What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid?

Xiu-Juan Wang, Meng-Zhen Kang, Xing-Rong Fan, Li-Li Yang, Bao-Gui Zhang, San-Wen Huang, Philippe de Reffye, Fei-Yue Wang

To cite this version:

Xiu-Juan Wang, Meng-Zhen Kang, Xing-Rong Fan, Li-Li Yang, Bao-Gui Zhang, et al.. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid?. Journal of Integrative Agriculture , Elsevier, 2020, 19 (7), pp.1789-1801. 10.1016/S2095-3119(20)63218-X . hal-02862421

HAL Id: hal-02862421
https://hal.umontpellier.fr/hal-02862421
Submitted on 9 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
What are the differences in yield formation among two cucumber (*Cucumis sativus* L.) cultivars and their F₁ hybrid?

WANG Xiu-juan¹,², KANG Meng-zhen¹,³, FAN Xing-rong⁴, YANG Li-li⁵, ZHANG Bao-gui⁶, HUANG San-wen⁷, Philippe DE REFFYE⁸, WANG Fei-yue¹,⁹

¹ The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P.R.China
² Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P.R.China
³ Innovation Center for Parallel Agriculture, Qingdao Academy of Intelligent Industries, Qingdao 266109, P.R.China
⁴ School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, P.R.China
⁵ College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, P.R.China
⁶ College of Land Science and Technology, China Agricultural University, Beijing 100193, P.R.China
⁷ Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P.R.China
⁸ AMAP, University Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier 34000, France
⁹ The School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R.China

Abstract

To elucidate the mechanisms underlying the differences in yield formation among two parents (P₁ and P₂) and their F₁ hybrid of cucumber, biomass production and whole source–sink dynamics were analyzed using a functional–structural plant model (FSPM) that simulates both the number and size of individual organs. Observations of plant development and organ biomass were recorded throughout the growth periods of the plants. The GreenLab Model was used to analyze the differences in fruit setting, organ expansion, biomass production and biomass allocation. The source–sink parameters were estimated from the experimental measurements. Moreover, a particle swarm optimization algorithm (PSO) was applied to analyze whether the fruit setting is related to the source–sink ratio. The results showed that the internal source–sink ratio increased in the vegetative stage and reached a peak until the first fruit setting. The high yield of hybrid F₁ is the compound result of both fruit setting and the internal source–sink ratio. The optimization results also revealed that the incremental changes in fruit weight result from the increases in sink strength and proportion of plant biomass allocation for fruits. The model-aided analysis revealed that heterosis is a result of a delicate compromise between fruit setting and fruit sink strength. The organ-
level model may provide a computational approach to define the target of breeding by combination with a genetic model.

Keywords: cucumber, biomass production, functional–structural plant model, source–sink ratio, fruit-setting, PSO, heterosis

1. Introduction

Cucumber (Cucumis sativus L.) is a very popular vegetable plant worldwide, and its yield components comprise the number, weight and quality of individual fruits (Marcelis 1992). Hybrid vegetable technology is one of the best options to improve cucumber yield. Hybrid vigor can be expressed by the total yield and increased yield due to the large number of fruits/plants (Ghaderi and Lower 1978). Yield and fruit quality are some of the most frequent traits influenced by heterosis. Heterosis or hybrid vigor is commonly known as the superior performance of hybrid organisms compared with either of their parents (Birchler 2015). In cucumber, Hayes and Jones (1916) first observed heterosis in fruit size and fruit number per plant. Ghaderi and Lower (1978) suggested that heterosis in yield components such as the number or weight of leaves, branches, and roots should have a direct effect on fruit yield. F_1 hybrids may have greater photosynthetic activity than their parents, thus leading to a higher yield.

Crop yield is the result of the interactions of genetic and environmental factors. Breeders have proposed the concept of an ideal plant (ideotype) adapted to a target environment. For cucumber, a heliophile crop, dry matter production through photosynthesis is one of the most important processes to consider when characterizing an ideotype. Internode length, leaf size and leaf angle are three important traits of the ideal cucumber plant architecture (Falster and Westoby 2003; Sarlikioti et al. 2011). Breeding for yield mainly utilizes hybrid vigor to change some plant morphological traits by hybrid breeding, thus improving the yield, cultivar and resistance (Xie et al. 2009). A major difficulty lies in decomposing the complex interactions between genotype and environment because the main phenotypic traits (e.g., yield, plant height, organ number and size) integrate multiple internal morphological and physiological processes and external interactions with field and climatic conditions (Letort et al. 2008).

Heuvelink et al. (2007) reported that using plant models allows the evaluation of newly available genotypes by analyzing their performance and identifying the most influential parameters to improve yield under various environmental conditions. Many plant growth models have been developed to increase our knowledge of plants, improving agricultural practices and environmental optimization and control (Wu et al. 2012; Fan et al. 2015). Studies of the potential of linking growth models to quantitative genetics aim to integrate genetic knowledge in plant growth models considering the effect of the environment (Hammer et al. 2005; Letort et al. 2008; Xu et al. 2011; Yin et al. 2016; Chew et al. 2017). If the model parameters themselves can be viewed as different quantitative traits, they should have high heritability because they are expected to be less dependent on the environmental conditions and to show more direct gene expression (Letort et al. 2008). Thus, it is easier to analyze the genetic effects using model parameters than using traditional traits. Moreover, optimization processes allow the determination of key parameters influencing yield, even when complex genetic correlations are introduced. However, plant growth model selection will be a crucial step.

Functional–structural plant models (FSPMs) explicitly describe the development of a plant structure over time as governed by physiological processes that, in turn, depend on environmental factors (Vos et al. 2007). Such models dynamically simulate plant systems, allowing for feedback between processes at the level of individual organs and functioning of the plant as a whole (Vos et al. 2010). The features of FSPMs are interesting for studying fruit setting in horticultural plants (Wubs et al. 2009). Based on botanical knowledge and source–sink regulation rules, the FSPM GreenLab is a generic model that can simulate interactions among the fruit set (e.g., position, number and size), biomass production and allocation to better understand the dynamics of biomass production and morphogenesis among cucumber cultivars. Furthermore, one interesting feature of the GreenLab Model is that the Model parameters can be adjusted globally by fitting model outputs to corresponding measured organ biomass (Christophe et al. 2008) thanks to its mathematical formalism; this is a demanding and critical step in developing and applying a model (Seidel et al. 2018). The GreenLab Model has been applied to various plants, including maize (Ma et al. 2008), tomato (Kang et al. 2011), sweet pepper (Ma et al. 2011), and chrysanthemum (Kang et al. 2012). However, none of these plants has been used to analyze heterosis between parents and F_1 hybrids.

The aim of the study was to analyze the processes underlying the different biomass production levels between two parents (P_1 and P_2) and their F_1 hybrid of cucumber using a modeling approach. First, the GreenLab Model was calibrated with the data of the two parents and their
1791

F₁ hybrid to more deeply understand the differences among their development and growth processes with the estimated model parameters; second, a particle swarm optimization algorithm (PSO) was applied to investigate the relationship between the fruit setting and source–sink ratio by simultaneously optimizing the source–sink parameters and fruit positions and numbers. This model-based analysis thus provides a new tool to better understand the heterosis phenomenon.

2. Materials and methods

2.1. Experiment setup and measurements

Plant materials Cucumber (Cucumis sativus L.) seeds were provided by the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences. The large-leaf line (C. sativus var. sativus) DF-32 (P₁), the small-leaf line (C. sativus var. hardwickii) XF-24 (P₂) and their hybrid (F₁) were cultivated in a greenhouse of China Agricultural University (40.01°N, 116.28°E) from March to July 2010. The parent P₁ is a late-maturing cultivar; the first female flower is located at the 15th–16th phytomer (counting from the base). This cultivar produces large blades and large fruit with a low fruit-set rate. The parent P₂ is an early-maturing cultivar; the first female flower is located at the 3rd–5th phytomer. This cultivar produces small blades and small fruit with a high fruit-set rate. The traits of the F₁ hybrid are intermediary (Fig. 1).

The two parents and F₁ hybrid were sown on March 9, 2010. Cucumber seedlings with four leaves were implanted into 25-cm pots on April 10, 2010. The pots were filled with 70% peat, 20% vermiculite and 10% pearlite. Next, 20 and 10 pots of plants were planted for P₁, P₂ and F₁, respectively. There was no water or nutrient stress. All tendrils and side shoots were pruned to allow monopodial growth. Measurements were performed on two plants in the middle rows with at least one border plant on each side. The fruits were harvested every three or four days.

Measurements The environmental conditions, namely, temperature, humidity and light intensity, were monitored during plant growth in the greenhouse to analyze their effects. Both destructive measurements and continuous nondestructive observations were carried out. Continuous observations were performed on six plants for two parents and F₁ hybrid, twice per week, with detailed topological observations on the number of leaves, phytomer ranks of flowers on the main stem, and stage of development (flower bud, flower and fruit or abortion) at each flower position, in order to describe dynamic fruit setting for two parents and F₁ hybrid.

In destructive measurements, two cucumber plants for two parents and F₁ hybrid were selected to measure the dry weight of individual organs (internode, blade, petiole and root) and blade surface for each sampling. In total, six samplings were made during the growing period (S1, 10 April; S2, 26 April; S3, 17 May; S4, 31 May; S5, 16 June; and S6, 3 July). The measured data were used to estimate the source–sink parameters of the model for two parents and F₁ hybrid.

2.2. GreenLab Model

GreenLab is a generic plant model that simulates two basic plant processes: development (organogenesis) and growth (organ expansion) (Yan et al. 2004). At each time
interval, called the growth cycle (GC, the period between the sequential emergence of leaves on the main stem of a plant), the plant structure is updated according to the organogenesis model. Organogenesis is simulated with a dual-scale automaton (Yan et al. 2002), which gives the number of organs at each cycle that participate in biomass production and allocation.

Modeling biomass production In the GreenLab Model, at the \(i \)th GC, the biomass production of a plant \(Q(i) \) is calculated using eq. (1) (Guo et al. 2006):

\[
Q(i) = \text{PET}(i) \cdot \mu \cdot S_p \left(1 - \exp \left(-\frac{S(i)}{S_p} \right) \right)
\]

where \(i \) is the age of the plant in GC. \(\text{PET}(i) \) (mm per GC) is the potential evapotranspiration during the \(i \)th GC that is affected by several microclimate conditions (light, temperature and vapor pressure deficit) (Allen et al. 1998). The PET of a GC is summed from daily PET values, the duration depending on the daily temperature and phyllochron per cycle; \(S_p \) (cm\(^2\)) is the ground maximal projection area of the plant, linked to the density of planting (Ma et al. 2008); \(\mu \) (g cm\(^{-2}\) mm\(^{-1}\)) estimates the water use efficiency, expressing produced biomass by plant evapotranspiration per unit of water (Kang et al. 2011); \(k \) is the light extinction coefficient, set to an empirical value of 1; \(S(i) \) is the total functioning leaf area at the \(i \)th GC, summed from the individual leaf area in the model. Each leaf area is computed from its biomass and a specific leaf weight, the latter being assessed directly from the data. Because the biomass of each leaf is dependent on the global plant demand during its expansion, it can be affected by concurrent events such as the fruit set. The initial biomass \(Q(0) \) is from the seed.

Modeling biomass partitioning The model is based on the hypothesis that dry matter partitioning is regulated by the sink strengths of the plant organs. The sink strength of an organ is defined here as the potential growth capacity, i.e., the biomass at nonlimiting assimilate supply (Marcelis 1994). Biomass is distributed among growing organs according to their own sink strength. The sink strength of organ \(o \) of age \(j \) is calculated by eq. (2):

\[
P_o(j) = P_o \cdot f_o(j)
\]

where \(P_o \) is the organ sink strength, and \(o \) represents the organ type (b, blade; p, petiole; in, internode; f, female). In this study, we set the maximum measured value of fruit, that is, \(P_f \) equals 14.6, 7.6 and 12.3 g for the parents \(P_p \) and \(P_z \) and hybrid \(P_h \), respectively, as the reference potential sink strength. The sink strengths of other organs (\(P_p \) and \(P_z \)) are hidden parameters to be estimated from the plant data. Thus, the sink strength has units (g per GC) and represents the organ’s ability to compete for assimilates in each GC. Because each organ has different needs for biomass during its lifetime, function \(f_o(j) \) is defined as the organ sink variation, described empirically by a discrete Beta function as in eq. (3):

\[
f_o(j) = \begin{cases}
g_o(t_o) & 1.5/jt_o \\
0 & j > t_o
\end{cases}
\]

where

\[g_o(t_o) = \frac{j-0.5}{t_o} - 1 - \frac{0.5}{t_o}, \quad b = b_o, p \]

This function gives the shape of the organ sink variation curve at a constant biomass supply. The product \(P_f f_o(j) \) gives the demand of organ \(o \) with age \(j \) in the plant. Given the expansion duration \(t_o \) and one of the control parameters \(a_o \), another control parameter \(b_o \) was estimated from the plant data for each type of organ. This constraint is empirical and generally yield good results for different organs and plants (Guo et al. 2006; Kang et al. 2011). The larger the value of \(b_o \), the faster the expansion is. Appendix A shows different curve shapes of \(f_o(j) \) depending on the values of parameters \(a_o \) and \(b_o \), which could differ among organ types and plant species. The duration of growth \(t_o \) of organ \(o \) can be observed directly from measurements, which is approximated to be 20 cycles.

Summing the sink strength of all organs, we obtain the total demand of plant \(D(i) \) at the \(i \)th GC:

\[
D(i) = \sum_o P_o \left(\sum_j N_o(i, j) f_o(j) \right)
\]

where \(N_o(i, j) \) is the number of organs \(o \) of age \(j \) at plant age \(i \). In the cucumber plant here, for leaves and internodes, this value is 1; for the fruit, it can be 0 or 1, depending on whether a fruit is set at the phytomer rank.

According to the sink strength, the biomass acquired by the organ of age \(j \) at the \(i \)th GC is:

\[
\Delta q_o(i, j) = P_o f_o(j) Q(i)
\]

In eq. (5), the dynamic source–sink ratio \(Q(i)/D(i) \), simply written as \(Q/D \). It reflects the competition level in the plant, showing the biomass availability for each organ. According to eq. (5), larger \(Q/D \) values during the expansion of an organ produce a larger final biomass. This ratio can be computed by the model recurrently when all parameter values are known. The source–sink ratio at the fruit set is quantified by computing this ratio when each fruit appears, and a threshold is given as \(s_{\text{fruit}} \). For cucumber, a fruit will possibly appear at each node, but only some positions can set a fruit; therefore, when the position sets a fruit, the plant demand \(D \) increases, then the ratio \(Q/D \) decreases and is lower than the threshold. Therefore, some later produced fruit may abort while the competition for assimilates
increases. Thus, spatial fruit position can be determined by the source–sink ratio (Ma et al. 2011).

Summing the biomass of all individual organs of the same property produces the total biomass of organs that can be obtained by experimental measurements. The biomass of an organ \(a \) is the accumulated biomass of the organ of age \(j \) at the \(t \)th GC:

\[
q_a(i, j) = \sum_{k=1}^{b} \Delta q_a(i-j+k, k) \quad (6)
\]

Accordingly, the total weight of the fruit at the final harvest, denoted by \(W_f \) (g/plant), is computed by eq. (7):

\[
W_f = \sum_{j=1}^{b} N_f(N, j) q_f(N, j) \quad (7)
\]

where \(t_f \) (unit: GC) is the fruit functioning duration, and \(N \) is the final GC (or maximal GC) of the plant.

2.3. Parameter estimation of GreenLab

In GreenLab, the parameters are classified into two categories: measurable parameters (e.g., functioning duration of blades, number of organs emerged at each GC) and hidden parameters that cannot be measured directly in the field (e.g., organ sink strength). The hidden parameters are estimated by minimizing the difference between the measured data and corresponding simulation results. A generalized nonlinear least-square method (GLSQR) adapted from the Levenberg-Marquardt algorithm is used for estimation (Zhan et al. 2003). Model computation and model fitting on experimental data were conducted using the open-source GreenScilab Software.

A common set of parameters (Table 1) is estimated simultaneously by fitting the plant data at different development stages, which is called multifitting. For directly measurable parameters, following the observations, the organ expansion duration (from appearance to stop growing) was set to 20 GCs, while the organ function duration (from appearance to death) was set to 40 GCs for the blade, petiole, internode and fruit according to the data of continuous observations. Leaf thickness was estimated as the ratio of the leaf fresh mass to surface area (Wright and Westoby 2002). It plays an important role in leaf and plant functioning and is related to species’ strategies of resource acquisition and use (Vile et al. 2005).

2.4. Data analysis

Statistical analyses were performed using R2.11.1 (Copyright (C) 2010, the R Foundation for Statistical Computing). Analysis of variance (ANOVA) was used to assess the differences in phyllochron between the parents and \(F_1 \) hybrid.

2.5. Maximization of the fruit weight

To clarify the origin of heterosis, a PSO algorithm was applied to analyze whether the fruit setting could be related to the dynamic of the source–sink ratio. First, based on the estimated source–sink parameters, the fruit positions are optimized by setting different numbers of fruit per plant for the parents \(P_1 \) and \(P_2 \) and hybrid \(F_1 \) to analyze the effect of the sink organ on potential biomass production; second, both the source–sink parameters and positions of the fruit per plant were synchronously optimized using different numbers of fruits per plant to check the potential augmentation of yield.

The optimization objective was to maximize the total weight of the fruit for each plant. Assuming one fruit for one position, the mathematical formalism of the optimization problem is given by the following eq. (8):

\[
\text{Maximize } W_f
\]

Subject to \(1 \leq \sum_{i=1}^{N} \text{posFruit}(i) \leq NF \)

where \(\text{posFruit}(i) \) is a binary (0/1) variable depending on whether a fruit is set at the phytomer rank, which corresponds to the function of \(N_s(i, j) \) in eq. (4) for the fruit; \(\sum \text{posFruit}(i) \) gives the total number of fruits per plant; \(NF \) is the maximum number of fruits; and \(W_f \) is a function of \(\text{posFruit}(i) \) and \(q_f \) (eq. (7)). A PSO algorithm is used to solve the optimization problem (Qi et al. 2010).

3. Results

3.1. Experimental results

Phyllochron The phyllochron shows no significant difference between the parents \((P_1 \) and \(P_2 \)) and the \(F_1 \) hybrid (ANOVA, \(df=2, F=0.085, P>0.5 \)), as shown in Fig. 2.

Table 1 Source–sink parameters identified from the measurement data using the GLSQR method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_o, P_x, P_n)</td>
<td>Organ sink strength (eq. (2))</td>
<td>g</td>
</tr>
<tr>
<td>(b_o, b_x, b_n)</td>
<td>Organ sink variation parameter (eq. (3))</td>
<td>–</td>
</tr>
<tr>
<td>(S_p)</td>
<td>Characteristic surface of an individual plant (eq. (1))</td>
<td>cm²</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Water use efficiency (eq. (1))</td>
<td>g cm⁻¹ mm⁻¹</td>
</tr>
<tr>
<td>(q_{\text{low}})</td>
<td>A threshold, fruits appear at GC if source–sink ratio (Q/D > q_{\text{low}})</td>
<td>–</td>
</tr>
</tbody>
</table>

\(b \), blade; \(p \), petiole; \(i \), internode; \(f \), fruit.
This means that the development speed is similar, and we can use the same time step in the model to compute the source–sink parameters.

Because the environmental factors were considered by combining the daily PET values in eq. (1) of the model, the potential evapotranspiration (PET) per cycle was calculated by accumulating daily PET inside a GC according to the daily temperature, light intensity and air humidity (Fig. 3).

Vegetative organ biomass The biomass and sizes of organs from a given type (leaves, petioles and internodes) vary along the stem within one plant and are different at the same phytomer rank for two parents and F₁ hybrid. The plants of parent P₁ had the largest organ biomass for the internode, blade and petiole. In contrast, parent P₂ had the smallest organ sizes, while hybrid F₁ showed intermediate values, as shown in Fig. 4. Furthermore, the averaged plant heights and internode diameters showed similar patterns (P₁>F₁>P₂) (Table 2).

Fruit setting and fruit biomass According to the observation, the first fruit appeared at the phytomer ranks 15–16, 3–5 and 10–12 for parents P₁ and P₂ and hybrid F₁, respectively, i.e., the first fruit set was the earliest in P₂, latest in P₁ and that of F₁ was between them (P₁>F₁>P₂). The harvested mean final number of fruit per plant for parents P₁ and P₂ and hybrid F₁ showed an inverse trend (P₁>F₁>P₂). The mean dry weights of individual fruit were P₁>F₁>P₂ (Table 3), indicating that F₁ produced an intermediate amount of fruit compared with its parents, with a fruit size close to P₁. Therefore, it is not surprising that the mean total fruit dry weight per plant of F₁ was the highest at the final harvest (P₁>F₁>P₂). The results indicated that F₁ has better performance than the parents, a phenomenon called heterosis.

3.2. Model-assisted analysis

Differences in the source–sink parameters for parents P₁ and P₂ and hybrid F₁ The trend of leaf thicknesses for parents P₁ and P₂ and hybrid F₁ was P₁>P₂>F₁ (data not shown), which was used for parameter estimation. The target data for two plants from four different sampling dates were fitted simultaneously, including the dry weights of individual organs (internode, blade, petiole and fruit) and total dry weight of each component. In total, 1572, 1276, and 1236 target data points were fitted simultaneously for P₁, P₂ and F₁, respectively. The organ-level fitting results of the last two stages (S5 and S6) for P₁, P₂ and F₁ are shown in Fig. 4. Only dry weights of individual internodes, leaves, petioles and fruits of one plant were given for each sampling for clarification. The total dry weights of each organ type for stages S3–S6 are given in Fig. 5. The data of S1 and S2 were omitted because they were too tiny to display. The correlation coefficient (R^2) values between the observed and fitted values for the two parents and their hybrid F₁ were 0.97, 0.91 and 0.92, respectively (Table 4).
Table 2 Comparison of the organ biomass and plant size for parents P₁ and P₂ and hybrid F₁ at the last stage (S6, two plants)

<table>
<thead>
<tr>
<th>Organ</th>
<th>P₁</th>
<th>P₂</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dry weight (g)</td>
<td>18.4±1.1</td>
<td>4.1±0.1</td>
<td>9.6±1.8</td>
</tr>
<tr>
<td>Internode</td>
<td>42.5±3.0</td>
<td>17.4±0.5</td>
<td>26.5±5.8</td>
</tr>
<tr>
<td>Blade</td>
<td>9.6±0.8</td>
<td>2.9±0.3</td>
<td>5.4±1.4</td>
</tr>
<tr>
<td>Petiole</td>
<td>431.5±16</td>
<td>254.5±14</td>
<td>378.6±36</td>
</tr>
<tr>
<td>Internode diameter (mm)</td>
<td>6.28±0.2</td>
<td>4.28±0.1</td>
<td>5.46±0.3</td>
</tr>
</tbody>
</table>

The values are expressed as mean±SD.

Fig. 4 Fitting results of growing stages S3 (17 May), S4 (31 May), S5 (16 June) and S6 (3 July) for two parents (P₁ and P₂) and their hybrid F₁. All the data were fitted simultaneously, including the total dry weight for all organs and organ-level dry weight of individual internodes, blades, petioles, and fruit (from top to bottom). Only one plant was given for each stage. Obs, observed data; Est, estimated data. The arrows indicate the fruit-set positions for stages S5 (up arrow) and S6 (down arrow).
A set of source–sink parameters was identified for \(P_1 \), \(P_2 \) and \(F_1 \), as shown in Table 4. The sink strengths of the blade, petiole and internode (\(P_b \), \(P_p \) and \(P_{in} \)) for \(F_1 \) were intermediate between those of the parents \(P_1 \) and \(P_2 \) (\(P_1 > F_1 > P_2 \)). The sink variation of the blade (\(b_b \)) for \(F_1 \) was intermediate between that of the parents. The sink variation of the petiole (\(b_p \)) was slightly smaller than that of the parents. The sink variation values of the internode (\(b_{in} \)) and fruit (\(b_f \)) for \(F_1 \) were larger than those of \(P_1 \) and \(P_2 \), respectively, indicating quicker expansion compared with the leaves. Regarding the source parameters, the projection area \((S_P) \) for \(F_1 \) was intermediate between that of the parents \(P_1 \) and \(P_2 \) (\(P_1 > F_1 > P_2 \)). The water use efficiency \((\mu) \) was larger for \(F_1 \) than for \(P_1 \) and \(P_2 \) (\(P_2 < P_1 < F_1 \)). There are shifts in the profiles of the internode and blade that were not reproduced by the model, likely due to the abortion of early fruit for parent \(P_1 \).

Computed plant biomass production, demand and source–sink ratio Using these parameter values, the plant biomass production and plant demand of each cycle were computed (Fig. 6). The biomass production per cycle (\(Q \), Fig. 6-A) and cumulated biomass production (Fig. 6-B) were larger for parent \(P_1 \) and hybrid \(F_1 \) than for parent \(P_2 \). The plant demand (\(D \), Fig. 6-C) was larger for parent \(P_2 \) and hybrid \(F_1 \) than for parent \(P_1 \), which was consistent with the fruit setting. Anytime there is fruit removal after maturation, the plant demand drops.

The ratio between the biomass supply and demand (\(Q/D \), Fig. 6-D) increased during the vegetative stage until fruit began to be the dominant sinks. The peak value was first reached for parent \(P_2 \) followed by hybrid \(F_1 \), and then parent \(P_1 \). The value of the first peak of hybrid \(F_1 \) was between the two parents (\(P_1 \) and \(P_2 \)). The \(Q/D \) of the parent \(P_1 \) and \(F_1 \) hybrid was visibly larger than that of \(P_2 \).

Table 3 Comparison of the mean final number of fruits per plant, mean dry weights of individual fruits and mean total fruit weight per plant for parents \(P_1 \) and \(P_2 \) and hybrid \(F_1 \) (growing stage S6 (3 July), two plants)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean final number of fruits per plant</td>
<td>1.0±0.7</td>
<td>6.0±0.9</td>
<td>4.2±0.8</td>
</tr>
<tr>
<td>Mean dry weights of individual fruits (g)</td>
<td>9.6±4.9</td>
<td>3.9±1.8</td>
<td>7.2±3.4</td>
</tr>
<tr>
<td>Mean total fruit dry weight per plant (g)</td>
<td>12.2±3.5</td>
<td>22.9±9.1</td>
<td>31.9±0.6</td>
</tr>
</tbody>
</table>

The values are expressed as mean±SD.

Table 4 Estimated parameter values for parents \(P_1 \) and \(P_2 \) and hybrid \(F_1 \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_b)</td>
<td>0.87 (0.55)</td>
<td>1.66 (0.40)</td>
<td>1.15 (0.18)</td>
</tr>
<tr>
<td>(P_p)</td>
<td>0.18 (1.15)</td>
<td>0.28 (0.67)</td>
<td>0.21 (0.81)</td>
</tr>
<tr>
<td>(P_{in})</td>
<td>0.36 (2.00)</td>
<td>0.44 (0.19)</td>
<td>0.41 (0.23)</td>
</tr>
<tr>
<td>(b_b)</td>
<td>2.11 (0.19)</td>
<td>2.76 (0.07)</td>
<td>2.36 (0.18)</td>
</tr>
<tr>
<td>(b_p)</td>
<td>1.81 (1.54)</td>
<td>2.46 (0.58)</td>
<td>1.66 (1.29)</td>
</tr>
<tr>
<td>(b_{in})</td>
<td>2.67 (3.98)</td>
<td>2.59 (1.90)</td>
<td>3.46 (3.03)</td>
</tr>
<tr>
<td>(b_f)</td>
<td>1.35 (0.08)</td>
<td>2.41 (0.05)</td>
<td>5.35 (0.04)</td>
</tr>
<tr>
<td>(S_P)</td>
<td>479.0 (4.08)</td>
<td>134.5 (2.22)</td>
<td>251.9 (2.91)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>0.00052 (0.45)</td>
<td>0.00042 (0.85)</td>
<td>0.00069 (0.99)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.97</td>
<td>0.91</td>
<td>0.92</td>
</tr>
</tbody>
</table>

\(P_b \) is the coefficient of sink strength; \(b_b \) is the parameter of the beta function for organ expansion, where, \(o=\text{in} \) (internode); \(b \) (blade); \(p \) (petiole); \(f \) (fruit). \(S_P \) is the projected surface area of the plant. The sink strength of fruit \((P_f) \) is set to their respective maximum fruit weight. Data in parentheses are CVs (%).
Large-fruited cultivar P1 needs a higher source–sink ratio for the fruit set.

3.3. Computational experiments on the fruit weight

Optimizing fruit positions and numbers

Based on the estimated source–sink parameters, the positions of fruit are optimized by setting different number of fruit per plant for the parents P1 and P2 and hybrid F1 to analyze the effect of the sink organ on potential fruit weights. Here, the potential fruit weight means the best yield with different fruit positions. It increased with the number of fruits per plant and reached the saturation point at approximately 10 fruit (Fig. 7-A) for the parents P1 and P2, while the average fruit weight decreased (Fig. 7-B). The optimized values of the parent P1, and hybrid F1, were larger than that of parent P2, indicating a higher source supply in P1 and F1. The total potential biomass production of P1 and F1 are close, depending on the source parameters (S_P and µ). The increase in biomass production reached a limit, indicating a limit in the source supply. Interestingly, the potential and observed plant biomass are close for the parent P1 (6 fruits) and hybrid F1 (4 fruits), with 29.3 g vs. 29.7 g (increase by 1%) and 32.4 g vs. 35.7 g (increase by 10%), respectively. This could mean that, for a real plant, its fruit position is already optimized by itself for its biomass production. This result agrees with that in a previous study of the fruit position optimization of maize (Qi et al. 2009).

Optimizing the fruit positions, numbers and source–sink parameters

Both the source–sink parameters and positions of the fruit per plant were synchronously optimized using different numbers of fruits per plant to check the potential augmentation of biomass. Here, the potential plant was obtained by synchronously optimizing the source–sink parameters and numbers and positions of the fruits per plant. Table 5 gives the variation in the optimized parameters, which is limited to the range between the estimated values (Table 4) of the parents and F1 hybrid.

As shown in Fig. 8, both the optimized total and average fruit weights were larger than the observed values. This is reasonable because the source capacity increased. The optimized total fruit weights increased with the fruit number and reached a saturation point of approximately 10 fruits. The mean fruit weights decreased but were always above the observed values. The optimized source parameter (S_P) was close to the value of parent P1, while the source parameter
4. Discussion

The GreenLab Model was used to study the source–sink dynamics of individual organ growth and link it to the fruit setting and fruit biomass for the parents and hybrid F1. Our modeling results confirmed that the organ growth and fruit setting is controlled by the source–sink ratio in cucumber (Fig. 6), and the model can well reproduce the results of experimental measurements. One original aspect of this study compared with earlier GreenLab models (Mathieu et al. 2007; Kang et al. 2011) was to introduce the potential fruit growth rate (measured maximum fruit dry weight) into the GreenLab model to represent the fruit sink strength. The sink strength of each organ then has units (g per GC) and represents the ability to compete for assimilates instead of a relative value (compared with the leave).

4.1. Correlation between the cyclic patterns of organ growth and source–sink ratio by the GreenLab Model

The biomass and size of each organ differ within one plant for two parents and F1 hybrid, which could be due to the difference in the supply and demand, that is, the source–sink ratio during plant growth. Additionally, the biomass and size of each organ are different at the same phytomer rank for two parents and F1 hybrid, likely due to the difference in their sink strengths because the expansion time showed no significant difference according to the observations.
Moreover, the waves in the organ profile appeared as an emergent property because of the fruit setting (Fig. 4), a finding that is consistent with the study of Mathieu et al. (2007). There is a time lag between an increase in the source–sink ratio and the number of young fruit because it takes time for the fruit to expand.

Furthermore, the individual fruit weight and final fruit number differ between two parents and F1 hybrid, likely due to the difference in the fruit sink strength and source–sink ratio during the fruit setting (Marcelis et al. 2004). A general pattern is that a decrease in the source–sink ratio is accompanied by a new non-aborted fruit, and vice versa. What is interesting is the threshold (s_{opt}) of setting the first and the subsequent fruit in P1, P2 and F1. Fig. 6-D shows that the source–sink ratio was higher for single-fruit type P1 and lower for multiple-fruit type P2, while their hybrid was intermediate. This finding demonstrates that different cultivars may have different needs of the source–sink threshold (or hormone level) for the fruit setting, which gives different final numbers and sizes of fruit (Mathieu et al. 2008). This result is consistent with that of previous studies, and the link between the fruit set and computed source–sink ratio has been presented by previous application of GreenLab to sweet pepper for six cultivars (Ma et al. 2011) and tomato for different densities (Kang et al. 2011).

4.2. Model-assisted analysis of biomass production in cucumber

According to the estimated parameters of source strength (S) and sink strength (P), we can see that the model explained well the differences in biomass production for P1, P2 and F1. The estimated sink parameters of the internode (P_{i}), blade (P_{b}) and petiole (P_{p}) in F1 plants were intermediate between the parents (Table 4). The estimated results are consistent with the experimental data. Hybrid F1 has the best fruit biomass, indicating heterosis of F1. The high biomass production of the F1 hybrid is achieved by factors both in plant development (fruit setting) and sink for the functional parts is adjusted by its structure (fruit numbers and positions), and the plant can adjust itself by self-optimization.

Furthermore, the potential fruit weights increased with the number of fruit per plant and reached the saturation point at approximately 10 fruit (Fig. 7-A), indicating that a limit of source supply exists. Therefore, to increase the yield, not only the number of fruits per plant but also the source supply needs to be considered. Additionally, to obtain the maximal fruit weight, the optimal trade-offs between the sources and sinks should be considered. The optimization results indicated that the growers should tend to have more fruit on their plants. However, the economic value of cucumber fruit also depends on their average size. Thus, a minimal threshold should be given in the model below, indicating that the fruit cannot be sold to customers.

4.4. Application of the GreenLab Model to genetic selection

Genotype×environment interactions are unavoidable in plant multi-environment trials. The use of a plant growth and development modeling framework can link phenotype complexity to underlying genetic systems in a way that enhances the power of molecular breeding strategies (Yin et al. 2016). The potential of linking the GreenLab Model to quantitative genetics has been studied (Letort et al. 2008). Moreover, it is possible to simulate the complex plasticity of plant architectural and functional responses to environmental factors using GreenLab (Vavitsara et al. 2017). Indeed, in GreenLab, the Q/D ratio can be considered an index of plant...
vigor and can in particular reflect the environmental impact on plant growth, in combination with its genome effect (Letort et al. 2008). However, this study is just a preliminary work, and more simulations and analyses of the experimental data are needed to provide a further study of QTL detection on model parameters vs. phenotypic traits.

5. Conclusion

By identifying the parameters of two parent cultivars (P_1 and P_2) and their hybrid (F1), the internal source–sink ratio was computed, and its relationship with the fruit-setting was investigated. The results indicated that the F1 hybrid obtained heterosis by inheriting the advantages of vegetative growth and assimilate accumulation from parent P_1 and the fruit setting from parent P_2. The parameter values of F1 show mostly additivity (the parameters of sink strength). Higher biomass production occurs owing to an optimal combination of the source and sink functions. The optimization problem investigates the optimal source–sink dynamics, and the results provide a reference for model validation, which can be seen as an assisting verification for our model. Future work involves combining this model with a genetic model to more deeply understand the genetic factors and provide guidance for plant breeders.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31700315 and 61533019), the National Science Foundation of Chongqing, China (cstc2018jcyjAX0587) and the Chinese Academy of Science (CAS)–Thailand National Science and Technology Development Agency (NSTDA) Joint Research Program (GJHZ2076). The authors thank Wang Qian and Moriya Diakite for their assistance in the experiment.

Appendix associated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

References

Executive Editor-in-Chief HUANG San-wen
Managing editor WENG Ling-yun