H. Yin, L. Xu, and N. A. Porter, Free radical lipid peroxidation: Mechanisms and analysis, Chem. Rev, vol.111, pp.5944-5972, 2011.

B. C. Sousa, A. R. Pitt, and C. M. Spickett, Chemistry and analysis of HNE and other prominent carbonylcontaining lipid oxidation compounds. Free Radic, Biol. Med, vol.111, pp.294-308, 2017.

J. M. Galano, Y. Y. Lee, C. Oger, C. Vigor, J. Vercauteren et al., Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25 years of research in chemistry and biology, Prog. Lipid Res, vol.68, pp.83-108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02594327

J. D. Morrow, J. A. Awad, H. J. Boss, I. A. Blair, and L. J. Roberts, Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids, Proc. Natl. Acad. Sci, vol.2, pp.10721-10725, 1992.

R. W. Gross, The evolution of lipidomics through space and time, Biochim. Biophys. Acta, vol.1862, pp.731-739, 2017.

C. Thalman, G. Horta, L. Qiao, H. Endle, I. Tegeder et al., Synaptic phospholipids as a new target for cortical hyperexcitability and E/I balance in psychiatric disorders, Mol. Psychiatry, 2018.

P. Unichenko, S. Kirischuk, J. W. Yang, J. Baumgart, T. Roskoden et al., Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission, Cereb. Cortex, vol.26, pp.3260-3672, 2016.

H. Yin, L. Xu, and N. A. Porter, Free radical lipid peroxidation: Mechanisms and analysis, Chem. Rev, vol.111, pp.5944-5972, 2011.

B. C. Sousa, A. R. Pitt, and C. M. Spickett, Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic, Biol. Med, vol.111, pp.294-308, 2017.

J. M. Galano, Y. Y. Lee, C. Oger, C. Vigor, J. Vercauteren et al., Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25 years of research in chemistry and biology, Prog. Lipid Res, vol.68, pp.83-108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02594327

J. D. Morrow, J. A. Awad, H. J. Boss, I. A. Blair, and L. J. Roberts, Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids, Proc. Natl. Acad. Sci, vol.2, pp.10721-10725, 1992.

R. W. Gross, The evolution of lipidomics through space and time, Biochim. Biophys. Acta, vol.1862, pp.731-739, 2017.

C. Thalman, G. Horta, L. Qiao, H. Endle, I. Tegeder et al., Synaptic phospholipids as a new target for cortical hyperexcitability and E/I balance in psychiatric disorders, Mol. Psychiatry, 2018.

P. Unichenko, S. Kirischuk, J. W. Yang, J. Baumgart, T. Roskoden et al., Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission, Cereb. Cortex, vol.26, pp.3260-3672, 2016.

T. Trimbuch, P. Beed, J. Vogt, S. Schuchmann, N. Maier et al., Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling, Cell, vol.138, pp.1222-1235, 2009.

P. M. Hermann, S. N. Watson, and W. C. Wildering, Phospholipase A 2 -Nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment, Front. Genet, vol.5, p.419, 2014.

M. W. Wong, N. Braidy, A. Poljak, and P. S. Sachdev, The application of lipidomics to biomarker research and pathomechanisms in Alzheimer's disease, Curr. Opin. Psychiatry, vol.30, pp.136-144, 2017.

S. Barbash, B. P. Garfinkel, R. Maoz, A. Simchovitz, B. Nadorp et al., Alzheimer's brains show inter-related changes in RNA and lipid metabolism, Neurobiol. Dis, vol.106, pp.1-13, 2017.

R. K. Saini and Y. S. Keum, Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance-A review, Life Sci, vol.203, pp.255-267, 2018.

D. P. Howsmon, J. B. Adams, U. Kruger, E. Geis, E. Gehn et al., Erythrocyte fatty acid profiles in children are not predictive of autism spectrum disorder status: A case control study, Biomark. Res, vol.6, 2018.

C. Madore, A. Nadjar, J. C. Delpech, A. Sere, A. Aubert et al., Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes, Brain Behav. Immun, vol.41, pp.22-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640850

J. C. Delpech, C. Madore, C. Joffre, A. Aubert, J. X. Kang et al., Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation, Neuropsychopharmacology, vol.40, pp.525-536, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02635645

H. M. Su, Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance, J. Nutr. Biochem, vol.21, pp.364-373, 2010.

Y. Xiao, Y. Huang, and Z. Y. Chen, Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain, Br. J. Nutr, vol.94, pp.544-550, 2005.

A. L. Dinel, C. Rey, C. Bonhomme, P. Le-ruyet, C. Joffre et al., Dairy fat blend improves brain DHA and neuroplasticity and regulates corticosterone in mice, Prostagland. Leuk. Essent. Fat. Acids, vol.109, pp.29-38, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02630685

E. Kawakita, M. Hashimoto, and O. Shido, Docosahexaenoic acid promotes neurogenesis in vitro and in vivo, Neuroscience, vol.139, pp.991-997, 2006.

J. X. Kang and E. D. Gleason, Omega-3 Fatty acids and hippocampal neurogenesis in depression, CNS Neurol. Disord. Drug Targets, vol.12, pp.460-465, 2013.

C. Bertrand, P. O'kusky, J. R. Innis, and S. M. , Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain, J. Nutr, vol.136, pp.1570-1575, 2006.

M. A. Bradley-whitman and M. A. Lovell, Biomarkers of lipid peroxidation in Alzheimer disease (AD): An update, Arch. Toxicol, vol.89, pp.1035-1044, 2015.

A. Sugiyama and J. Sun, Immunochemical detection of lipid hydroperoxide-and aldehyde-modified proteins in diseases, Subcell. Biochem, vol.77, pp.115-125, 2014.

R. Sultana, M. Perluigi, and D. Butterfield, Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic, Biol. Med, vol.62, pp.157-169, 2013.

C. De-felice, C. Signorini, T. Durand, C. Oger, A. Guy et al., F 2 -dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome, J. Lipid Res, vol.52, pp.2287-2297, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00744233

C. De-felice, L. Ciccoli, S. Leoncini, C. Signorini, M. Rossi et al., Systemic oxidative stress in classic Rett syndrome. Free Radic, Biol. Med, vol.47, pp.440-448, 2009.

C. Signorini, C. De-felice, T. Durand, J. M. Galano, C. Oger et al., Relevance of 4-F(4t)-neuroprostane and 10-F(4t)-neuroprostane to neurological diseases. Free Radic, Biol. Med, vol.115, pp.278-287, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02594682

R. C. Seet, C. Y. Lee, E. C. Lim, J. J. Tan, A. M. Quek et al., Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radic, Biol. Med, vol.48, pp.560-566, 2010.

J. M. Galano, Y. Y. Lee, T. Durand, and J. C. Lee, The use of isoprostanoids as biomarkers of oxidative damage, and their role in human dietary intervention studies, Analytical Methods for Oxidized Biomolecules and Antioxidants, vol.49, pp.583-598, 2015.

E. S. Musiek, H. Yin, G. L. Milne, and J. D. Morrow, Recent advances in the biochemistry and clinical relevance of the isoprostane pathway, Lipids, vol.40, pp.987-994, 2005.

M. Vanrollins, R. L. Woltjer, H. Yin, J. D. Morrow, and T. J. Montine, F 2 -dihomo-isoprostanes arise from free radical attack on adrenic acid, J. Lipid Res, vol.49, pp.995-1005, 2008.

A. García-blanco, C. Peña-bautista, C. Oger, C. Vigor, J. M. Galano et al., Cháfer-Pericás, C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers, Talanta, vol.184, pp.193-201, 2018.

C. Manna, A. Officioso, F. Trojsi, G. Tedeschi, S. Leoncini et al., Increased non-protein bound iron in Down syndrome: Contribution to lipid peroxidation and cognitive decline, Free Radic. Res, vol.50, pp.1422-1431, 2016.

S. Medina, I. D. Miguel-elízaga, C. Oger, J. M. Galano, T. Durand et al., Dihomo-isoprostanes-nonenzymatic metabolites of AdA-are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography-triple quadrupole-tandem mass spectrometry method. Free Radic, Biol. Med, vol.79, pp.154-163, 2015.

A. Greco and L. Minghetti, Isoprostanes as biomarkers and mediators of oxidative injury in infant and adult central nervous system diseases, Curr. Neurovasc. Res, vol.1, pp.341-354, 2004.

E. Miller, A. Morel, L. Saso, and J. Saluk, Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases, Oxid. Med. Cell Longev, 2014.

E. E. Reich, W. R. Markesbery, L. J. Roberts, L. L. Swift, J. D. Morrow et al., Brain regional quantification of F-Ring and D-/E-Ring isoprostanes and neuroprostanes in Alzheimer's disease, Am. J. Pathol, vol.158, pp.293-297, 2001.

C. De-felice, F. Della-ragione, C. Signorini, S. Leoncini, A. Pecorelli et al., Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome, Neurobiol. Dis, vol.68, pp.66-77, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00997408

J. P. Fessel, C. Hulette, S. Powell, L. J. Roberts, and J. Zhang, Isofurans, but not F 2 -isoprostanes, are increased in the substantia nigra of patients with Parkinson's disease and with dementia with Lewy body disease, J. Neurochem, vol.85, pp.645-650, 2003.

H. C. Yen, T. W. Chen, T. C. Yang, H. J. Wei, J. C. Hsu et al., Levels of F 2 -isoprostanes, F 4 -neuroprostanes, and total nitrate/nitrite in plasma and cerebrospinal fluid of patients with traumatic brain injury, Free Radic. Res, vol.49, pp.1419-1430, 2015.

J. Nourooz-zadeh, E. H. Liu, B. Yhlen, E. E. Anggård, and B. Halliwell, F 4 -isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer's disease, J. Neurochem, vol.72, pp.734-740, 1999.

E. S. Musiek, J. K. Cha, H. Yin, W. E. Zackert, E. S. Terry et al., Quantification of F-Ring isoprostane-like compounds (F 4 -neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay, J. Chromatogr. B Anal. Technol. Biomed. Life Sci, vol.799, pp.95-102, 2004.

M. O. Grimm, V. J. Haupenthal, J. Mett, C. P. Stahlmann, T. Blümel et al., Oxidized Docosahexaenoic Acid Species and Lipid Peroxidation Products Increase Amyloidogenic Amyloid Precursor Protein Processing, Neurodegener. Dis, vol.16, pp.44-54, 2016.

B. Halliwell, Free radicals and antioxidants: Updating a personal view, Nutr. Rev, vol.70, pp.257-265, 2012.

E. Mas, R. J. Woodman, V. Burke, I. B. Puddey, L. J. Beilin et al., The omega-3 fatty acids EPA and DHA decrease plasma F(2)-isoprostanes: Results from two placebo-controlled interventions, Free Radic. Res, vol.44, pp.983-990, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515505

G. L. Milne, Q. Dai, and L. J. Roberts, The isoprostane-25 years later, Biochim. Biophys. Acta, vol.1851, pp.433-445, 2015.

J. Nourooz-zadeh, Key issues in F 2 -isoprostane analysis, Biochem. Soc. Trans, vol.36, pp.1060-1065, 2008.

S. Basu and . Isoprostanes, Novel bioactive products of lipid peroxidation, Free Radic. Res, vol.38, pp.105-122, 2004.

C. M. Spickett, I. Wiswedel, W. Siems, K. Zarkovic, and N. Zarkovic, Advances in methods for the determination of biologically relevant lipid peroxidation products, Free Radic. Res, vol.44, pp.1172-1202, 2010.

T. J. Montine, K. S. Montine, W. Mcmahan, W. R. Markesbery, J. F. Quinn et al., F 2 -isoprostanes in Alzheimer and other neurodegenerative diseases, Antioxid. Redox Signal, vol.7, pp.269-275, 2005.

B. Halliwell and C. Y. Lee, Using isoprostanes as biomarkers of oxidative stress: Some rarely considered issues, Antioxid. Redox Signal, vol.13, pp.145-156, 2010.

C. Signorini, C. De-felice, S. Leoncini, A. Giardini, M. Esposito et al., F 4 -neuroprostanes mediate neurological severity in Rett syndrome, Clin. Chim. Acta, vol.412, pp.1399-1406, 2011.

T. T. Reed, Lipid peroxidation and neurodegenerative disease. Free Radic, Biol. Med, vol.51, pp.1302-1319, 2011.

T. J. Montine, J. F. Quinn, K. S. Montine, J. A. Kaye, and J. C. Breitner, Quantitative in vivo biomarkers of oxidative damage and their application to the diagnosis and management of Alzheimer's disease, J. Alzheimers Dis, vol.8, pp.359-367, 2005.

A. Greco, L. Minghetti, and G. Levi, Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases, Neurochem. Res, vol.25, pp.1357-1364, 2000.

Y. Ehinger, V. Matagne, L. Villard, and J. C. Roux, Rett syndrome from bench to bedside: Recent advances, vol.7, p.398, 2018.

C. Signorini, C. De-felice, S. Leoncini, R. S. Møller, G. Zollo et al., MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome, PLoS ONE, vol.11, 2016.

S. Leoncini, C. De-felice, C. Signorini, A. Pecorelli, T. Durand et al., Oxidative stress in Rett syndrome: Natural history, genotype, and variants, Redox Rep, vol.16, pp.145-153, 2011.

C. Signorini, C. De-felice, S. Leoncini, T. Durand, J. M. Galano et al., Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: Effects of omega-3 polyunsaturated fatty acid supplementation, Prostagland. Leuk. Essent. Fat. Acids, vol.91, pp.183-193, 2014.

M. Chahrour and H. Y. Zoghbi, The story of Rett syndrome: From clinic to neurobiology, Neuron, vol.56, pp.422-437, 2007.

A. K. Percy and J. B. Lane, Rett syndrome: Model of neurodevelopmental disorders, J. Child Neurol, vol.20, pp.718-721, 2005.

K. Strimbu and J. A. Tavel, What are biomarkers?, Curr. Opin. HIV AIDS, vol.5, pp.463-466, 2010.

B. Halliwell and M. Whiteman, Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean?, Br. J. Pharmacol, vol.142, pp.231-255, 2004.

L. Ciccoli, C. De-felice, E. Paccagnini, S. Leoncini, A. Pecorelli et al., Erythrocyte shape abnormalities, membrane oxidative damage, and ?-actin alterations: An unrecognized triad in classical autism, Mediat. Inflamm, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00938360

C. De-felice, C. Signorini, T. Durand, L. Ciccoli, S. Leoncini et al., Partial rescue of Rett syndrome by ?-3 polyunsaturated fatty acids (PUFAs) oil, Genes Nutr, vol.7, pp.447-458, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02572806

K. S. Leung, J. M. Galano, T. Durand, and J. C. Lee, Current development in non-enzymatic lipid peroxidation products, isoprostanoids and isofuranoids, in novel biological samples, Free Radic. Res, vol.49, pp.816-826, 2015.

D. F. Taber, J. D. Morrow, and L. J. Roberts, 2nd. A nomenclature system for the isoprostanes, vol.53, pp.63-67, 1997.

L. J. Roberts, T. J. Montine, W. R. Markesbery, A. R. Tapper, P. Hardy et al., Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid, J. Biol. Chem, vol.273, pp.13605-13612, 1998.

R. Solberg, M. Longini, F. Proietti, S. Perrone, C. Felici et al., DHA Reduces Oxidative Stress after Perinatal Asphyxia: A Study in Newborn Piglets, Neonatology, vol.112, pp.1-8, 2017.

T. B. Corcoran, E. Mas, A. E. Barden, T. Durand, J. M. Galano et al., Are isofurans and neuroprostanes increased after subarachnoid hemorrhage and traumatic brain injury?, Antioxid. Redox Signal, vol.15, pp.2663-2667, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631502