A. Affouard, H. Goëau, P. Bonnet, J. C. Lombardo, and A. Joly, Pl@ntnet app in the era of deep learning, Workshop Track: 5th International Conference on Learning Representations, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01629195

Y. Bengio, Deep learning of representations for unsupervised and transfer learning, Proceedings of ICML workshop on unsupervised and transfer learning, pp.17-36, 2012.

M. Bison, N. G. Yoccoz, B. Z. Carlson, and A. Delestrade, Comparison of budburst phenology trends and precision among participants in a citizen science program, International Journal of Biometeorology, vol.63, pp.61-72, 2018.

L. Brenskelle, B. J. Stucky, J. Deck, R. Walls, and R. P. Guralnick, Integrating herbarium specimen observations into global phenology data systems, Applications in Plant Sciences, vol.279, p.1231, 2019.

L. A. Burkle, J. C. Marlin, and T. M. Knight, Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function, Science, vol.339, pp.1611-1615, 2013.

J. M. Buswell, A. T. Moles, and S. Hartley, Is rapid evolution common in introduced plant species, Journal of Ecology, vol.99, pp.214-224, 2011.

J. Carranza-rojas, H. Goeau, P. Bonnet, E. Mata-montero, and J. A. , Going deeper in the automated identification of herbarium specimens, BMC Evolutionary Biology, vol.17, p.181, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580070

E. E. Cleland, I. Chuine, A. Menzel, H. A. Mooney, and M. D. Schwartz, Shifting plant phenology in response to global change, Trends in Ecology and Evolution, vol.22, pp.357-365, 2007.

W. W. Deacy, J. B. Armstrong, W. B. Leacock, C. T. Robbins, D. D. Gustine et al., Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon, Proceedings of the National Academy of Sciences, vol.114, pp.10432-10437, 2017.

S. E. Diamond, H. Cayton, T. Wepprich, C. N. Jenkins, R. R. Dunn et al., Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature, Ecology, vol.95, pp.2613-2621, 2014.

E. R. Ellwood, S. R. Playfair, C. A. Polgar, and R. B. Primack, Cranberry flowering times and climate change in southern Massachusetts, International Journal of Biometeorology, vol.58, pp.1693-1697, 2014.

E. R. Ellwood, K. D. Pearson, and G. Nelson, Emerging frontiers in phenological research, Applications in Plant Sciences, vol.7, p.1234, 2019.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.542, p.115, 2017.

P. H. Everill, R. B. Primack, E. R. Ellwood, and E. K. Melaas, Determining past leaf-out times of New England's deciduous forests from herbarium specimens, American Journal of Botany, vol.101, pp.1293-1300, 2014.

K. P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, vol.145, pp.311-318, 2018.

M. A. Gehan and E. A. Kellogg, High-throughput phenotyping, American Journal of Botany, vol.104, pp.505-508, 2017.

S. Ghosal, D. Blystone, A. K. Singh, B. Ganapathysubramanian, A. Singh et al., An explainable deep machine vision framework for plant stress phenotyping, Proceedings of the National Academy of Sciences, vol.115, pp.4613-4618, 2018.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, IEEE Conference on Computer Vision and Pattern Recognition, 2014.

J. M. Heberling, M. Mackenzie, C. Fridley, J. D. Kalisz, S. Primack et al., Phenological mismatch with trees reduces wildflower carbon budgets, Ecology Letters, vol.203, pp.616-623, 2019.

B. P. Hedrick, J. M. Heberling, E. K. Meineke, K. G. Turner, C. J. Grassa et al., Digitization and the future of natural history collections, BioScience, vol.70, pp.243-251, 2020.

R. J. Ingram, F. Levy, C. L. Barrett, and J. T. Donaldson, Mining herbaria for clues to the historic prevalence of lily leaf spot disease (Pseudocercosporella inconspicua) nn Gray's lily (Lilium grayi) and Canada lily (L. canadense), Rhodora, vol.119, pp.163-173, 2017.

E. A. Lacey, Climate change, collections and the classroom: Using big data to tackle big problems, Evolution: Education and Outreach, vol.10, issue.2, 2017.

W. Law and J. Salick, Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae), Proceedings of the National Academy of Sciences, vol.102, pp.10218-10220, 2005.

Y. Lecun, Y. Bengio, G. Hinton, D. C. Lees, H. W. Lack et al., Tracking origins of invasive herbivores through herbaria and archival DNA: The case of the horsechestnut leaf miner, Frontiers in Ecology and the Environment, vol.521, pp.322-328, 2011.

E. A. Leger, Annual plants change in size over a century of observations, Global Change Biology, vol.19, pp.2229-2239, 2013.

J. Lendemer, B. Thiers, A. K. Monfils, J. Zaspel, E. R. Ellwood et al., The extended specimen network: A strategy to enhance US biodiversity collections, promote research and education, BioScience, vol.70, pp.23-30, 2019.

M. Long, H. Zhu, J. Wang, and M. I. Jordan, Unsupervised domain adaptation with residual transfer networks, Advances in Neural Information Processing Systems, 2016.

T. Lorieul, Toward a large-scale and deep phenological stage annotation of herbarium specimens: Case studies from temperate, tropical, and equatorial floras, Applications in Plant Sciences, vol.7, p.1233, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02137748

N. Love, I. W. Park, and S. J. Mazer, A new phenological metric for use in pheno-climatic models: A case study using herbarium specimens of Streptanthus tortuosus, Applications in Plant Sciences, vol.7, p.11276, 2019.

E. K. Meineke, R. R. Dunn, and S. D. Frank, Early pest development and loss of biological control are associated with urban warming, Biology Letters, vol.10, 2014.

E. K. Meineke, C. C. Davis, and T. J. Davies, The unrealized potential of herbaria in global change biology, Ecological Monographs, vol.88, pp.505-525, 2018.

E. K. Meineke, A. T. Classen, N. J. Sanders, and J. T. Davies, Herbarium specimens reveal increasing herbivory over the past century, Journal of Ecology, vol.107, pp.105-117, 2018.

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, Recurrent models of visual attention, Advances in Neural Information Processing Systems, 2014.

G. Nelson and S. Ellis, The history and impact of digitization and digital data mobilization on biodiversity research, Philosophical Transactions of the Royal Society B, vol.374, 2018.

M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer et al., Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning, Proceedings of the National Academy of Sciences, vol.115, pp.5716-5725, 2018.

, ? BioScience, vol.11

I. W. Park and S. J. Mazer, Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net, Global Change Biology, vol.24, pp.5972-5984, 2018.

C. Parmesan and G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems, Nature, vol.421, pp.37-42, 2003.

R. B. Primack and A. J. Miller-rushing, Uncovering, collecting, and analyzing records to investigate the ecological impacts of climate change: A template from Thoreau's Concord, BioScience, vol.62, pp.170-181, 2012.

P. B. Reich, The world-wide "fast-slow" plant economics spectrum: A traits manifesto, Journal of Ecology, vol.102, pp.275-301, 2014.

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation. Pages 2204-2212 in Navab N, Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015, vol.9351, 2015.

B. J. Stucky, R. Guralnick, J. Deck, E. G. Denny, K. Bolmgren et al., The plant phenology ontology: A new informatics resource for large-scale integration of plant phenology data, Frontiers in Plant Science, vol.9, p.517, 2018.

S. D. Taylor, J. M. Meiners, K. Riemer, M. C. Orr, and E. P. White, Comparison of large-scale citizen science data and long-term study data for phenology modeling, Ecology, vol.100, p.2568, 2018.

J. Towns, XSEDE: Accelerating scientific discovery, Computing in Science and Engineering, vol.16, pp.62-74, 2014.

J. Unger, D. Merhof, and S. Renner, Computer vision applied to herbarium specimens of German trees: Testing the future utility of the millions of herbarium specimen images for automated identification, BMC Evolutionary Biology, vol.16, p.248, 2016.

C. W. Willis, Old plants, new tricks: Phenological research using herbarium specimens, Trends in Ecology and Evolution, vol.32, pp.531-546, 2017.

C. W. Willis, CrowdCurio: An online crowdsourcing platform to facilitate climate change studies using herbarium specimens, New Phytologist, vol.215, pp.479-488, 2017.

E. M. Wolkovich, Warming experiments underpredict plant phenological responses to climate change, Nature, vol.485, p.494, 2012.

F. Wulff, B. Schäufele, O. Sawade, D. Becker, B. Henke et al., Early fusion of camera and lidar for robust road detection based on U-Net FCN, IEEE Intelligent Vehicles Symposium (IV). IEEE, pp.1426-1431, 2018.

J. M. Yost, Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants, Applications in Plant Sciences, vol.6, p.1022, 2018.

P. C. Zalamea, F. Munoz, P. R. Stevenson, C. T. Paine, C. Sarmiento et al., Continental-scale patterns of Cecropia reproductive phenology: Evidence from herbarium specimens, Proceedings of the Royal Society B, vol.278, pp.2437-2445, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01032193