Nele Konrad 
  
Darya Meniailava 
  
Irina Osadchuk 
  
Jasper Adamson 
  
Mohammed Hasan 
  
Eric Clot 
  
Riina Aav 
  
Victor Borovkov 
email: victor.borovkov@scuec.edu.cn
  
Dzmitry Kananovich 
email: dzmitry.kananovich@taltech.ee
  
Supramolecular chirogenesis in zinc porphyrins: Complexation with enantiopure thiourea derivatives, binding studies and chirality transfer mechanism

Keywords: porphyrin, thiourea, chiral amine, chirality, circular dichroism, host-guest binding, TD-DFT

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Due to a unique set of physicochemical properties, such as optical characteristics, facile synthetic modification of molecular structure and a prominent ability for reversible binding of various organic and inorganic compounds, metalloporphyrins are often used as a key element in chemical sensors [1]. Besides detection of small molecules in gas phase and in solution [2], the porphyrin-based supramolecular systems have found a wide application as various chirality probes [3]. Remarkably, intrinsically achiral metalloporphyrins are able to exhibit optical activity by inducing circular dichroism (CD) signal in the absorption region of the porphyrin Soret band by axial coordination of a chiral guest. In general, the mechanism of chirality transfer is based on either electronic transition coupling between the corresponding chromophore moieties of host and guest or asymmetric puckering of the porphyrin plane [4,5]. This chirality transfer phenomenon (termed supramolecular chirogenesis) [5,6] has been successfully used for determination of the absolute configuration of versatile enantiopure compounds, e.g. amines [6,7], alcohols [8] and amino acid derivatives [4,9]. For zinc porphyrin-based systems, primary amines are particularly privileged sensing molecules due to their strong binding affinity and well understood mechanism of chirality transfer [3b, 5,6]. Although quite a large scope of different chiral amines has been explored to date, the interaction of porphyrins with functionalized amine scaffolds, which can act as complex bidentate ligands and possess additional properties such as catalytic activity, has been previously studied only on a limited number of chiral compounds [10] and needs to be expanded. As a part of our studies towards development of new porphyrin-based sensing systems for the detection of polyfunctionalized chiral organic molecules, which are present in the environment as chiral pollutants, the chirality transfer phenomenon in the host-guest assemblies consisting of (1R,2R)-2-aminocyclohexyl arylthioureas 1a-c (Scheme 1) to ZnTPP and ZnOEP needs to be comprehensively investigated. Since the pioneering work of Takemoto et al. [11], bifunctional compounds of type 1 with hydrogen-bonding thiourea moiety and neighbouring basic amine site, have been intensively used as chiral organocatalysts [12]. Scheme 1. Thioureas 1a-c with bifunctional properties used in this study.

In view of the extensively exploited hydrogen-bond donating properties of thioureas in asymmetric catalysis [12,13] and crystal engineering [14], compounds 1 represent a potentially important class of bifunctional chiral axial ligands for zinc porphyrins, with previously unexplored effect of the thiourea function onto chirogenic process induced by a chiral amine.

Here, we present the first report on supramolecular interactions and chirality transfer phenomena in the host-guest system of 1 and zinc porphyrins, studied by means of UV-Vis and CD spectroscopy. The results have been rationalized with the assistance of computational studies, which allowed us to elucidate the origin of the observed chirogenic process and induced CD, as well as to propose a plausible structure of the host-guest complex formed in solution.

EXPERIMENTAL

General methods 1 H NMR spectra were recorded on either a Bruker Avance III 400MHz or a Bruker Avance III 800MHz spectrometers.

The chemical shifts (δ) are reported in ppm and referenced to CHCl3 residual peak at 7.26 ppm for 1 H NMR, and CDCl3 peak 3 at 77.16 ppm for 13 C NMR. UV-Vis absorption spectra were recorded on a Jasco V-730 double-beam spectrophotometer in a 1 cm thermally stabilized screw cap quartz cuvettes with a septum cap. CD spectra were recorded on a Jasco J-1500 spectrophotometer in a 1 cm screw cap quartz cuvette in analytical grade CH2Cl2 at 20 °C. Data acquisition was performed in 410-460 nm range for ZnTPP and (390-440 nm for ZnOEP) with scanning rate 10 nm.min -1 , bandwidth 2.6 nm, response time 4 s, and accumulations in 4 scans.

Materials

Zinc(II) tetraphenylporphyrin (ZnTPP) and octaethylporphyrin free base (H2OEP) were purchased from PorphyChem.

Other chemicals and solvents were purchased from commercial suppliers and used as received. Zinc(II) octaethylporphyrin (ZnOEP) was prepared by insertion of zinc ion into octaethylporphyrin free base by the standard procedure [15] and its purity was confirmed by 1 H NMR.

(1R,2R)-2-aminocyclohexyl thioureas 1a-c were prepared as described in the literature from (1R,2R)-1,2diaminocyclohexane and corresponding aryl isothiocyanates [16]. (1S,2S)-enantiomer of 1a was prepared from (1S,2S)- 

Spectroscopic binding study

All the solutions were prepared and mixed by using properly calibrated analytic glassware (Hamilton® Gastight syringes, volumetric flasks). All weights were balanced with a Radwag MYA 11.4 microbalance (accuracy ± 6 μg). The concentration of zinc porphyrins was held constant throughout the titration sequence. The titration data were fitted globally using online software Bindfit (http://supramolecular.org) [17,18].

UV-Vis spectrophotometric titration experiments were performed in analytical grade CH2Cl2. To a solution of zinc porphyrin, a solution of thiourea 1a-c (dissolved in a stock solution of the host to keep the concentration of the host constant) was added portion-wise using a gastight syringe at 20 °C. The changes in bathochromic shift of the Soret band were monitored at different concentrations of the guest 1a-c. The details of the titration experiments, obtained spectra, absorptions values, concentrations, fittings and residual analysis are presented in the Supporting Information. 1 H NMR titration experiments were performed in CDCl3 at 800 MHz instrument. To a solution of porphyrin ZnTPP, a solution of tetramethylthiourea (dissolved in a stock solution of the host to keep the concentration of the host constant) was added portion-wise using a gastight syringe. NMR tube was thermally equilibrated (20 °C) after each addition prior to acquisition. The details of the titration experiments, chemical shifts, concentrations, fittings, and residuals analysis are given in the Supporting Information.

Computational details

Conformation search for 1a•ZnTPP complex was performed as follows. Five dihedral angles in thiourea 1a, which correspond to rotation of the phenyl and cyclohexane moieties as well as two N-H and C=S fragments around the corresponding single bonds were varied and structures optimized for the complex of unsubstituted zinc porphyrin and 1a (Fig. S24, Supporting Information). Subsequently, four phenyl substituents were attached perpendicularly to the porphyrin plane for the six lowest-energy conformers. This approach has been used before [19], and can be applied due to the low rotation barrier of phenyl [20].

The initial geometry optimization was performed with Turbomole 6.5 [START_REF]TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH[END_REF] using PB86 functional [22, 23a] with D3 dispersion correction [23b], def2-SV(P) basis set [23c] and resolution of identity (RI) approximation [24]. The geometries of the six lowest-energy conformers were re-optimized with Gaussian 16 [START_REF] Frisch | Gaussian 16[END_REF] using B3LYP functional [22, 26a-c] with D3(bj) dispersion correction [26d] and cc-pVDZ basis set [27], since the B3LYP functional with a double zeta basis set was previously successfully used for optimization of porphyrin systems [28]. The geometry optimization and re-optimization were done in the gas phase. Frequencies were calculated with the same level of theory as the geometry optimization, to confirm that the structures are minima on the potential surface. Final single-point energy calculations were performed with ωB97X-D functional [29], cc-pVTZ basis set [27] and the Solvation Model Density (SMD) approximation [30] to model CH2Cl2.

The CD spectra were calculated using the re-optimized geometries and Gaussian 16 [START_REF] Frisch | Gaussian 16[END_REF]. For CD spectra calculations, the TD-DFT method [31], ωB97X-D/cc-pVTZ level of theory and SMD approximation were used, since ωB97X-D was previously successfully applied for UV-Vis and ECD spectra simulations [28a, 32]. For spectra simulations, the Gaussian profiles and rotatory strengths calculated on the basis of dipole velocity formalism were used. The bandwidth values of 0.04 eV and 0.06 eV were taken for electronic absorption and CD spectra, respectively.

RESULTS AND DISCUSSION

Binding studies

Generally, primary aliphatic amines strongly bind to zinc porphyrin ZnTPP with association constant (Ka) values of 6000-22000 M -1 in chloroform [33]. However, in view of the known ability of thioureas to coordinate zinc cation [34] and its strong electron-donating character [35], sulfur atom in 1a-c can act as a competitive binder. Therefore, at the outset of our studies the strength of Zn…S ion-dipole interaction had to be evaluated as well. Coordination of some sulfur-centered nucleophiles to zinc porphyrins [36a-c] and related phthalocyanines [36d] have been reported with essentially a large Ka value (2.5 ± 0.2) × 10 4 M -1 observed for binding the HS ¯ anion to zinc protoporphyrin IX [36c]. Compared to anionic thiolate, neutral tetramethylthiourea resulted in a rather small Ka value (12.0 ± 0.1 M -1 at 298 K) for 1:1 complex with ZnTPP in benzene [37].

This agrees with a large electrostatic contribution to the binding of donor ligands to ZnTPP, as was established by Vogel and Searby [37]. The binding of electron-donating guests increases in the order of S < O < P < N.

According to our results, a weak interaction between tetramethylthiourea and ZnTPP was also observed in CDCl3 as a solvent. The change in the chemical shifts of ZnTPP upon addition of tetramethylthiourea was monitored by 1 H NMR. It was found that two resonances of ZnTPP at δ 8.95 and 8.23 ppm, corresponding to the signals of pyrrole and o-phenyl protons respectively, noticeably shifted upfield upon increasing the concentration of guest tetramethylthiourea. However, the change was small and did not exceed 0.012 ppm, giving an estimation of Ka = 17 M -1 (at 293 K), which is in agreement with the value in benzene reported by Vogel [37]. These results clearly indicate that the coordination of thiocarbonyl group to ZnTPP is weak. Therefore, in the case of the bifunctional ligands 1, binding via a primary amine functionality is expected to dominate. Indeed, in UV-Vis spectra noticeable bathochromic shifts of the porphyrin Soret and Q bands as well as a clear isosbestic point at 424 nm were observed upon addition of amino-functionalized thiourea 1a to a solution of ZnTPP in CH2Cl2 (Fig. 1).

The curve fitting of the absorbance change in the region of the most intense Soret band with the 1:1 binding isotherm was performed (see Supporting Information), yielding a Ka value of (2.30 ± 0.04) × 10 3 at 293 K. a For the substituents in aryls of the guests 1a-c, according to ref. [38].

As expected, similar complexation experiment performed with less electron-deficient porphyrin ZnOEP afforded a noticeably smaller association constant Ka = 533 M -1 (Table 1). In comparison to 1a, phenyl-and 3,5-dimethylphenyl thioureas (1b, 1c) are found to bind more strongly to ZnTPP, with values of Ka increasing in the order 1a < 1b < 1c (Table 1), in line with the enhancement of the electron-donating properties of the aryl substituents. This trend can be clearly visualised by using a Hammett plot (Fig. 2), and agrees with a predominantly electrostatic nature of the interaction, i.e. the zinc porphyrin host acts as a Lewis acid while the nitrogen donor in 1a serves as a base [36b, 37,39].

Fig. 2.

Hammett plot of logKa vs σmeta constants for coordination of the guests 1a-c to ZnTPP.

Circular dichroism spectra

CD spectra of the complexes between zinc porphyrins and 1 were measured in CH2Cl2 as a solvent with a 2000 fold excess of 1. While parent ZnTPP is achiral and therefore CD silent, a noticeable CD signal was induced in the region of the porphyrin Soret band upon mixing with (R,R)-1a (Fig. 3,B). The observed CD profile consists of weak positive and relatively strong negative Cotton effects (CEs) at 436 and 428 nm, respectively. Induced CD signals were also observed for the other hostguest systems, although the chiroptical outcome was different. For example, coordination of (R,R)-1a to ZnOEP produced a negative CE at 414 nm, while coordination of (R,R)-thioureas 1b and 1c to ZnTPP induced a positive CE at ~ 430 nm (Fig. 3, C-E). As expected, (S,S)-enantiomer of 1a produced mirror-imaged CD signals in the Soret region of zinc porphyrins' absorption compared to its (R,R)-counterpart (Fig. 3, B andC). These spectral changes clearly indicated that the chirality transfer process from chiral guests 1a-c to achiral zinc porphyrin hosts takes place. In order to rationalize the chirogenic mechanism, corresponding computational studies have been performed for the (R,R)-1a•ZnTPP complex as a representative example exhibiting the most prominent CD outcome. 

The results of computational studies

The six lowest-energy conformers have been optimized for the complex of 1a and ZnTPP (Table 2). According to the Boltzmann distribution at 295 K, two major conformers III and V constitute 48.9% and 24.5% of the mixture, respectively.

The remaining four conformers do not exceed 11% each. Zinc is pentacoordinated and shifted out of the mean porhyrin plane (defined by the four pyrrole N atoms) by ~ 0.3 -0.4 Å towards the nitrogen atom of the guest, with the distance to the latter within 2.129 -2.198 Å in the different conformers. These structural parameters are typical for the complexes of ZnTPP with nitrogen donor ligands and indicate on ion-dipole character of the Zn-N bond between the host and guest molecules [40].

More importantly, coordination of chiral guest 1a induces slight asymmetric twist of the porphyrin plane. The derrogation of symmetry can be characterized, for example, by dissimilar bonding distances to zinc from the four pyrrole nitrogens (e.g. for conformer III: 2.076, 2.084, 2.065 and 2.122 Å) and slight tilting of the pyrrole ring out of the mean porhyrin plane.

Scheme 2. Rotamers of thiourea 1a.

For the guest molecule 1a, three configurations can be distinguished due to rotations along the N-C(=S) bonds (Scheme 2), denoted as anti-anti (aa), anti-syn (as) and syn-anti (sa) rotamers. In complex with ZnTPP, 1a mostly adopts the syn-anti configuration and only 8.6% (conformers IV and VI) represent the less favourable [41] anti-anti rotamer; no anti-syn rotamers is present. Another notable structural feature is a π-π interaction between the bis-3,5-(trifluoromethyl)phenyl ring of the guest and phenyl ring of the host [42,43]. The two most abundant conformers III and V display nearly parallel-displaced (angle > 30°) aromatic rings with a slight offset of the electron-windrawing 3,5-(trifluoromethyl)phenyl group and the distance between the rings centroids within 4.1 Å (Fig. 4,A). On the contrary, the less-populated conformers (e.g. II) have the same rings in a edge-to-face orientation, with the bis-3,5-(trifluoromethyl)phenyl ring tilted around 65° from the phenyl ring plane and the distance between the ring centroids of about 4.8 Å (Fig. 4,B). Coordination of 1a to the D4h-symmetric porphyrin leads to derogation of the symmetry and eliminates degeneracy of the exited electronic states, which results in splitting of the absorption bands. For the most stable conformer III, 4.8 nm splitting for the Q band and 1.8 nm for the Soret band have been found. The simulated CD spectrum of the (R,R)-1a•ZnTPP system (Fig. 3,A), calculated as Boltzmann weighted average of CD spectra for each conformer, is in a good agreement with the experimental one (Fig. 3,B). The shape of the experimentally observed CD signal is quite accurately reproduced in the calculated spectrum, with the absorption maxima shifted by about 20 nm to shorter wavelength in comparison with experimental values.

This result validates the accuracy of the computational approach, thus indicating that the computed structures and conformer abundances of 1a•ZnTPP are accurate enough to describe the complex. Although the chiroptical outcome is different for the other host-guest systems described here (Fig. 3, C-E), the induced CD signals are presumably generated via the same chirogenic mechanism. The observed deviations are apparently a result of the variations in asymmetrical deformation of the porphyrin core produced by chiral guests 1a-c and different distribution of the conformers existing in the host-guest systems. Further computational and experimental studies are currently in progress in our laboratory to confirm the generality of the proposed chirality transfer mechanism in these supramolecular assemblies.

CONCLUSIONS

Here, we describe for the first time the complexation process between (1R,2R)-2-aminocyclohexyl arylthioureas 1a-c as chiral guests and zinc porphyrins as achiral hosts. It was found that coordination of 1a-c occurs through the more electrondonating amino nitrogen atom to produce the corresponding 1:1 complexes, while the more electron-deficient thiocarbonyl group has low binding affinity to zinc porphyrins. The values of association constants generally increase with increased the electron-withdrawing properties of the host (ZnTPP > ZnOEP) and electron-donating ability of the guest (1a < 1b < 1c), hence indicating predominantly an electrostatic (Lewis acid-base) nature of the interaction. Induced CD signal in the absorption region of the porphyrin Soret band have been observed for all host-guest systems, although the chiroptical outcome was specific for a given host-guest combination. Computational studies performed for (R,R)-1a•ZnTPP revealed Zn-N cationdipole interaction, slight asymmetric bending of the porphyrin plane, preference for the syn-anti configuration of the thiourea moiety, and existence of the secondary π-π interactions between the host and guest molecules. The calculated CD spectrum for (R,R)-1a•ZnTPP complex is in good agreement with the experimental data, thus validating the accuracy of the computational approach and rationalizing the chirogenic mechanism.

Fig. 1 .

 1 Fig. 1. Complexation of ZnTPP (2.3 × 10 -6 M) with 1a monitored by UV-Vis spectroscopy (CH2Cl2 at 293 K). Addition of 1a (0 -7.4 × 10 -3 M) causes bathochromic shifts of ZnTPP Soret band (left) and Q bands (enlarged; right).

Fig. 3 .

 3 Fig. 3. Calculated (A) and experimental (B-E) CD spectra of 1:1 complexes between (1R,2R)-2-aminocyclohexyl thioureas 1a-c and zinc porphyrins (CH2Cl2, 293 K).

Fig. 4 .

 4 Fig. 4. Space-filled models of the conformer III (A) and conformer II (B) displaying different modes of the π-π interaction of the aryl groups in the host and guest molecules.

Fig. 5 .

 5 Fig. 5. Calculated CD spectra for individual conformers of (R,R)-1a•ZnTPP complex.

Table 1 .

 1 Association

	Guest	σmeta a	Porphyrin host	λmax, nm (log ε)	Ka, M -1 (in CH2Cl2 at 293 K) log Ka
	1a	0.43	ZnTPP	429.0 (5.77), 563.2 (4.26), 602.8 (4.03)	(2. 30 ± 0.04) × 10 3	3.36
			ZnOEP	413.8 (5.64), 540.8 (4.38), 577.2 (4.24)	533 ± 8	2.73
	1b	0.00	ZnTPP	429.0 (5.74), 563.4 (4.23), 603.0 (3.98)	(7.640 ± 0.003) × 10 3	3.88
	1c	-0.069	ZnTPP	429.0 (5.77), 563.4 (4.26), 603.2 (4.02)	(1.166 ± 0.006) × 10 4	4.07

constants (Ka), Hammett substituents constants for phenyl groups of 1a-c (σmeta), and absorption maxima in UV-Vis spectra for 1:1 complexes of thioureas 1a-c with zinc porphyrins.

Table 2 .

 2 Calculated relative energies, abundances (at 295 K), and selected structural parameters for six lowest-energy conformers of the 1a•ZnTPP complex. a Interactions between phenyl ring of the host and bis-3,5-(CF3)phenyl of the guest.

	Conformer	ΔE, kcal.mol -1	Abundance, % (at 295 K)	Configuration of thiourea moiety	Type	Aryl-aryl interaction b Distance c , Å	Angle d
	I	0.9	10.6	sa	edge-to-face	4.8	65°
	II	1.1	7.3	sa	edge-to-face	4.8	67°
	III	0.0	48.9	sa	face-to-face	3.8	20°
	IV	1.5	4.0	aa	edge-to-face	4.8	65°
	V	0.4	24.5	sa	face-to-face	4.1	30°
	VI	1.4	4.6	aa	edge-to-face	4.8	65°
	a Calculated using B3LYP-D3BJ/cc-pVDZ// WB97XD/cc-pVTZ + SMD (CH2Cl2) level of theory.

b c 

Approximate distance between the ring centroids. d Angle between the ring planes.
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