Synthesis of high value-added Na–P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps
Mouna Sayehi, Gabriella Garbarino, Gerard Delahay, Guido Busca, Hassib Tounsi

To cite this version:
Mouna Sayehi, Gabriella Garbarino, Gerard Delahay, Guido Busca, Hassib Tounsi. Synthesis of high value-added Na–P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps. Materials Chemistry and Physics, 2020, 248, pp.122903. 10.1016/j.matchemphys.2020.122903 . hal-02774143

HAL Id: hal-02774143
https://hal.umontpellier.fr/hal-02774143
Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis of high value-added Na-P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps

Mouna Sayehia*, Gabriella Garbarinob, Gérard Delahayc, Guido Buscab, Hassib Tounsia

aLaboratoire des Matériaux Avancés, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Tunisia
bDipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, via Opera Pia 15, 16145 Genova, Italy
cInstitut Charles Gerhardt, UMR 5253 CNRS/UM2/ENSCM/UM1, Equipe “Matériaux Avancés pour la Catalyse et la Santé” Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier cedex, France.

*Corresponding author: sayahimouna@gmail.com

Abstract

The present work reports the feasibility of valorizing waste glass and aluminum scraps into zeotype materials. The raw materials were reacted hydrothermally at 60°C using alkaline fusion prior to hydrothermal treatment. The obtained powders were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), electron microscopy (SEM) and magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al and 29Si nuclei. The influence of some parameters like alkalinity, reaction time and particle size on the nature of obtained zeolites has been also studied. The characterization methods demonstrated that the final products are aluminosilicate materials with a high cation exchange capacity containing Na-FAU and Na-P1 zeolites. The above results show that valorization of waste glass and aluminum scraps to obtain Na-FAU and NaP1 zeolites is possible and can be a sustainable alternative to the traditional synthesis methods.
Keywords: Valorization, aluminum scraps; Fluorescent tube glass; faujasite; NaP1 zeolite.

1. Introduction

Zeolites are microporous solids, with 3-dimensional framework of \([\text{SiO}_4]^{4-}\) and \([\text{AlO}_4]^{5-}\) tetrahedra linked at their corners. This structure generated pores and channels with molecular dimensions which confer to zeolites sieving molecular properties and high thermal, mechanical and chemical stability. Due to their interesting properties, zeolites can be useful in many industrial fields such as catalysis [1], water treatment [2], detergent builders adsorbents, agricultural application [3], biotechnology and medicine [4]. Usually, zeolite preparation was effected by hydrothermal method using expensive starting materials like alumina, silica, mineralizer (alkali metal hydroxide), structure directing agents and water [5]. The use of expensive starting materials may restrict the application of zeolites in some fields like environment and agriculture. Therefore, the recent studies are focused on an economical process for zeolite synthesis to satisfy the large demand of zeolitic materials. To achieve this goal, researches used natural raw materials and low-cost industrial by-products to prepare zeolites (Chaves Lima et al. 2019). Inexpensive materials are mainly clays[6–9] (Abdullahi et al., 2017; Liu et al., 2019; Yoldi et al., 2019), volcanic glasses [11], Tunisian sand[12,13] or industrial waste products as coal fly, bagasse fly ash[14,9,15], waste sanitary porcelain [16], waste aluminum cans [17], aluminum scraps [12,18,19] and glass wastes [20–27]. Due to the high silica content and its free composition of toxic and hazardous element, glass wastes are important starting materials for zeolite preparation. According to [28](Chaves Lima et al., 2019), the first study conducted to prepare porous materials (ANA and GIS zeolites) was completed using waste bottle glass. [29]. Industrial raw powder glass was used in 2014 by [30] (Alves et al. 2014) to prepare zeolite LTA, X and HS. (Alves et al. 2014) used the alkaline fusion followed by a hydrothermal treatment technique since the glass powder residue is difficult to zeolitize by hydrothermal treatment in basic media.[31] (Kim et al.,
2015) successfully synthesized uniform-sized LTA zeolite from windshield waste via high-energy ball milling and a low-temperature hydrothermal process. (Terzano et al., 2015)[27] showed the facile zeolite synthesis from municipal glass and aluminum solid wastes. They obtained by hydrothermal treatment at 60°C for 7 days a zeotype material containing 30% of zeolite LTA when NaOH is used as mineralizing agent. When KOH was employed, 25% of edingtonite has been produced in the final material after one week at 90°C. The e-wastes like LCD panel glass [23] and cathode-ray-tube funnel glass [22] were also used in the preparation of LTA, FAU and NaP1 zeolites. Zeolite HS and NaP1 were prepared using microwave radiation from residue called waste glass cullet [24–26]. On the other hand, [32,33] used fluoride media for the zeolitization of raw powder glass to ZSM-5 and MEL zeolites.

Here we report for the first time, the co-valorization of waste glass (WG) derived from fluorescent tubes and aluminum scraps into Na-P1 and Na-FAU zeolites. It should be mentioned that the glass of the end-of-life of fluorescent tubes is an attractive material due to its high silica content. In Taiwan, the average number of end-of-life fluorescent lamps generated each year is about 3.8 tubes per person [34]. Unfortunately, the majority of fluorescent tubes contain hazardous elements (mercury) that present risks on the environment and on human health. We used the alkaline fusion method prior to hydrothermal treatment for the zeolitization of waste glass derived from fluorescent tubes. The influence of some parameters like alkalinity, reaction time and particle size on the nature of obtained zeolites has been also studied. The starting materials and the prepared zeolites were characterized by several techniques. The X-ray diffraction, Fourier-transform infrared spectroscopy and 27Al, 29Si magic angle spinning nuclear magnetic resonance were used for the structural characterization. The morphology, the particle size distribution and the textural properties
were studied using scanning electron microscope, laser diffraction particle size analyzer and the adsorption–desorption of nitrogen gas at -196 °C, respectively.

2. Experimental procedure

2.1. Zeolite preparation

The aluminum source is scraps collected from aluminum workshop and the silica source was obtained by crushing the glass of the end-of-life fluorescent tubes collected from the special containers established by the administration of the National Engineering School of Sfax-Tunisia for the collection of hazardous waste. Various particle sizes of glass powder (63 μm, 125 μm and 315μm) as average particle diameter were used in this procedure. The chemical composition of the WG was as follows: SiO$_2$-64.6%, Na$_2$O-21.5%, CaO-6.9%, MgO-3.0%, Al$_2$O$_3$-2.5%, K$_2$O-0.83%, Fe$_2$O$_3$-0.2%, SO$_3$-0.12% and TiO$_2$-0.06%. The chemical composition of aluminum scraps (AS) is Al-99.77% with very small quantities of iron Fe-0.207% and copper Cu-0.08%. Analytical grade NaOH pellets was purchased from Sigma Aldrich and 98%.

The alkaline fusion technique followed by the treatment has been chosen for the zeolitization of the WG. This technique consists of heating various NaOH/WG mixtures with different mass ratios ($R_1=0.8$; $R_2=1.0$ and $R_3=1.2$) at 550 °C for 1h in a nickel crucible. The fused products are named FP-R-y with R referred to the NaOH/WG mass ratio and y the particle size of the WG (63 μm; 125 μm; 315 μm). After fusion, the obtained product was cooled, ground again and mixed with 80 mL of sodium aluminate solution (SAS); L/S=10. It is mentioned that the SAS was obtained by dissolving 0.5 g of aluminum scraps (AS) into 80 mL of 2.5 mol/L aqueous solution of NaOH. The mixture was vigorously stirred at room temperature (RT) for 2h and then let reacting in an oven for 6 days at 60°C. At the end of the process, the solid was separated by filtration and washed thoroughly several times with deionised water until pH 9. The precipitated solid was dried at 80°C for one night. The
synthesized products are named ZFP-R-y with R referred to the NaOH/ WG mass ratio (0.8; 1.0; 1.2) and y the particle size of the WG (63 µm; 125 µm; 315 µm).\(\text{(Figure 1)\) }

Figure 1: Schematic diagram of Zeolite synthesis.
2.2. Characterization

The wastes, the fused products and the prepared zeolites were characterized by different techniques. X-ray fluorescence (XRF) was used to assess chemical composition of the WG using Philips X’UNIQUE II apparatus. The chemical composition of the aluminum scraps was analyzed by NITON XL3t GOLDD de THERMO. Structural phase analysis by X-ray diffraction (XRD) was performed on a D8 AXS (DRX-Bruker D8) diffractometer, using CuKα radiation (λ = 1.540598) in which the Bragg angle (2θ) was scanned from 5° and 60°. FTIR spectra of the samples were recorded in air at RT using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The spectra were recorded using a Perkin Elmer Fourier transform infrared spectrometer in the wave-number range 4000-400 cm⁻¹. The examination of the morphology of both raw materials and solid products was investigated by scanning electron microscopy (SEM) with a JEOL JSM-5400 instrument. Physisorption isotherms were measured at -196 °C on a Micromeritics ASAP 2020 instrument with nitrogen as probe molecule. Prior to measurement the samples were degassed for 12 hours at 200 °C before adsorption. ²⁷Al and ²⁹Si MAS-NMR spectra were recorded on a Brucker 300 MHz (AMX 300) at 78.20 and 58.48 MHz, respectively. The chemical shift in ppm was obtained with respect to AlCl₃.6H₂O and TMS as external references for Al and Si, respectively. Particle size distribution (PSD) of the samples was determined by laser diffraction particle size analyzer type Malvern Instruments Ltd (Mastersizer). The standard volume percentiles at 10, 50, and 90, denoted as D10, D50 and D90, respectively, were recorded from the analysis and used to calculate the width of the distribution span.

\[\text{Span} = \frac{D_{90}}{D_{10}} \]
3. Results and discussion

3.1. Characterization of the fused waste

The X-ray diffraction patterns of the fused products using different NaOH/WG ratios are reported in figure 2. The fusion step at 550 °C for 1h facilitates the formation of soluble silicate and aluminate salts which are crystallized afterward into zeolites by the hydrothermal treatment. Indeed, the XRD profiles show the decrease of the amorphous content of the WG and the appearance of new peaks related to crystalline phases. The phase identification was carried out using X’Pert High Score Plus software. Table 1 summarized the different solids found in the fused products after the fusion step. The mainly compounds detected are the sodium silicates $\text{Na}_3\text{HSiO}_4(\text{H}_2\text{O})_2$ and Na_4SiO_4 regardless the NaOH quantity. This result is expected since the SiO$_2$/Al$_2$O$_3$ molar ratio of the WG is about 43. Accordingly, the peaks detected at 2θ 16.92°, 17.57°, 18.96°, 29.46°, 32.26° and 34.23° are related to trisodium hydrogensilicate dihydrate $\text{Na}_3\text{HSiO}_4(\text{H}_2\text{O})_2$ and the peaks of sodium orthosilicate Na_4SiO_4 appeared at 18.29°, 34.85°, 38.80° and 39.58°. Besides, slight amount of NaAlSi$_2$O$_6$ (JCPDS No.01-071-1507) is also detected for FP-0.8-125 and FP-1.0-125 samples (30.40°, 31.42°, 35.86° and 36.96°). When the NaOH quantity is increased for samples FP1.0-125 and FP-1.2-125, there is appearance of sodium calcium silicoaluminate $\text{Ca}_{0.86}\text{Na}_{0.14}\text{Al}_{1.84}\text{Si}_{2.16}\text{O}_8$ (21.97°, 27.75°, 27.88° and 28.01°). The residual NaOH with peaks at 15.56°, 31.42° and 38.23° can be related to the excess of NaOH used for the alkaline fusion [16,35,36].
Figure 2: XRD patterns of the WG and the three fused products after the fusion step at 550 °C for 1h

Table 1: Quantitative analysis of the fused products.

<table>
<thead>
<tr>
<th>Compound</th>
<th>NaAlSi$_2$O$_6$ (%)</th>
<th>Na$_3$HSiO$_4$(H$_2$O)$_2$ (%)</th>
<th>Na$_4$SiO$_4$ (%)</th>
<th>Ca${0.86}$Na${0.14}$Al${1.84}$Si${2.16}$O$_8$ (%)</th>
<th>NaOH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCPDS N°</td>
<td>01-071-1507</td>
<td>01-074-0667</td>
<td>01-078-1432</td>
<td>01-076-0832</td>
<td>01-078-0189</td>
</tr>
<tr>
<td>FP-0.8-125</td>
<td>7</td>
<td>71</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FP-1.0-125</td>
<td>5</td>
<td>42</td>
<td>26</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>FP-1.2-125</td>
<td>-</td>
<td>35</td>
<td>38</td>
<td>18</td>
<td>9</td>
</tr>
</tbody>
</table>
The FTIR spectra of the fused products displayed significant changes in relative intensities and width of vibration bands compared to WG spectrum (figure 3). There is a shift of the large band at 1050 cm\(^{-1}\) attributed to asymmetric stretching vibration of the Si-O groups in the WG to lower wavenumber at 925–1200 cm\(^{-1}\) [16,37]. This result confirms the formation of silicate and aluminosilicate salts as showed by XRD technique. It should be mentioned that the fused products contains carbonate species confirmed by the presence of the peaks at 1450 cm\(^{-1}\) and 880 cm\(^{-1}\).

![Infrared spectra of the fused products.](image)

Figure 3: Infrared spectra of the fused products.

3.2. Influence of NaOH/WG ratio on the nature of the obtained zeolites

To investigate the effect of NaOH/WG mass ratio on the resulting zeolite products, three mixtures (\(R_1=0.8\), \(R_2=1.0\) and \(R_3=1.2\)) were tested using WG powder with a particle size \(\varnothing < 125\) µm (WG-125). The XRD patterns of the recovered solids after hydrothermal treatment...
at 60 °C for 6 days were illustrated in figure 4. The phase identification was carried out using X’Pert High Score Plus software. The analysis of the diffraction patterns shows that ZFP-0.8-125 and ZFP-1.0-125 samples, contain a mixture of zeolite faujasite at 6.16°, 10.02°, 11.80°, 15.51°, 20.02° and 23.39° (|[Na_{4.43}(H_2O)_{8.882}]|Al_6Si_6O_{24}|; JCPDS N°01-072-2421) and the so-called zeolite Na-P1 (|[Na_6(H_2O)_{12}]| [Al_6Si_{10}O_{32}]; JCPDS N°01-071-096). The sample ZFP-1.2-125 contains mainly the zeolite Na-P1 (20 12.53°; 21.76°; 28.12° and 33.48°). The analysis of the diffraction patterns showed that the nature of the prepared zeolite depends on the NaOH/WG ratio. The increase of the NaOH amount from R_1=0.8 to R_2=1.0 had no important effect on zeolite crystallization [38]. For ZFP-1.2-125 sample, the increase of the mass ratio favors the formation of Na-P1 zeolite at the expense of FAU zeolite. This result can be explained by the influence of the residual amount of NaOH on the alkalinity of the solution. (Volli et al., 2015) [39] showed that with the increase in NaOH concentration; in the case of the zeolitization of fly ash; there is an increase in supersaturation which could change the type of zeolite. According to Ostwald’s rule of successive transformation, the higher the supersaturation, better the condition to nucleate metastable phases, such as zeolite FAU, which later recrystallizes and is replaced by highly stable zeolite Na-P1.
Figure 4: Zeolites obtained by alkaline fusion followed by hydrothermal treatment.

The SEM micrographs with different magnifications of the synthesized samples are reported in figure 5. The micrographs of ZFP-0.8-125 and ZFP-1.0-125 display the presence of co-phase. The octahedral particles characterize the morphology of zeolite FAU [40,41] and the spherical ones the zeolite Na-P1[42] . The magnified micrographs indicate that NaP1 zeolite exhibits knobbed surface microspheres composed of crystalline nanoparticles. For the solid ZFP-1.2-125, the influence of residual alkalinity is clear; the formed zeolite FAU tends to dissolve and re-crystallize during the experiment to zeolite Na-P1.
Figure 5: SEM photomicrographs of ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125 samples at different magnifications.

PSD of the samples **ZFP-0.8-125**, **ZFP-1.0-125** and **ZFP-1.2-125** are illustrated in **figure 6**. All samples present multimodal distribution in which the particle size varies in the range of 0.3–200 mm. **Table 2** reports the granulometric parameters of the samples. For **ZFP-0.8-125** sample, one can distinguish three distinct populations. The first one is situated in the range of 0.2-1.0 µm with mode M1= 0.46 µm and represents 11 %. The second population which represents 24 % had particle size in the range of 1.0-5 µm with mode M2 = 2.13 µm. The last population with mode M3= 34.53 µm lies from 5 to 170 µm and represents 65%. The influence of the alkalinity is clearly visible; the increase in the NaOH/WG ratio shifted the particle size distribution curves to bigger particle sizes. It seems that the residual alkalinity leads to the agglomeration of the zeolite particles.
Figure 6: PSD of the samples ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125.

Table 2: Granulometric parameters of the obtained zeolites ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125

<table>
<thead>
<tr>
<th>Samples</th>
<th>ZFP-0.8-125</th>
<th>ZFP-1.0-125</th>
<th>ZFP-1.2-125</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10 (µm)</td>
<td>0.71</td>
<td>3.21</td>
<td>1.70</td>
</tr>
<tr>
<td>D50 (µm)</td>
<td>11.5</td>
<td>23.9</td>
<td>35.5</td>
</tr>
<tr>
<td>D90 (µm)</td>
<td>59.4</td>
<td>60.4</td>
<td>96.2</td>
</tr>
<tr>
<td>Span</td>
<td>5.1</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>M1 (µm)</td>
<td>0.46</td>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>M2 (µm)</td>
<td>2.13</td>
<td>3.61</td>
<td>2.00</td>
</tr>
<tr>
<td>M3 (µm)</td>
<td>34.53</td>
<td>35.09</td>
<td>59.50</td>
</tr>
</tbody>
</table>

The 27Al MAS-NMR spectra of the WG and of the zeotype materials are reported in figure 7. 27Al MAS-NMR spectrum of WG displays a broad peak at 55.2 ppm with full-width-at-half-maximum (FWHM) of about 25 ppm. This peak is typical of aluminum atoms in a tetrahedral coordination, which is broadened to the more shielded side of the peak. After
the zeolitization of the fused product, the samples ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125 exhibit strong peaks centered at 57-58 ppm ascribed to the aluminum atoms in a tetrahedral coordination [43]. For ZFP-1.2-125, an additional peak was observed at 10 ppm which may indicate the presence of another phase beside zeolite having the aluminum in octahedral environment. 27Al MAS-NMR technique confirms the results of XRD and SEM in which the formed zeolite FAU tends to dissolve and re-crystallize during the experiment to zeolite Na-P1 [44].

The 29Si MAS-NMR spectra of the WG and samples ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125 are reported in figure 8. The spectrum of the WG shows a broad peak (FWHM = 21 ppm) centered about -92 ppm with shoulder at about -103 ppm. According to the chemical shift ranges and the large amount of alkalis (Na$_2$O + K$_2$O = 22.33%) in the WG, one can assume that the majority of silicon species are of type Q^2 and Q^3. After the zeolitization of the WG, one can see clear changes in the 29Si MAS-NMR spectra of ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125 samples. ZFP-0.8-125 and ZFP-1.0-125 show five peaks centered at ca. -87, -91, -97, -102 and -107 related to the respective Q^4 Si coordination environments Si(4Al), Si(3Al), Si(2Al), Si(1Al) and Si(0Al) [45]. For the sample ZFP-1.2-125, despite the bad resolution one can distinguish three peaks at about ca. -85, -89, -92 ppm. On the other hand, it is possible to calculate the framework Si/Al ratio according to the equation:

$$\frac{Si}{Al} = \frac{4}{n=0} \frac{I_{Si(nAl)}}{0.25 \cdot n \cdot I_{Si(nAl)}} ; \text{where } I_{Si(nAl)} \text{ is the intensity of a } ^{29}\text{Si MAS NMR peak.}$$

The Si/Al molar ratio determined by 29Si-NMR of ZFP-0.8-125 is about 1.44, which is in good agreement with the Si/Al ratios of the FAU zeolites. Increasing the amount of sodium hydroxide (ZFP-1.0-125) increases the Si/Al ratio from 1.44 to 1.67.
Figure 7: 27Al MAS NMR spectra of WG-125 and the recovered solids after hydrothermal treatment ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125.
Figure 8: 29Si MAS NMR spectra of the WG-125 and the recovered solids after hydrothermal treatment ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125.

The FTIR spectra of the WG and prepared zeolites ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125 are summarized in Figure 9. The large band centered at 1050 cm$^{-1}$ attributed to asymmetric stretching vibration of the Si-O groups in the WG was shifted to lower wavenumber at 925–1200 cm$^{-1}$ and became sharper [37]. The band at around 1005 cm$^{-1}$ could be assigned to asymmetric stretching of T–O bonds (T = Si or Al) in zeolites, whereas the symmetrical stretching of T–O bonds is situated at 750 cm$^{-1}$. The bands near 668 cm$^{-1}$ and 740 cm$^{-1}$ are ascribed to a symmetric stretch of internal tetrahedra as well as of external linkages. The band related to T-O bending mode in aluminosilicate zeolites is present near 445 cm$^{-1}$.
The bands at higher wavenumbers 3450 cm\(^{-1}\) can be assigned to stretching vibrations of O-H bonds whereas the bands at around 1652 cm\(^{-1}\) to bending vibrations of water molecules. In zeolite materials, the 800-500 cm\(^{-1}\) region is related to the bands originating from structural units, like S4R, S6R, D4R and D6R rings [46]. Thus, the bands at 600 cm\(^{-1}\) and 610 cm\(^{-1}\) for ZFP-0.8-125 and ZFP-1.0-125, respectively were assigned to the vibrations of tetrahedra from external linkages of the double six rings (D6R) in the framework of zeolite Na-FAU. The presence of two bands at about 740 cm\(^{-1}\) and 668 cm\(^{-1}\) associated with four-membered ring vibrations occurring both in the structure of Na-FAU and Na-P1 zeolites. The absorption band at 569 cm\(^{-1}\) of ZFP-1.2-125 is due to the S4R T–O–T symmetric stretching of Na-P1 zeolite [47]. The band centered at about 1450 cm\(^{-1}\) may represent the vibration of carbonate species.

Figure 9: Infrared spectra of WG-125 and the recovered solids products ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125.
The N\textsubscript{2} adsorption-desorption isotherms of ZFP-0.8-125, ZFP-0.1-125 and ZFP1.2-125 samples are reported in figure 10. Table 3 summarizes the results of BET specific surface areas (S\textsubscript{BET}), microporous surface (S\textsubscript{mic}), external surface (S\textsubscript{ext}), microporous volume (V\textsubscript{mic}), total volume (V\textsubscript{tot}) and BJH pore diameter (Ø\textsubscript{pore}) of the prepared samples. The adsorption-desorption isotherms can be classified roughly as IV type with hysteresis loop. The presence of micropores cannot be excluded since at very low relative pressures (P/P\textsubscript{0}=0.02), there is a steep in the nitrogen uptake attributed to the filling of micropores. But the presence of hysteresis loop observed at high relative pressures indicates that the samples contain mesopores. The mesoporous character may arise from the assembling of the nano-size crystallites that composed the zeolite Na-P1 microspheres. The hysteresis loop is type H4 for ZFP-1.2-125 and type H3 for ZFP-1.0-125, ZFP-0.8-125. These loops correspond to the filling of uniform slit-shaped inter-crystal mesopores or of non-rigid aggregates of plate-like particles. On the other hand, the measured S\textsubscript{BET} of the zeolites ZFP-1.0-125, ZFP-0.8-125 and ZFP-1.2-125 are 392 m2.g-1, 329 m2.g-1 and 24 m2.g-1, respectively. The low S\textsubscript{BET} value for ZFP-1.2-125 is due to the inappropriate use of nitrogen as adsorbent to assess the textural properties of zeolite Na-P1 (ZFP-1.2-125). The framework of Na-P1 zeolite contains small micropores (ultramicropores < 0.7 nm) which are not accessible for nitrogen [43]. For the samples ZFP-1.0-125, ZFP-0.8-125, the measured S\textsubscript{BET} are consistent for FAU zeolites. Zeolite ZFP-1.0-125 has the highest S\textsubscript{BET} compared to ZFP-0.8-125 because it has the lowest amount of Na-P1 zeolite.
Figure 10: Nitrogen adsorption–desorption isotherms of ZFP-0.8-125, ZFP-1.0-125 and ZFP-1.2-125 samples.
Table 2: BET specific surface areas (S$_{\text{BET}}$), microporous surface (S$_{\text{mic}}$), external surface (S$_{\text{ext}}$), microporous volume (V$_{\text{mic}}$), total volume (V$_{\text{tot}}$) and BJH pore diameter (Ø$_{\text{pore}}$) of the prepared samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>S$_{\text{BET}}$ (m2/g)</th>
<th>S$_{\text{mic}}$ (m2/g)</th>
<th>S$_{\text{ext}}$ (m2/g)</th>
<th>V$_{\text{mic}}$ (cm3/g)</th>
<th>V$_{\text{tot}}$ (cm3/g)</th>
<th>Ø$_{\text{pore}}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFP-0.8-63</td>
<td>40</td>
<td>12</td>
<td>29</td>
<td>0.005</td>
<td>0.115</td>
<td>12.7</td>
</tr>
<tr>
<td>ZFP-0.8-125</td>
<td>329</td>
<td>276</td>
<td>53</td>
<td>0.131</td>
<td>0.200</td>
<td>8.7</td>
</tr>
<tr>
<td>ZFP-0.8-315</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>0.004</td>
<td>0.039</td>
<td>9.2</td>
</tr>
<tr>
<td>ZFP-1.0-63</td>
<td>489</td>
<td>381</td>
<td>108</td>
<td>0.169</td>
<td>0.311</td>
<td>6.1</td>
</tr>
<tr>
<td>ZFP-1.0-125</td>
<td>392</td>
<td>309</td>
<td>83</td>
<td>0.148</td>
<td>0.230</td>
<td>5.5</td>
</tr>
<tr>
<td>ZFP-1.0-315</td>
<td>85</td>
<td>42</td>
<td>43</td>
<td>0.020</td>
<td>0.077</td>
<td>6.3</td>
</tr>
<tr>
<td>ZFP-1.2-63</td>
<td>51</td>
<td>21</td>
<td>30</td>
<td>0.010</td>
<td>0.067</td>
<td>9.2</td>
</tr>
<tr>
<td>ZFP-1.2-125</td>
<td>24</td>
<td>7</td>
<td>17</td>
<td>0.003</td>
<td>0.062</td>
<td>16.7</td>
</tr>
<tr>
<td>ZFP-1.2-315</td>
<td>62</td>
<td>36</td>
<td>26</td>
<td>0.017</td>
<td>0.079</td>
<td>6.7</td>
</tr>
</tbody>
</table>

3.3. Influence of the reaction time

Figure 11 shows the XRD patterns of the synthesized samples obtained at different crystallization periods at 60 °C obtained from NaOH/WG ratio R$_1$=0.8 using WG-125. The X-ray profile of the solid obtained after 2 days of hydrothermal treatment (ZFP-0.8-2d) shows a broad hump in the baseline between about 15 and 35° 20, which is related to the presence of
amorphous aluminosilicate gel. After 4 days, one can see the development of the new peaks relative to crystalline phases and the decrease of the quantity of amorphous phase. Indeed, the peaks can be associated to zeolite Na-FAU (6.16°, 10.02°, 11.80°, 15.51°, 20.02° and 23.39°) and Na-P1 (12.53°; 21.76°; 28.12° and 33.48°). After 6 days of crystallization, the amorphous phase totally disappears in favor of the crystalline phases. The peak intensities of zeolite Na-P1 increase after the prolonged crystallization period up to 6 days [40]. In Table 3, is reported the zeolite quantification as function of time from 6 to 10 days. The relative quantity of NaP1 phase increased from 42% for ZPF-0.8-6d to 80% for ZPF-0.8-10d. The transformation of the metastable phase; zeolite Na-FAU to more thermodynamically stable phase zeolite Na-P1 at longer reaction time can be explained by Oswald’s rule of successive transformations. It is well known that zeolite formation is a kinetically controlled process and the reaction is generally stopped when the desired zeolite has formed. Extended reaction time at high temperature and/or high pressure usually results in dense phases. The new phase occurs in the supersaturated solution throughout the dissolution of the former phase[40].
Figure 11: XRD patterns of ZFP0.8 as function of time (2, 4, 6, 8 and 10 days).

Table 4: Quantification of ZFP0.8-6d, ZFP0.8-8d and ZFP0.8-10d samples.

<table>
<thead>
<tr>
<th>Compound</th>
<th>JCPDS N°</th>
<th>ZFP-0.8-6d</th>
<th>ZFP-0.8-8d</th>
<th>ZFP-0.8-10d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na-FAU (%)</td>
<td>01-076-0843</td>
<td>58</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Na-P1 (%)</td>
<td>01-071-0962</td>
<td>42</td>
<td>76</td>
<td>80</td>
</tr>
</tbody>
</table>

3.4. Influence of the WG particle size

Figure 12 illustrated the XRD patterns of the obtained zeolites when the particle sizes of the WG were varied from 63 µm to 315 µm for a constant NaOH/WG ratio; $R^2 = 0.8$. One can conclude that particle size of the WG controls the nature of the prepared zeolites. It seems
that the increase of the WG particle size favors the formation of the zeolite Na-P1 whatever the NaOH/WG ratios (figures 13 and 14). On the other hand, figure 14 reveals that the increase of the NaOH quantity favors also the formation of the zeolite Na-P1 whatever the particle size.

Figure 12: XRD patterns of ZFP-0.8-63, ZFP-0.8-125 and ZFP-0.8-315.
Figure 13: XRD patterns of ZFP-1.0-63, ZFP-1.0-125 and ZFP-1.0-315.
Figure 14: XRD patterns of ZFP-1.2-63, ZFP-1.2-125 and ZFP-1.2-315.

SEM micrographs of the samples ZFP-1.0-63, ZFP-1.0-125 and ZFP-1.0-315 are reported in figure 15. It was shown that the product materials are zeolite type NaP1,
contaminated with small amount of FAU zeolite with spherical shape [48]. The morphology contained wool ball-like ones expected for NaP1 zeolites with uniform size distribution 3µm
Fig. 16: SEM micrographs of zeolite obtained at NaOH/WG=1.2 from various particle size.

4. Conclusions

In this study, it was shown that valorizing WG and AS into high added value zeolites at minimum energy consumption is possible. Alkaline fusion prior to hydrothermal treatment was employed as recycling process. The results indicated that alkalinity, reaction time and particle size of the powder of WG have a significant role in zeolite synthesis. Increasing the NaOH/WG ratio from 0.8 to 1.0 and 1.2, favors the transformation of zeolite Na-FAU to Na-P1. The same transformation was showed by prolonging crystallization time from 2 to 10 days and increasing particle size form 63 µm to 315 µm.
References

