J. E. Kelly, Generation IV International Forum: A decade of progress through international cooperation, Prog Nucl Energ, vol.77, pp.240-246, 2014.

D. Ava, L. Martin, and B. Vray, 35 Years of Operating Experience of PHENIX NPP Sodium Cooled Fast Reactor, Proceedings of the 17th International Conference on Nuclear Engineering, vol.17, pp.243-254, 2009.

L. Brissonneau, New considerations on the kinetics of mass transfer in sodium fast reactors: An attempt to consider irradiation effects and low temperature corrosion, J Nucl Mater, vol.423, pp.67-78, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02541805

D. J. Hayes, Instrumentation for Liquid-Sodium in Nuclear-Reactors, Journal of Physics E-Scientific Instruments, vol.7, pp.69-75, 1974.

H. Steinmetz, Development of a continuous meter for oxygen in sodium, 1961.

I. C. Cosentino and R. Muccillo, Lattice parameters of thoria-yttria solid solutions, Mater Lett, vol.48, pp.253-257, 2001.

J. E. Bauerle, Electrical Conduction in Thoria and Thoria-Yttria as a Function of Oxygen Pressure, J Chem Phys, vol.45, pp.4162-4166, 1966.

E. C. Subbarao and H. S. Maiti, Solid Electrolytes with Oxygen Ion Conduction, Solid State Ionics, vol.11, pp.317-338, 1984.

M. F. Lasker and R. A. Rapp, Mixed Conduction in ThO 2 and ThO 2 -Y 2 O 3 Solutions, Z Phys Chem Neue Fol, p.198, 1966.

B. C. Steele and C. B. Alcock, Factors Influencing Performance of Solid Oxide Electrolytes in High-Temperature Thermodynamic Measurements, vol.233, p.1359, 1965.

S. J. Skinner and J. A. Kilner, Oxygen ion conductors, Mater. Today, vol.6, pp.30-37, 2003.

M. Gabard, Y. Cherkaski, N. Clavier, L. Brissonneau, M. C. Steil et al., Preparation, characterization and sintering of yttrium-doped ThO 2 for oxygen sensors applications, J Alloy Compd, vol.689, pp.374-382, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02010063

A. Hammou, Electrical-Conductivity in ThO 2 -YO 1.5 System .1. Experimental Study and Electronic Conductivity, J Chim Phys Pcb, vol.72, pp.431-438, 1975.

E. Schouler, A. Hammou, and M. Kleitz, Complex Impedance of Electrochemical Cells Based on Yttria Doped Thoria, Mater Res Bull, vol.11, pp.1137-1146, 1976.

I. Bransky and N. M. Tallan, Electrical Properties and Defect Structure of ThO 2, J Am Ceram Soc, vol.53, pp.625-629, 1970.

V. Jayaraman and T. Gnanasekaran, Evolution of the Development of In-Sodium Oxygen Sensor and Its Present Status, J Electrochem Soc, vol.163, pp.395-402, 2016.

B. K. Nollet, M. G. Hvasta, M. H. Anderson, D. Morgan, and J. A. Schneider, Development of an Electrochemical Oxygen Sensor for Liquid Sodium Using a Yttria Stabilized Zirconia Electrolyte, J Electrochem Soc, vol.164, pp.10-22, 2017.

R. Ganesan, V. Jayaraman, S. R. Babu, R. Sridharan, and T. Gnanasekaran, Development of Sensors for On-Line Monitoring of Nonmetallic Impurities in Liquid Sodium, J Nucl Sci Technol, vol.48, pp.483-489, 2011.

H. Nafe, Ionic-Conductivity of Th 0.85 Y 0.15 O 1.925 below 500°C, Z Phys Chem, vol.172, pp.69-79, 1991.

F. J. Salzano, H. S. Isaacs, and M. , SiO 2 Electrode Using a ThO 2 -Y 2 O 3 Electrolyte, J Electrochem Soc, vol.118, pp.412-416, 1971.

W. A. Ross and E. T. Weber, Fabrication and Characterization of ThO 2 -Y 2 O 3 Solid Electrolyte Tubes, Am Ceram Soc Bull, vol.50, p.787, 1971.

H. U. Borgstedt, Influence of Liquid Sodium on Mechanical Properties of Steels, Refractory Alloys and Ceramics, pp.461-480, 2008.

M. R. Hobdell and C. A. Smith, Electrochemical Techniques for Monitoring Dissolved Carbon, Hydrogen and Oxygen in Liquid-Sodium, J Nucl Mater, vol.110, pp.125-139, 1982.

R. G. Taylor and R. Thompson, Testing and Performance of Electrolytic Oxygen Meters for Use in Liquid-Sodium, J Nucl Mater, vol.115, pp.25-38, 1983.

D. Jakes, J. Kral, J. Burda, and M. Fresl, Development of Electrochemical Oxygen Meter for Liquid-Sodium, Solid State Ionics, vol.13, pp.165-173, 1984.

E. Berkey and J. G. Cleary, Developments Pertaining to Electrochemical Oxygen Meters, Trans Am Nucl Soc, vol.12, p.125, 1969.

C. C. Wheatley, F. Leach, B. Hudson, R. Thompson, K. J. Claxton et al., The manufacture and properties of ceramic probes to measure oxygen content in liquid sodium, Inst. Phys. Conf. Ser, vol.30, pp.556-560, 1977.

Y. Cherkaski, N. Clavier, L. Brissonneau, R. Podor, and N. Dacheux, Densification behavior and microstructure evolution of yttrium-doped ThO 2 ceramics, J Eur Ceram Soc, vol.37, pp.3381-3391, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01996178

D. Horlait, N. Clavier, N. Dacheux, R. Cavalier, and R. Podor, Synthesis and characterization of Th 1-x Ln x O 2-x/2 mixed-oxides, Mater Res Bull, vol.47, pp.4017-4025, 2012.

L. Claparede, N. Clavier, N. Dacheux, A. Mesbah, J. Martinez et al., Multiparametric Dissolution of Thorium-Cerium Dioxide Solid Solutions, Inorg Chem, vol.50, pp.11702-11714, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02037000

C. Latgé and J. Guidez, Sodium chemistry, pp.111-117, 2016.

K. Chandran, R. Nithya, K. Sankaran, A. Gopalan, and V. Ganesan, Synthesis and characterization of sodium alkoxides, B Mater Sci, vol.29, pp.173-179, 2006.

R. Caponetti, Sodium Cleaning Procedures for Pec Prototype Mechanisms, Nucl Technol, vol.70, pp.408-423, 1985.

K. Kiukkola and C. Wagner, Galvanic Cells for the Determination of the Standard Molar Free Energy of Formation of Metal Halides, Oxides, and Sulfides at Elevated Temperatures, J Electrochem Soc, vol.104, pp.308-316, 1957.

C. M. Choudhary, H. S. Maiti, and E. C. Subbarao, Solid electrolytes and their application, Defect structure and transport properties, pp.1-80, 1980.

J. A. Kilner, Fast oxygen transport in acceptor doped oxides, Solid State Ionics, vol.129, pp.13-23, 2000.

M. C. Steil, F. Thevenot, and M. Kleitz, Densification of yttria-stabilized zirconia -Impedance spectroscopy analysis, J Electrochem Soc, vol.144, pp.390-398, 1997.

M. Gabard, Elaboration et caractérisation d'électrolytes solides pour sondes électrochimiques à oxygène dans le sodium liquide, 2013.

X. Guo, W. Sigle, and J. Maier, Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity, J Am Ceram Soc, vol.86, pp.77-87, 2003.

R. Podor, X. L. Goff, T. Cordara, M. Odorico, J. Favrichon et al., 3D-SEM height maps series to monitor materials corrosion and dissolution, Mater Charact, vol.150, pp.220-228, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02064121

B. Joseph, Fragilisation du cuivre par le bismuth liquide : étude cinétique et mécanisme, in, Université Paris-Sud-11, 1998.

S. Kano, E. Yoshida, Y. Hirakawa, Y. Tachi, H. Haneda et al., Sodium Compatibility of Ceramics, Liquid Metal Systems, pp.85-94, 1995.

J. Jung, A. Reck, and R. Ziegler, The Compatibility of Alumina Ceramics with Liquid-Sodium, J Nucl Mater, vol.119, pp.339-350, 1983.

X. Guo and R. Waser, Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria, Prog Mater Sci, vol.51, pp.151-210, 2006.

M. Aoki, Y. M. Chiang, I. Kosacki, I. J. Lee, H. Tuller et al., Solute segregation and grain-boundary impedance in high-purity stabilized zirconia, J Am Ceram Soc, vol.79, pp.1169-1180, 1996.

M. Kleitz, L. Dessemond, and M. C. Steil, Model for Ion-Blocking at Internal Interfaces in Zirconias, Solid State Ionics, vol.75, pp.107-115, 1995.

C. Y. Tian and S. W. Chan, Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO 2 doped with Y 2 O 3, Solid State Ionics, vol.134, pp.89-102, 2000.

E. J. Schouler, N. Mesbahi, and G. Vitter, Insitu Study of the Sintering Process of Yttria Stabilized Zirconia by Impedance Spectroscopy, Solid State Ionics, pp.989-996, 1983.

M. J. Verkerk, A. J. Winnubst, and A. J. Burggraaf, Effect of Impurities on Sintering and Conductivity of Yttria-Stabilized Zirconia, J Mater Sci, vol.17, pp.3113-3122, 1982.

I. C. Cosentino and R. Muccillo, Properties of thoria-yttria solid electrolytes prepared by the citrate technique, Mater Lett, vol.32, pp.295-300, 1997.

M. Hartmanova, V. Saly, F. Hanic, M. Pisarcik, and H. Ullmann, Microstructure and Physical-Properties of Transparent Thoria Yttria Ceramics, J Mater Sci, vol.26, pp.4313-4317, 1991.

M. Hartmanova, F. Hanic, A. Koller, and J. Janci, Some Physical-Properties of Calcia and Yttria Stabilized ThO 2 Ceramics, Czech J Phys, vol.28, pp.414-433, 1978.

H. Inaba and H. Tagawa, Ceria-based solid electrolytes -Review, Solid State Ionics, vol.83, pp.1-16, 1996.

E. N. Muccillo and M. Kleitz, Ionic-Conductivity of Fully Stabilized ZrO 2 -MgO and Blocking Effects, J Eur Ceram Soc, vol.15, pp.51-55, 1995.

S. P. Badwal and J. Drennan, Yttria Zirconia -Effect of Microstructure on Conductivity, J Mater Sci, vol.22, pp.3231-3239, 1987.

L. Dessemond, R. Muccillo, M. Henault, and M. Kleitz, Electric Conduction-Blocking Effects of Voids and 2nd Phases in Stabilized Zirconia, Appl Phys a-Mater, vol.57, pp.57-60, 1993.

L. Brissonneau, P. Trabuc, C. Chabert, T. Matonne, H. Sassoulas et al., Joining steel to yttria-doped hafnia with a reactive brazing for a potentiometric oxygen sensor in sodium, 2017.

S. Dash, Z. Singh, S. C. Parida, and V. Venugopal, Thermodynamic studies on Rb 2 ThO 3 (s), J Alloy Compd, vol.398, pp.219-227, 2005.

D. Noden, A general equation for the solubility of oxygen in liquid sodium, J Brit Nucl Ener Soc, vol.12, pp.57-62, 1973.