Uranium removal from mining water using Cu

substituted hydroxyapatite: Supporting information.

STEPHANIE SZENKNECT* ${ }^{*}$, ADEL MESBAH ${ }^{\S}$, MICHAEL DESCOSTES ${ }^{\#}$, ABDOULAYE MAIHATCHI-AHAMED ${ }^{\S}$, LAURA BONATO ${ }^{\S}$, MALVINA MASSONNET ${ }^{\S}$, YANNIS ZIOUANE ${ }^{\S}$, EVELYNE VORS ${ }^{\ddagger}$, THOMAS VERCOUTER ${ }^{\ddagger}$, NICOLAS CLAVIER ${ }^{\S}$, JOSEPH LAUTRU ${ }^{\S}$, NICOLAS DACHEUX ${ }^{\S}$
${ }^{\text {§ }}$ ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207
Bagnols/Cèze cedex, France
\# AREVA Mines, R\&D Dpt., Tour AREVA, 1, place Jean Millier, 92084 Paris, La Défense, France
${ }^{\ddagger}$ Den - Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191, Gif sur Yvette, France

Figure S1. Variation of the standard solubility product $\mathrm{K}_{\mathrm{s}, 0}(298.15 \mathrm{~K})$ of phases from the autunite family, $\mathrm{M}^{\mathrm{II}}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ or $\mathrm{M}_{2}^{\mathrm{I}}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ versus the ionic radius of the incorporated cation.

Figure S2. Variation of the cell volume of the Cu-HAP determined by Rietveld refinement of the PXRD patterns. Comparison of the results obtained in this study with ${ }^{1-4}$.

Figure S3. Evolution of the $\mathrm{P}(\mathrm{a})$; Cu (b) and Ca (c) elemental concentrations in BD200 mining waters when contacting with the different prepared Cu-Hap samples.

Figure S4. Evolution of the P (a), Cu (b) and Ca (c) elemental concentrations in V105 mining waters when contacting with the different prepared Cu-Hap samples. Ca elemental concentration were

(b)

Figure S5. Evolution of the U (a); $\mathrm{Ca}(\mathrm{b}) ; \mathrm{P}(\mathrm{c})$ and $\mathrm{Cu}(\mathrm{d})$ elemental concentrations in spiked synthetic solution of $0.02 \mathrm{~mol} / \mathrm{L} \mathrm{NaNO}_{3}$ in contact with the prepared $\mathrm{Cu}-\mathrm{HAP}$ with various Cu content at near-neutral pH and $25^{\circ} \mathrm{C}$.

Figure S6. Evolution of the $\mathrm{U}(\mathrm{a}) ; \mathrm{Ca}(\mathrm{b}) ; \mathrm{P}(\mathrm{c})$ and $\mathrm{Cu}(\mathrm{d})$ elemental concentrations in uranium spiked synthetic solution of $0.02 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{SO}_{4}$ in contact with the prepared $\mathrm{Cu}-\mathrm{HAP}$ with various Cu content at near-neutral pH and $25^{\circ} \mathrm{C}$.

(b)

Figure S7. PXRD patterns of $\mathrm{Cu}-\mathrm{HAP}$ sample after contact with U -spiked $\left(\mathrm{C}_{\mathrm{U}}=10^{-3} \mathrm{~mol} / \mathrm{L}\right)$ solution of $0.02 \mathrm{~mol} / \mathrm{L} \mathrm{NaNO}_{3}$ (a); $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (b); V105 and BD200 mining waters $\left(\mathrm{C}_{\mathrm{U}} \sim 10^{-6}\right.$ $\mathrm{mol} / \mathrm{L}$) (c). The green bars correspond the Bragg positions of the peaks for meta-torbernite (PDF: 01-086-1787).

Figure S8. Raman spectra of the Cu-Hap sample ($\mathrm{x}_{\mathrm{Cu}}=1.45$) contacted with BD200 and V105 mining waters compared to the spectrum of the Cu -Hap sample before experiment and with the spectrum of a sample of synthetic meta-torbernite ${ }^{5}$. Attribution of the bands were based on the results obtained by Frost for a natural sample of meta-torbernite ${ }^{6}$.

(c)

(d)

$$
x_{\mathrm{Cu}}=0
$$

$0.02 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$

Figure S9. SEM micrograph in backscattered electron mode, $\mathrm{U}, \mathrm{Ca}, \mathrm{Cu}$ and P X-EDS maps determined for $\mathrm{Cu}-\mathrm{HAP}$ with $\mathrm{x}_{\mathrm{Cu}}=1.59$ contacted with the $0.02 \mathrm{M} \mathrm{NaNO}_{3}$ solution spiked with uranium (a); with the $0.02 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution spiked with uranium (b); for $\mathrm{Cu}-\mathrm{HAP}$ with $\mathrm{x}_{\mathrm{Cu}}=0$ contacted with the $0.02 \mathrm{M} \mathrm{NaNO}_{3}$ solution spiked with uranium (c); with the $0.02 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution spiked with uranium (d).

Table S1. Position of the maximum and full width half maximum of TRFLS peaks for Cu -Hap samples contacted with uranyl synthetic solutions and mining waters. Comparison with uraniumbearing synthetic phases of the autunite family.

\mathbf{x}_{Cu}	Peak position $\boldsymbol{\lambda}_{\text {max }}(\mathbf{n m})$				
FWHM (nm)					
0	502	523	547	572	13
1.15	503	524	547	573	13
1.59	503	524	547	573	13
$0.02 \mathrm{M} \mathrm{NaNO}_{3}$					
0	502	524	547	573	12
1.15	502	524	547	572	14
1.59	502	524	547	572	14
$\mathrm{~V} 105^{c}$					
0	498	519	543	567	13
1.15	497	519	542	567	14
1.45	497	519	542	567	14
BD 200					
0	500	521	545	568	15
References	Peak position $\lambda_{\text {max }}(\mathbf{n m})$	FWHM (nm)			
meta-torbernite	502	524	547	573	7
chernikovite	502	524	548	574	7
meta-autunite	502	524	548	573	10

References

1. Karpov, A. S.; Nuss, J.; Jansen, M.; Kazin, P. E.; Tretyakov, Y. D., Synthesis, crystal structure and properties of calcium and barium hydroxyapatites containing copper ions in hexagonal channels. Solid State Sciences 2003, 5, (9), 1277-1283.
2. Li, C.; Ge, X.; Zhao, J.; Li, G.; Bai, J.; Du, Q.; Ding, R., Preparation and characterization of novel hydroxyapatite/copper assemblies with well-defined morphologies. Solid State Sciences 2014, 29, 66-74.
3. Shanmugam, S.; Gopal, B., Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties. Ceramics International 2014, 40, (10), 15655-15662.
4. Stanic, V.; Dimitrijevic, S.; Antic-Stankovic, J.; Mitric, M.; Jokic, B.; Plecas, I. B.; Raicevic, S., Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Science 2010, 256, (20), 6083-6089.
5. Cretaz, F.; Szenknect, S.; Clavier, N.; Vitorge, P.; Mesbah, A.; Descostes, M.; Poinssot, C.; Dacheux, N., Solubility properties of synthetic and natural meta-torbernite. Journal of Nuclear Materials 2013, 442, (1-3), 195-207.
6. Frost, R. L., An infrared and Raman spectroscopic study of the uranyl micas. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2004, 60, (7), 14691480.
