‖ and lim

n→∞
‖un 	 u‖ = 0.

Proof. If u ∈ Span({xk}∞k=0) then there exists n0 ∈ N such that u ∈ Fn for every n ≥ n0. Hence
un = u and εn = ε for every n ≥ n0, which implies that lim

n→∞
‖εn‖ = ‖ε‖ and lim

n→∞
‖un 	 u‖ = 0

in this case. Let’s assume now that u /∈ Span({xk}∞k=0). Then there exists a sequence (vn)n with
vn ∈ Fn such that lim

n→∞
‖vn 	 u‖ = 0. Let σ = ‖ε‖ = ‖û − u‖ and σn = ‖εn‖ = ‖û − un‖. As

Fn ⊂ F∞, σ ≤ σn. Since

σ2
n ≤ ‖û− vn‖2 = ‖û− u+ u− vn‖2 = σ2 + ‖u− vn‖2,

it follows that lim
n→∞

σn = σ. The result follows from the fact that

‖u− un‖2 = ‖û− un − ε‖2 = ‖û− un‖2 − ‖ε‖2 = σ2
n − σ2.

As ε = û	 u and εn = û	 un, from the above theorem, one also has lim
n→∞

‖εn 	 ε‖ = 0.
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Theorem 3. Let (xn)∞n=0 be an orthonormal sequence in a Hilbert pseudovector space E with
compatible laws and endowed with a difference operator 	. Any vector u ∈ F∞ = Span({xk}∞k=0)
can be expressed as

u =

∞∑
k=0

θkxk (50)

in the sense that lim
n→∞

∥∥∥∥u	 n∑
k=0

θkxk

∥∥∥∥ = 0, with θk = 〈u, xk〉 and
∞∑
k=0

θ2 <∞.

Proof. Let un be the orthogonal projection of u on Fn = Span(x0, . . . , xn) and vn ∈ F⊥n the

residual part, thus u = un + vn or u − vn = un. As un ∈ Fn one has un =
n∑
k=0

θkxk with

θk = 〈un, xk〉 = 〈u, xk〉. By a direct calculation,

0 ≤ ‖vn‖2 = ‖u‖2 +

n∑
k=0

θ2
k − 2

n∑
k=0

θk〈xk, u〉 = ‖u‖2 −
n∑
k=0

θ2
k.

It follows that
n∑
k=0

θ2
k ≤ ‖u‖2, which implies that

∞∑
k=0

θ2
k <∞. Finally by Lemma 5.5,

lim
n→∞

∥∥∥∥u	 n∑
k=0

θkxk

∥∥∥∥ = 0.

We say that a sequence (xn)∞n=0 is regular when for any n, xn /∈ Span({xk}∞k=n+1). It is clear
that, any linearly independent sequence is regular.

Theorem 4. Let (xn)∞n=0 be a regular sequence in a Hilbert pseudovector space E with compatible
laws and endowed with a difference operator 	. Any vector u ∈ F∞ = Span({xk}∞k=0) can be
expressed as

u =
∞∑
k=0

θkek + w or u− w =
∞∑
k=0

θkek (51)

in the sense that lim
n→∞

∥∥∥∥u− w − n∑
k=0

θkek

∥∥∥∥ = 0 , where {ek}∞k=0 is an orthonormal sequence in

F∞, θk = 〈u, ek〉,
∞∑
k=0

θ2
k <∞, w ∈ U⊥∞ with U∞ = Span({ek}∞k=0).

Proof. Let Sn = Span({xk}∞k=n) ⊂ F∞. For k ≥ 0, let uk be the orthogonal projection in F∞
of xk on Sk+1 and vk the residual, thus xk = uk + vk or xk − vk = uk. For j > k, vk ∈ S⊥k+1

and xj ∈ Sk+1, hence 0 = 〈vk, xj〉 = 〈vk, uj〉 + 〈vk, vj〉 = 〈vk, vj〉 because uj ∈ Sj+1 ⊂ Sk+1.
Thus {vk}k is an orthogonal family. Since the sequence (xn)∞n=0 is regular, vk 6= ~0 and by setting
ek = vk/‖vk‖, we obtain that (en)∞n=0 is an orthonormal sequence. It is nothing to check that
U∞ = Span({ek}∞k=0) = Span({vk}∞k=0) ⊂ F∞. Let v be the orthogonal projection in F∞ of u
on U∞ and w the residual, thus u = v + w or u − w = v with w ∈ U⊥∞ ⊂ F∞. As v ∈ U∞, by
the Theorem 3 one gets

u =

∞∑
k=0

θkek + w or u− w =

∞∑
k=0

θkek (52)

with θk = 〈u, ek〉 and
∞∑
k=0

θ2
k <∞.
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6 Wold decomposition for interval-valued stationary processes

As we have mentioned, Kkc(R) is a pseudovector space with compatible laws and admitting a
difference operator 	. U [Ω,Kkc(R)] inherit from this structure, the difference operator being
given by

(F1 	 F2)(ω) = F1(ω)	 F2(ω), ∀ω ∈ Ω. (53)

The collection E of all random intervals F such that E[F ] = ~0 and V ar(F ) <∞ is a pseudovector
subspace of U [Ω,Kkc(R)]. In fact,

E[λF ] = λE[F ] = ~0 and V ar(λF ) = λ2V ar(F ) <∞, ∀F ∈ E , ∀λ ∈ R,

and as (x+ y)2 ≤ 2x2 + 2y2,

E[F1 + F2] = E[F1] + E[F2] = ~0, V ar(F1 + F2) ≤ 2V ar(F1) + 2V ar(F2) <∞, ∀F1, F2 ∈ E .

We define on E the positive symmetric bilinear form

〈F1, F2〉 = Cov(F1, F2). (54)

Let F in E be such that Cov(F, F ) = 0. Hence, F = E[F ] = ~0 (the random interval which sends
every ω ∈ Ω on ~0 = [0, 0] = {0}), almost everywhere (see Example 3) and so, Cov(F,G) = 0 for
any G ∈ E (look formula (10)). For this positive symmetric bilinear form, two random intervals
F1, F2 are equivalent with respect to the equivalent relation (39) when they are equal almost
everywhere. Hence formula (54) defines a scalar product on the quotient set L2[Ω,Kkc(R)]. We
will continue to denote any class in L2[Ω,Kkc(R)] by a representative F ∈ E . L2[Ω,Kkc(R)]
inherits from the structure of pseudovector space of E and the formula (54) defines a scalar
product on it. In L2[Ω,Kkc(R)], one says that a sequence (Fn) converges to F ∈ L2[Ω,Kkc(R)]
and we denote Fn → F when

lim
n→∞

V ar(Fn 	 F ) = 0.

Proposition 6.1. A sequence (Fn = [an, bn]) converges to F = [a, b] in L2[Ω,Kkc(R)] if and
only if (an) converges to a and (bn) converges to b in L2[Ω,A , P ].

Proof. From [YL05], one has V ar(Fn 	 F ) = V ar(an − a) + V ar(bn − b), which implies that
V ar(Fn 	 F )→ 0 if and only if V ar(an − a)→ 0 and V ar(bn − b)→ 0.

As direct consequence of the above Proposition and the fact that L2[Ω,A , P ] is a Hilbert
space [BD13], one has that L2[Ω,Kkc(R)] is a Hilbert pseudovector space.

Let (Xt)t∈Z be a zero-mean covariance interval-valued stationary process. The sets St =

Span({Xk}tk=−∞) and S−∞ =
∞⋂

t=−∞
St are Hilbert pseudovector subspaces of L2[Ω,Kkc(R)]. For

any j ≥ 0, the projection PSt−jXt of Xt on St−j is called the prediction of Xt on St−j . We
shall say that an interval-valued process (Xt)t∈Z is deterministic if for any t ∈ Z, Xt ∈ St−1.
Xt	PSt−1Xt is called the error in the projection of Xt on St−1 and when PSt−1Xt = Xt and one
says that (Xt)t∈Z is (perfectly) predictable. We shall say that an interval-valued process (Xt)t∈Z

is deterministic from the past of another one (Zt)t∈Z if for any t ∈ Z, Xt ∈ Span({Zk}t−1
k=−∞).

Theorem 5. Let (Xt)t∈Z be a non-deterministic covariance interval-valued stationary time series
process with expectation {0} and auto-covariance function (γ(k)). Then Xt can be expressed as

Xt =

∞∑
k=0

αkεt−k +Wt a.s or Xt −Wt =

∞∑
k=0

αkεt−k a.s (55)

where:
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(i) αk = 1
σ2Cov(Xt, εt−k), α0 = 1 and

∞∑
k=0

α2
k <∞;

(ii) {εt} WN({0}, σ2), with σ2 = V ar(Xt − PSt−1Xt);

(iii) Cov(Wt, εs) = 0 for all t, s ∈ Z;

(iv) (Wt)t∈Z is zero-mean, stationary and deterministic from the past of (Xt)t∈Z.

Proof. For any t ∈ Z, application of Theorem 4 to the sequence (Xt−k)
∞
k=0 gives that u = Xt

can be expressed as

Xt =
∞∑
k=0

θket−k +Wt a.s or Xt −Wt =
∞∑
k=0

θket−k a.s (56)

where {et−k}∞k=0 is an uncorrelated process with Cov(ei, ej) = δij , θk = Cov(Xt, et−k),
∞∑
k=1

θ2
k <

∞, Wt ∈ U⊥t with Ut = Span({ek}tk=−∞) ⊂ St. Since the process (Xt)t∈Z is non-deterministic,
the residual εt = Xt 	PSt−1Xt is different from ~0 and from the proof of Theorem 4, εt = ‖εt‖et,
hence (55) holds with αk = θk/‖εt−k‖, and (εt) is also uncorrelated. As Wt, εt ∈ L2[Ω,Kkc(R)],
E[Wt] = ~0 = E[εt]. Wt ∈ U⊥t implies that Cov(Wt, εs) = 0 for any s ≤ t. For s > t, taking scalar
product of (56) with εs one has Cov(Wt, εs) = Cov(Xt, εs) = 0 since εs ∈ S⊥s−1 and Xt ∈ St ⊂
Ss−1 for s > t. This proves (iii). Let Xt,n be the projection of Xt on St,n = span({Xt−j}nj=1)
and εt,n the residual. Then Xt,n takes the form

Xt,n =
n∑
j=1

βj,nXt−j ,

where the scalars βk,n do not depend on t, since they are solutions of the system of equations

n∑
j=1

βj,nγ(j − k) = γ(k), k = 1, . . . , n.

Hence E[Xt,n] = ~0, E[εt,n] = ~0. Moreover,

V ar(εt,n) = ‖Xt −Xt,n‖2 =

∥∥∥∥∥∥Xt −
n∑
j=1

βj,nXt−j

∥∥∥∥∥∥
2

= γ(0) +
n∑

i,j=1

βi,nβj,nγ(i− j)− 2
n∑
j=1

βj,nγ(j).

Hence V ar(εt,n) = σn does not depend on t and so does for σ = ‖εt‖ = lim
n→∞

σn, where the latter
equality comes from Lemma 5.6. Also,

Cov(Xt+k, εt,n) = γ(k)−
n∑
j=1

βj,nγ(k + j),

which does not depend on t. Using Cauchy-Schwarz inequality and Lemma 5.6,

lim
n→∞

|Cov(Xt+k, εt,n − εt)| ≤
√
γ(0) lim

n→∞
‖εt,n − εt‖ = 0,

which implies that Cov(Xt+k, εt) = lim
n→∞

Cov(Xt+k, εt,n) and does not depend on t. So,

αk =
1

‖εt‖
Cov(Xt+k, ek) =

1

‖εt‖2
Cov(Xt+k, εt)
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does not depend on t. Moreover, α0 = Cov(Xt,εt)
‖εt‖2 = 1. All this completes the proof of (i) and

(ii). For k ≥ 0,

Cov(Wt,Wt−k) = Cov

Xt−k −
∞∑
j=0

αjεt−k−j , Xt −
∞∑
j=0

αjεt−j


= γ(k)−

∞∑
j=0

αjCov(Xt, εt−k−j)−
∞∑
j=k

αjCov(Xt−k, εt−j) + σ2
∞∑
j=0

αj+kαj

= γ(k)− σ2
∞∑
j=0

αj+kαj ,

which does not depend on t. As Wt ∈ St, one can write Wt =
∑∞

k=0 akXt−k. Taking co-
variance with εt and using the fact that εt ⊥ Span(Xt−1, Xt−2, . . .) one gets Cov(Wt, εt) =
a0Cov(Xt, εt) = a0‖εt‖2. Since Cov(Wt, εt) = 0, one deduces that a0 = 0 hence Wt ∈ St−1, thus
(Wt) is deterministic from the past of (Xt). This completes the proof of (iv).

In the above proof, we have seen that, (Wt) is deterministic from the past of (Xt) and Wt is
orthogonal to any element of Ss for any s. Contrary to traditional time series, this may not imply
that (Wt) is deterministic nor that Wt belong to S−∞. This is due to the fact that in a Hilbert
pseudovector space, the orthogonal of a subspace is not necessarily complementary to it. A
new challenge shall be to give an adapted definition for purely non-deterministic interval-valued
process such that the Wold decomposition of such a process has no deterministic component and
then could be expressed as an I-MA(∞)

Xt =

∞∑
k=0

αkεt−k. (57)

7 Conclusion

In this work, the definition of set-valued autoregressive moving average (S-ARMA) time series
process is given. This definition takes into account an arithmetical difference between random
sets and random real variables. More precisely for point-value time series, the equations Xt −∑p

i=1 φiXt−i = K+εt+
∑q

i=1 θiεt−i and Xt =
∑p

i=1 φiXt−i+K+εt+
∑q

i=1 θiεt−i are equivalent,
what is not the case for set-valued time series process. A concept of pseudovector space is
introduced. A pseudovector space is an almost vector space where opposites of vectors might
not exist. This new concept might be studied in pure maths. It is shown that the set of random
intervals is a pseudovector space and generalized Hukuhara difference [Ste10] is used to recover a
kind of opposite for vectors. Furthermore, a notion of Hilbert pseudovector space is introduced
and used to establish Wold decomposition for interval-valued covariance stationary time series
process.
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