

Morphologic and genetic characterisation of Corsican and Sardinian trout with comments on Salmo taxonomy

Bo Delling, Andrea Sabatini, Stéphane Muracciole, Christelle Tougard,
Patrick Berrebi

▶ To cite this version:

Bo Delling, Andrea Sabatini, Stéphane Muracciole, Christelle Tougard, Patrick Berrebi. Morphologic and genetic characterisation of Corsican and Sardinian trout with comments on Salmo taxonomy. Knowledge and Management of Aquatic Ecosystems, 2020, 421, pp.1-16. $10.1051/\mathrm{kmae}/2020013$. hal-02566709

HAL Id: hal-02566709 https://hal.umontpellier.fr/hal-02566709v1

Submitted on 7 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1

2

4

Morphologic and genetic characterisation of Corsican and

Sardinian trout with comments on Salmo taxonomy

Bo Delling ¹, Andrea Sabatini ², Stephane Muracciole ³,

8

7

9 Department of Zoology, Swedish Museum of Natural History, 10405 Stockholm, Sweden.

Christelle Tougard ⁴ and Patrick Berrebi ^{4,5,*}

- ² Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via Fiorelli 1,
- 11 Cagliari, Italy.
- ³ Office National des Forêts, Pont de l'Orta, 20250 Corte, France.
- ⁴ ISEM, Université de Montpellier, CNRS, IRD, EPHE, 34095 Montpellier cedex, France.
- ⁵ Present address: Genome-R&D, 697 avenue de Lunel, 34400 Saint-Just, France.
- * Corresponding author: Patrick.berrebi@laposte.net

16

17 **Short title:** Morphology and genetics of Tyrrhenian trout

Abstract - Both morphological and molecular data are presented and discussed for 19 20 indigenous Salmo sp. from Corsica and Sardinia, here called Tyrrhenian trout. For comparison, morphological data obtained from museum specimens, including the Algerian S. 21 22 macrostigma, are discussed in the light of recent and new molecular findings. In total, 29 measurements and 20 meristic characters were taken from each specimen. Out of the meristic 23 characters, 12 were obtained by means of X-ray. One important morphometric character in the 24 25 present study is the size of the head measured from premaxilla to posterior margin of preoperculum. This character was particularly stable in all Tyrrhenian trout, showing 26 relatively large head compared to Atlantic trout and to S. macrostigma. On the contrary, other 27 28 characters like body punctuations, black and white edges of fins, body depth or number of epurals in the caudal skeleton are quite polymorphic. In certain meristic characters, range of 29 30 variation of Tyrrhenian trout even exceeds that of the extensive comparative material. Each 31 trout has been genetically characterized. New haplotypes from Tyrrhenian trout were discovered, belonging to three mitochondrial lineages viz. Adriatic, marble and 32 Mediterranean, however, Adriatic haplotypes are dominant. Mixing morphological and 33 genetic data, observed morphology lacks any obvious correlation to mitochondrial lineages 34 and it is concluded that Tyrrhenian trout show no particular affinity to S. macrostigma from 35 36 Algeria.

37

38

Keywords: brown trout / Tyrrhenian Sea / morphology / meristics / mtDNA

39

- Caractérisation morphologique et génétique de la truite corse et sarde avec
- 41 commentaires sur la taxonomie du genre Salmo.
- 42 Bo Delling, Andrea Sabatini, Stéphane Muracciole, Christelle Tougard, Patrick Berrebi.

Résumé - La présente étude détaille et discute les données morphologiques et moléculaires des truites indigènes, Salmo sp. de Corse et de Sardaigne, ici appelée truites tyrrhéniennes. À titre de comparaison, les données morphologiques obtenues à partir de spécimens de musée, y compris S. macrostigma d'Algérie, sont discutées à la lumière des découvertes moléculaires récentes et nouvelles. Au total, 29 mesures et 20 caractères méristiques ont été considérés pour chaque spécimen. Parmi ces caractères méristiques, 12 ont été obtenus au moyen de rayons X. Un caractère morphométrique important dans la présente étude est la taille de la tête mesurée du prémaxillaire à la marge postérieure du préopercule. Ce caractère est particulièrement stable chez toutes les truites tyrrhéniennes, qui ont montré une tête relativement grande par rapport celle de la truite de l'Atlantique et de S. macrostigma. Au contraire, d'autres caractères comme les ponctuations du corps, les franges noires et blanches des nageoires, la profondeur du corps ou le nombre d'hypuraux dans le squelette caudal sont assez polymorphes. Pour certains caractères méristiques, la gamme de variation de la truite tyrrhénienne dépasse celle de tous les taxons comparés. Chaque truite a été génétiquement caractérisée et de nouveaux haplotypes de truite tyrrhénienne ont été découverts, appartenant à trois lignées mitochondriales à savoir les lignées adriatique, marbrée et méditerranéenne, les haplotypes adriatiques étant dominants. En combinant les données morphologiques et génétiques, il est montré que la morphologie n'a aucune corrélation évidente avec les lignées mitochondriales. D'autre part, la truite tyrrhénienne n'a aucune affinité particulière avec S. macrostigma d'Algérie.

63

64

65

62

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Mots-clés: truite commune / mer Tyrrhénienne / morphologie / caractères méristique /

ADNmt

1 Introduction

68	The taxonomic status of Eurasian trouts, i.e., all Salmo spp. except Atlantic salmon, Salmo
69	salar, is revised continuously. Among molecular oriented ichthyologists, this part of Salmo
70	diversity is most often referred to as brown trout Salmo trutta or "brown trout complex",
71	whereas taxonomic oriented scientists, mainly focusing on morphology, continue to describe
72	new species and recognizes at least 50 distinct taxa (Delling and Doadrio, 2005; Sušnik et al.,
73	2006, 2007; Kottelat and Freyhof, 2007; Delling, 2010; Turan et al., 2009, 2011, 2012, 2014a
74	2014b, 2017, 2020; Doadrio et al., 2015; Froese and Pauly, 2019).
75	The extensive molecular studies of the genus started mainly with allozymes (Ferguson
76	and Mason, 1981; Karakousis and Triantaphyllidis, 1990; García-Marín et al., 1999; Berrebi
77	et al., 2000a; Berrebi, 2015), later on shifting focus towards DNA sequencing mainly of
78	mitochondrial origin (Giuffra et al., 1994; Apostolidis et al., 1997; Aurelle and Berrebi, 2001;
79	Snoj et al., 2011). These studies led to numerous publications describing genetic variation in
80	the genus. One of the most important findings within the taxonomic context is probably the
81	proposed five main mitochondrial DNA (mtDNA) lineages within the brown trout complex,
82	Atlantic (AT), Mediterranean (ME), Adriatic (AD), marble (MA) and Danubian (DA)
83	(Bernatchez et al., 1992; Bernatchez, 2001). These lineages are augmented by geographically
84	more limited lineages such as the Duero (DU) lineage (Suarez et al., 2001) and the Dades
85	trout (Snoj et al., 2011), both close to AT, and the Tigris (TI) lineage (Bardakçi et al., 2006)
86	close to DA. A recent analysis of a larger portion of the mtDNA allowed for a division of the
87	AT lineage into two sister clades: a North African lineage (NA, in Morocco, Algeria and
88	Sicily) and a well-known European AT lineage (Tougard et al., 2018).
89	In several cases, morphological and molecular data are correlated, strengthening
90	hypotheses on taxa delimitation. In several cases, morphological and molecular data are
91	correlated, strengthening hypotheses on taxa delimitation (Sanz, 2018). However, they

sometimes disagree: for example, *Salmo marmoratus*, considered as very distinct in morphology (Delling, 2002), is also characterized by the MA mtDNA and the LDH-C1*(120) allozyme allele. However, MA haplotypes are also found in low frequencies outside the taxon (Bernatchez *et al.*, 1992; Snoj *et al.*, 2009; Pustovrh *et al.*, 2011; Tougard *et al.*, 2018) and the 120-allele is rare in Trebuscica River (Slovenia) otherwise pure and isolated *S. marmoratus* population (Berrebi *et al.*, 2000b). Another example of marker disagreement is illustrated by *S. obtusirostris*. This species, while fixed for a unique and specific mtDNA haplotype in the Neretva River (Snoj *et al.*, 2002), is fixed for the AD mtDNA lineage in Jadro River population. Other frequent kinds of contradictions have been observed, especially in the Balkans with numerous taxa sharing similar AD haplotypes (Sušnik *et al.*, 2004, 2006; Snoj *et al.*, 2010). These kinds of discrepancies may be explained by ancient introgression (Sušnik *et al.*, 2007). Another explanation is the Dobzhansky–Muller model which accounts for cytonuclear incompatibilities (Burton and Barreto, 2012).

Despite the high number of more or less distinguishable taxa within the genus *Salmo*, large portions of its populations are not easily referred with accuracy to any existing taxon (Splendiani *et al.*, 2019). This is partly due to lack of morphological data, lack of studies including both kinds of data and the fact that several tentatively valid taxa are poorly described lacking clear diagnoses (Kottelat and Freyhof, 2007). Within the native distribution of *Salmo*, a large part of its diversity is found in basins of the Tyrrhenian islands, Corsica, Sardinia and Sicily (Berrebi *et al.*, 2019), and especially in Corsica where numerous differentiated indigenous populations still survive. Trout from Corsica and Sardinia, together with several other Mediterranean trouts, are often referred to as *Salmo macrostigma* (Duméril 1858) – a species originally described from Algeria. The name *macrostigma* refers to the parr marks retained in adults (Duméril, 1858). This is a common feature in many *Salmo* spp. and may explain the broadened usage of this name, as applied to Corsican trout by Roule (1933)

and to Sardinian trout at first by Boulenger (1901) also confirmed by Pomini (1941). Since that, Corsican trout have been characterized both for allozymes (Guyomard and Krieg, 1986; Berrebi, 1995), mtDNA (Bernatchez *et al.*, 1992; Berrebi *et al.*, 2019) and microsatellites (Berrebi *et al.*, 2007, 2019), showing that they mainly belong to the AD lineage and possess the highly diagnostic allozyme allele LDH-4*(040). Morphological data on Corsican trout is so far restricted to pyloric caeca counts (Olivari and Brun, 1988; Guyomard, 1989) and the description of variation in color pattern among populations (Lascaux *et al.*, 2010). In the same way, the non-introgressed Sardinian populations were characterized by only the AD lineage and allele LDH-C1 100/100 (Sabatini *et al.* 2018). Some authors describe, for the Sardinian populations, different haplotypes (Ad1, Ad2, Tyrrh1) with highly polymorphic characteristics accompanied by different phenotypes (Sabatini *et al.*, 2011; Zaccara *et al.*, 2015)

Regarding distinctiveness of *S. macrostigma sensu stricto*, Tougard *et al.* (2018) analyzed complete mtDNA sequences from one syntype and one topotypic specimen and concluded they belonged to the NA lineage. In the same study, samples from Corsica and Sardinia were associated to AD, ME, MA or AT lineages.

The present study is deliberately "cross-disciplinary", the main focus being to describe and discuss the *Salmo* diversity irrespective of different views on classification and taxonomy. Consequently, the use of different names, e.g. *S. marmoratus* or *S. lourosensis* only serve the purpose of pointing out a certain subset of trouts. Both molecular and morphological data are presented and discussed for indigenous *Salmo* sp. from Corsica and Sardinia, here called Tyrrhenian trout. Regarding comparison to Algerian *S. macrostigma*, morphological data obtained from museum specimens are also included and discussed in the light of recent molecular findings (Tougard *et al.*, 2018).

2 Material and methods

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

143

2.1. Sampling

Contemporary specimens (N=38) from one Sardinian and six Corsican localities were captured in the wild by electrofishing, anesthetized with clove essence to death, sampled for tissue (fin clip in 95% ethanol), fixed in formalin 5%, and later transferred to ethanol prior to morphological analyses. The geographic positions of sampling stations are given in Fig. 1. Tyrrhenian Salmo is referred to with an abbreviation of the stream, e.g. CAM for Camboni River in text, certain graphs and tables (Table 1). As detailed in Fig. 1, samples for genetic and morphological analyses are not exactly the same. Comparative material includes different sets of *Salmo* spp. depending on analyses and the question of interest: distinction towards i) Salmo macrostigma from Algeria, ii) Atlantic basin Salmo trutta, iii) Salmo sp. from Spain. Comparative material for morphometry is restricted to specimens within standard length (SL) - range (116-208 mm), i.e., within the SL-range of Tyrrhenian trout samples. A description of contemporary and comparative material is given in Table 1, obtained from several museum collections: CMK, Collection of Maurice Kottelat, Cornol, Switzerland; BMNH, British Museum of Natural History, London, UK; MHNG, Museum d'Histoire Naturelle, Geneva, Switzerland; MNCN, Museo Nacional de Ciencias Naturales, Madrid, Spain; MNHN, Museum National d'Histoire Naturelle, Paris, France; NMW, Naturhistorisches Museum, Wien, Austria; NRM, Swedish Museum of Natural History, Stockholm, Sweden; ZISP, Zoological Institute, Russian Academy of

Sciences, St. Petersburg, Russia; ZMH, Zoologisches Museum für Hamburg, Germany. The

sample from Spain, MNHN 1920 228-229, consists of two specimens only but is included in

the study because their morphology resembles Tyrrhenian trout (see below). Comparative

material in addition to that in Table 1 (Delling, unpublished) is included for a broader

comparison of head length within *Salmo*. A complete list of studied material is provided as supplementary information (Table S1).

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

168

169

2.2. Molecular methods

DNA was extracted from fin clips using the Chelex/proteinase K protocol described by Estoup et al. (1996). Three to six individuals have been considered by locality in the Tyrrhenian region, being or not the exact individuals included in morphological analyses. Partial mtDNA control region (CR) was amplified by PCR using the PST and FST primers (Cortey and García-Marín, 2002). Each 50 µl reaction included 0.4 µM of each primer (Eurofins MWG Operon), 0.2 mM of dNTP (2 mM each), 2 mM of MgCl₂ (25 mM), 10 μl of 5x PCR buffer, 1 U of Taq polymerase (GoTaq® Promega) and about 50 ng of genomic DNA. The conditions for PCR were an initial denaturation (95°C, 5 min) followed by 30 cycles of strand denaturation (94°C, 1 min), primer annealing (52°C, 1 min) and DNA extension (72°C, 1 min), then followed by a final extension (72°C, 5 min). All PCR amplifications were performed in Eppendorf Mastercycler thermocyclers. The amplified DNA fragments were run on a 0.8% agarose gel to verify the efficiency of amplification. The PCR products were purified and sequenced in both directions to confirm polymorphic sites by the Macrogen Company, Seoul, South Korea (https://dna.macrogen.com/) and the platform GenSeq of the Institut des Sciences de l'Evolution de Montpellier (Montpellier, France). The sequences of CR were aligned together with reference haplotypes retrieved from GenBank, using MEGA v5.05 (Tamura et al., 2011). Haplotypes for the new sequences were generated with DnaSP v5.10.1b (Librado and Rozas, 2009). Haplotype relationships and distribution among populations were evaluated with a median-joining network (Bandelt et al., 1999) constructed with PopART (Leigh and Bryant, 2015). In order to assign a phylogenetic position to the seven contemporary samples (CAM, SPE, POZ, ESE, CAR, CHA and NIN),

the network included published GenBank sequences of the lineages AT, ME, AD, MA, DA and NA, all belonging to the brown trout complex.

2.3. Morphology methods

Methodology follows Delling *et al.* (2000) and Delling (2002). The length of the uppermost gill raker on the lower limb of the first gill arch (right side) was measured *in situ* using a pair of dividers. All other measurements were taken on the left side of the specimen with a digital calliper and rounded to the nearest 0.1 mm (Fig. 2). One important morphometric character in the present study is head length (HL) measured from tip of the snout to posterior margin of the operculum. However, the measurement that quantifies the size of the head more accurately is the distance from the premaxilla to the posterior margin of the preoperculum (No. 24 in Fig. 2). Below, the abbreviation HLpp is applied for that measurement.

The number of i) pored scales along the lateral line to the end of the caudal peduncle (left side), ii) scales in an oblique row from the base of the adipose fin backwards down to the lateral line including lateral line scales (left side), iii) gill rakers, including rudimentary elements, on lower and upper limbs of the first gill arch separately (right side), and iv) branchiostegal rays on both sides, were counted under a binocular dissection microscope.

The number of abdominal vertebrae, caudal vertebrae, pterygiophores supporting anal and dorsal fins, caudal fin upper and lower procurrent rays, and interneurals were taken from radiographs (Fig. 3). Rudimentary vertebrae in the caudal skeleton in addition to the three upturned vertebrae were not included in the counts. In cases of fused centra, the number of neural arches or spines was counted. The last abdominal vertebra is herein defined as the last one having ribs (sometimes rudimentary or missing) and/or having the haemal spine much shorter than in the consecutive first caudal vertebra. The positions of the dorsal and anal fins were estimated in relation to the vertebral column. The most strongly developed anterior

pterygiophore was used as a marker of dorsal and anal fin position, respectively. Dorsal and anal fin pterygiophores do not articulate with neural and haemal spines, respectively, and in uncertain cases the lower value was chosen. The dorsal and anal fin positions are treated as meristic characters in statistical analyses. A membranous triangular bone sometimes present, located above the neural spine of the first vertebrae (Fig. 3), was not included in interneural counts.

Principal component analyses (PCA) on log transformed measurements and square rooted counts were used as an ordination method (Bookstein *et al.*, 1985). Some informative meristic characters are summarised in frequency tables. The inclusion of 'soft' measurements, e.g. body width and body depth in analyses, depends on the state of preservation of specimens. PCAs were performed using SYSTAT 13. Colour pattern descriptions are most often restricted to contrasting markings: size, density and distribution of spots; presence of black and white leading edges of dorsal and anal fins; any other markings such as dark bars were also considered. In preserved material, light spots are interpreted as red spots based on personal observations: after transfer to ethanol, red spots disappear transformed into pale spots. Spots described as occllated refer to spots enclosed by a light ring.

3 Results

3.1. Molecular results

Among the 38 contemporary specimens from Corsica and Sardinia, 34 CR sequences were obtained, corresponding to eight new haplotypes (Table 2). The alignment of CR sequences are 998 nucleotides long with 47 phylogenetically informative sites. These haplotypes are genetically very close (distant from each other by up to two mutations, Fig. 4) to 37 published

GenBank haplotype sequences used as reference and illustrating the diversity on all the range of the *S. trutta* complex. A comprehensive network of these new and published haplotypes is presented Fig. 4. The sequences of the contemporary analyzed populations were all clustered into ME, AD and MA lineages, according to the reference sequences. AT, DA and NA lineages were represented only by GenBank sequences.

New haplotypes from Tyrrhenian trout were called ADcr2 to 6, MAcr1 and 2, and MEcr1 (Table 2). Three populations are characterized by one private haplotype each: NIN, (Corsica) with MEcr1; CAM (Sardinia) with ADcr2 and POZ (Corsica) with ADcr4. CAR, (Corsica) is characterized by a majority of MA private haplotypes (MAcr1 and 2) and one AD haplotype (ADcr5), while CHA (Corsica) is characterized by two AD haplotypes (ADcr3 and ADcr6). SPE and ESE shared ADcr3 with CHA.

3.2. Morphology

Morphometric data are given in Table 3, and meristic data are summarized in Tables 4 to 6 including extensive comparative material (Tables 1 and S1). Selected results from ordination by means of PCA are given for analyses focusing on variation between Tyrrhenian trout as a whole towards Atlantic basin *S. trutta* (Fig. 5). Corresponding character loadings are given in Supplementary Tables S2 and S3. The distinction of Tyrrhenian trout towards *S. macrostigma* is illustrated with a biplot (Fig. 6) focusing on the major morphological trait of the Tyrrhenian trout, viz. the longer head (HLpp) and slightly shorter caudal peduncle. The two Spanish specimens are included in all analyses and graphs. For discussion related to the comparatively large head in Tyrrhenian trout, HLpp is also presented as box plots in comparison to an extended number of *Salmo* samples (Fig. 7).

Variation among Tyrrhenian trout samples

At first glance (Figs. 8A to 8G), the Tyrrhenian trout resembles Atlantic basin *S. trutta*, i.e. rather strong jaws, numerous red and black spots, black and white edges of fins, most prominent in CAM, CAR, CHJ and SPE. Black spots are sometimes irregularly distributed, more or less aggregated along the flanks of the body (SPE, NIN) in contrast to, e.g. CAM having its spots more evenly distributed (Fig. 8A). There are large variations in meristic characters between different populations and the range of variation sometimes exceeds that of the extensive comparative material (Tables 4 to 6). The NIN-sample and the two Spanish specimens were not markedly different in multivariate statistics in comparison to the six remaining samples.

Four specimens (1 POZ, 3 ESE) were different in the number of epurals in the caudal skeleton, having three instead of two. All *Salmo* except *S. salar* have two, sometimes fused (anomaly) to one. *Salmo salar* is polymorphic but two is more common (see below).

Distinction of Tyrrhenian trout samples towards North Atlantic basin S. trutta

The rather strong jaws and a colour pattern with prominent black and white leading edges on the fins are shared between several populations of Atlantic basin S. trutta and the Tyrrhenian trouts. Dark, more or less ocellated, spots on flanks of the body are also common in both.

However, some Tyrrhenian trout have their spots aggregated (Figs. 8F, 8G and p. 415 in Kottelat and Freyhof, 2007). The sample from Spain also possesses this uncommon pattern and was therefore especially highlighted in the comparative material. Sparsely or densely distributed, dark spots on caudal fin are also common in Tyrrhenian trout (Figs. 8B and 8G, CAM and SPE, respectively). Spots on caudal fins are rarely found in Atlantic basin S. trutta. Multivariate statistics (Fig. 5) indicate distinction but not complete separation of Tyrrhenian trout from Atlantic S. trutta due to differences in vertebral counts and head size.

Distinction of Tyrrhenian trout samples towards S. macrostigma

The extensive variation in meristic characters in Tyrrhenian trout as a whole (Tables 4 to 6) covers the range of variation in *S. macrostigma* and limits the analyses to morphometric data.

PCA (not shown) reveals that HLpp and caudal peduncle length are the two morphometric characters that distinguish them best (Fig. 6). The Tyrrhenian trout has longer head (HLpp) and slightly shorter caudal peduncle compared to *S. macrostigma* (Table 3).

4 Discussion

4.1. Genetic diversity: a strong differentiation pattern

According to results from previous (Tougard *et al.*, 2018; Berrebi *et al.*, 2019) and present studies, the Tyrrhenian trout is mainly characterized by an island specific mtDNA-radiation within the AD lineage, as well as, to a lesser degree, by other lineages (AT, ME and MA). The recently described NA lineage is also naturally present in Sicily. Thus, within a rather limited and nowadays isolated region in the south center of *Salmo* distribution, a comparatively high number of mtDNA lineages (four of the five recognizable major lineages) occur naturally. It is also striking that a majority of the haplotypes recovered in the present study were new (Table 2) despite more than two decades of CR sequencing in *Salmo*. The presence of the ME lineage in the NIN sample, also observed in Corsica by Tougard *et al.* (2018) and in other Tyrrhenian samples not included in the morphological analyses, is explained by ancient introgressions evidenced elsewhere using nuclear markers (Berrebi *et al.*, 2007; Berrebi, 2015). It shows that possible secondary contacts must have occurred, according to the post-glacial invasion of Corsica hypothesis (Gauthier and Berrebi, 2007). Moreover, the presence of MA lineage in some isolated Corsican rivers including CAR and the range of distribution of the NA lineage (Morocco, Algeria, Sicily: Tougard *et al.*, 2018;

Berrebi *et al.*, 2019) demonstrates the multiple unknown events of migrations, invasions and hybridizations which complicate the trout genetic pattern in the Tyrrhenian region. Finally, the presence of several northern AT haplotypes recorded in the Tyrrhenian trout (Tougard *et al.*, 2018; Berrebi *et al.*, 2019) is due to stocking with commercial AT hatchery strains.

Nuclear markers (microsatellites) have also shown that the Tyrrhenian trouts exhibit exceptionally differentiated genotypes, at a continental-like level, within the two small sampled islands, but especially in Corsica where numerous autochthonous isolated small populations still survive (Berrebi *et al.*, 2019). This strong differentiation among neighboring rivers is typical of dry Mediterranean mountainous regions, never frozen by glaciation and providing way for migration (Apostolidis *et al.*, 2008; Berrebi *et al.*, 2019).

4.2. Morphological diversity in light of genetic diversity

Regarding the strong morphological diversification between studied populations of Tyrrhenian trout, one explanation may involve random effects. Berrebi *et al.* (2019) showed very low levels of genetic variation within populations in Corsican streams based on microsatellites, suggesting small population sizes and repeated bottleneck events.

Hypothetically, the frequent (c. 10 %), occurrence of three epurals in Tyrrhenian trout compared to c. 0.1 % in comparative material might be a result of genetic drift accelerated by bottlenecks. Three epurals in the caudal skeleton are typical for, e.g. most Pacific trouts and salmons (*Oncorhynchus*), graylings (*Thymallus*) and whitefishes (*Coregonus*) (Norden, 1961; Stearley and Smith, 1993) and appear to be the ancestral state also retained as a polymorphism in *S. salar* with 12 out of 40 studied specimens having three.

Delling and Doadrio (2005) also described a situation with a seemingly plesiomorphic condition in rostrodermethmodid bone in the lake endemic *S. pallaryi* from

Lake Sidi Ali, Morocco, not recorded elsewhere in *Salmo*. The genetic characteristics of this extinct trout is unknown but it is likely that these kinds of reversals approaching morphological anomalies may occur under certain conditions involving random processes in temporarily small populations.

Comparing Tyrrhenian samples to other *Salmo* spp., it is tempting to search for a pattern connecting certain characters to certain mtDNA lineages. However, ancient introgression in certain populations without strong impacts on morphology seems rather to be the "rule" in many salmonids and other taxa (Martinez *et al.*, 2009; Gratton *et al.*, 2013; Lerceteau-Köhler *et al.*, 2013; Berrebi *et al.*, 2017). The CAR sample also possessing the MA mtDNA lineage shows no typical *S. marmoratus* characters, e.g. marbled color pattern, high vertebral counts or a hypethmoid bone embedded in the rostral cartilage. In contrast, more recent hybrids involving *S. marmoratus* show a variable but, overall, intermediate phenotype (Delling, *et al.*, 2000). Prominent black and white leading edges on fins in several Tyrrhenian populations are similar to Atlantic basin *S. trutta* and could tentatively be regarded as ancient traces of the AT lineage. This pattern is also present in some North African trout, e.g. *S. akairos* and *S. macrostigma* belonging to the NA lineage, close to the AT one (Tougard *et al.*, 2018). However, neither NA nor AT lineages have so far been reported from Corsica and Sardinia, except AT lineages of hatchery origin.

Despite the complex pattern of migrations, hybridizations and genetic radiation in the Tyrrhenian trout history, also giving rise to rather morphologically distinct populations in Corsica and Sardinia (Figs. 8A to 8G), they all share a comparatively large head (Fig. 6 and 7). This contradictory pattern of morphological homogeneity for certain characters opposed to strong differentiation in others take probably account of the genetic data in the search for possible explanations. Turning focus to the overall large head in Tyrrhenian trout, it is noticeable that this character varies extensively within and between different kinds of trouts

(Fig. 7). It should be noted that sample sizes vary considerably (Fig. 7) but several of them can be characterized as typically small-headed, e.g. *S. salar*, *S. obtusirostris* and *S. lourosensis*. Next after the Tyrrhenian trouts, the two North African lake trouts endemic from Morocco, *S. akairos* and *S. pallaryi*, together with *S. marmoratus* and *S. dentex* inhabiting Adriatic basin drainages, possess comparatively large heads. Thus, there is no obvious correlation between size of head and habitat and/or lifestyle, e.g. rapid streams vs. lakes, and it is fully possible that the large head is a result of a founder effect during ancient establishment on the islands. However, body proportions can be affected by, e.g. growth rate. Barlow (1961) refers to studies where it was shown that head length was smaller in faster growing rainbow trout, *Oncorhynchus mykiss*. Thus, the comparatively large head in Tyrrhenian trout can be a consequence of slow growth under harsh condition, or a consequence of earlier sexual maturity. However, Pankhurst and Montgomery (1994) showed, also for *O. mykiss* that retarded growth results in larger eyes. The Tyrrhenian trout possesses on the average slightly smaller eyes compared to Atlantic *S. trutta* (Table 3) and consequently retarded growth seems not to be a likely explanation for the large head.

The two Spanish specimens, referred to as *Salmo* sp. MNHN 1920 228-229, possess a color pattern with irregularly distributed spots, also found in some Tyrrhenian trouts, and are comparatively large headed (Fig. 6). They provide an example of what a hypothetical ancestor could have looked like and, if the interpretation of locality information (Ebro basin) is correct, it makes sense as the basin is dominated by AD haplotypes (Cortey *et al.*, 2004). Also, the haplotype ADcs13 found in Ebro is very close to the Tyrrhenian AD haplotypes (Fig. 4).

5 Conclusions

Data presented herein suggest that within the rather unresolved *Salmo* complex in the Mediterranean region, we may start to perceive a kind of large headed trout. However, more populations from the islands and surrounding mainland (France, Spain, and Italy) need to be studied to survey the distribution of this morphology. It would be a large step forward if this kind of trout could get an identity, i.e. a scientific name to balance a perhaps too broad or erroneous usage of names such as *S. trutta* and *S. macrostigma* in the Mediterranean region. This long-term work already began with several recent molecular papers (Sanz, 2018; Tougard *et al.*, 2018; Berrebi *et al.*, 2019) and the present study. The Tyrrhenian trout studied here are left without a taxonomic identity but it is clearly demonstrated, in line with molecular data (Tougard *et al.*, 2018), that they show no particular affinity to *S. macrostigma* once described from Algeria.

6 Acknowledgements

We thank Douglas Jones at the Institute of Freshwater Research, Drottningholm, for improving the English. This work was realized with the support of LabEx CeMEB, an ANR "Investissements d'avenir" program (ANR-10-LABX-04-01).

7 References

Apostolidis AP, Madeira M-J, Hansen MM, Machordom A. 2008. Genetic structure and demographic history of brown trout (*Salmo trutta*) populations from the southern Balkans. *Freshw Biol* 53: 1555-1566.

Apostolidis AP, Triantaphyllidis C, Kouvatsi A, Economidis PS. 1997. Mitochondrial DNA 416 417 sequence variation and phylogeography among Salmo trutta L. (Greek brown trout) populations. *Mol Ecol* 6: 531-542. 418 419 Aurelle D, Berrebi P. 2001. Genetic structure of brown trout (Salmo trutta, L.) populations from south-western France: data from mitochondrial control region variability. Mol 420 Ecol 10: 1551-1561. 421 Bandelt HJ, Forster P, Röhl A. 1999. Median-joining network for inferring intraspecific 422 phylogenies. Mol Biol Evol 16:37-48 423 Barlow, GW. 1961. Causes and significance of morphological variation in fishes. Syst Zool 10 424 (3): 105-117. 425 Bardakçi F, Degerli N, Ozdemir O, Basibuyuk HH. 2006. Phylogeography of the Turkish 426 brown trout Salmo trutta L.: mitochondrial DNA PCR-RFLP variation. J Fish Biol 68: 427 428 36-55. Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from 429 430 phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351-379. 431 Bernatchez L, Guyomard R, Bonhomme F. 1992. DNA sequence variation of the 432 mitochondrial control region among geographically and morphologically remote 433 European brown trout Salmo trutta populations. Mol Ecol 1: 161-173. 434 Berrebi P. 1995. Etude génétique des truites de Corse. Rapport final 1995: Université 435 Montpellier II. 36p. https://data.oreme.org/trout/home. 436 Berrebi P. 2015. Three brown trout Salmo trutta lineages in Corsica described through 437 allozyme variation. J Fish Biol 86: 60-73. 438 Berrebi P, Caputo Barrucchi V, Splendiani A, Muracciole S, Sabatini A, Palmas F, Tougard 439

440

C, Arculeo M, Marić S. 2019. Brown trout (Salmo trutta L.) high genetic diversity

around Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. 441 442 Hydrobiologia 826: 209-231. Berrebi P, Dubois S, Recorbet B, Muracciole S, Mattei J. 2007. Les progrès en génétique 443 obtenus lors du LIFE. Guide de gestion de la truite macrostigma. 52-60. 444 https://data.oreme.org/trout/home. 445 Berrebi P, Jesenšek D, Crivelli AJ. 2017. Natural and domestic introgressions in the marble 446 trout population of Soca River (Slovenia). *Hydrobiologia* 785: 277-291. 447 Berrebi P, Poteaux C, Fissier M, Cattaneo-Berrebi G. 2000a. Stocking impact and allozymic 448 diversity in brown trout from Mediterranean southern France. J Fish Biol 56(4): 949-449 960. 450 Berrebi P, Povz M, Jesenšek D, Crivelli AJ. 2000b. The genetic diversity of native, stocked 451 and hybrid populations of marble trout in the Socă river, Slovenia. Heredity 85: 277– 452 453 287. Boulenger G A. 1901. On the occurrence of Salmo macrostigma in Sardinia. Annals and 454 455 Magazine of Natural History (Ser. 7) 8: 14. Bookstein FL, Chernoff B, Elder RL, Humphries JM, Smith GR, Strauss RE 1985. 456 Morphometrics in evolutionary biology. Academy of Natural Sciences of Philadelphia, 457 458 Special Publication, 15. 277pp. Burton RS, Barreto FS. 2012. A disproportionate role for mtDNA in Dobzhansky-Muller 459 incompatibilities? Mol Ecol 21: 4942-4957. 460 Cortey M, García-Marín J-L. 2002. Evidence for phylogeographically informative sequence 461 variation in the mitochondrial control region of Atlantic brown trout. J Fish Biol 462 60:1058-1063 463

Cortey M, Pla C, García-Marín JL. 2004. Historical biogeography of Mediterannean Trout.

The role of allopatry and dispersal events. *Mol Phylogenet Evol* 33: 831-844.

464

- Cortey M, Vera M, Pla C, García-Marín J-L. 2009. Northern and Southern expansions of 466 Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol J Linn Soc 467 97: 904-917. 468 Delling B. 2002. Morphological distinction of marble trout, Salmo marmoratus, in 469 comparison to marbled Salmo trutta from River Otra, Norway. Cybium 26: 283-300. 470 Delling B. 2003. Species diversity and phylogeny of *Salmo* with emphasis on Southern trouts 471 (Teleostei, Salmonidae): Doctoral Dissertation, Swedish Museum of Natural History. 472 Delling B. 2010. Diversity of western and southern Balkan trouts, with the description of a 473 new species from the Louros River, Greece (Teleostei: Salmonidae). Ichthyol Explor 474 Freshw 21: 331-344. 475 Delling B, Crivelli AJ, Rubin J-F, Berrebi P 2000. Morphological variation in hybrids 476 between Salmo marmoratus and alien Salmo species in the Volarja stream, Soca River 477 478 basin, Slovenia. *J Fish Biol* 57: 1199-1212. Delling B, Doadrio I. 2005. Systematics of the trouts endemic to Moroccan lakes, with 479 480 description of a new species (Teleostei: Salmonidae). Ichthyol Explor Freshw 16: 49-64. 481 Doadrio I, Perea S, Yahyaoui A. 2015. Two new species of Atlantic trout (Actinopterygii, 482 Salmonidae) from Morocco. Graellsia 71: e031. 483 Duftner N, Weiss S, Medgyesy N, Sturmbauer C. 2003. Enhanced phylogeographic 484
- information about Austrian brown trout populations derived from complete mitochondrial control region sequences. *J Fish Biol* 62: 427-435.
- Duméril A. 1858. Note sur une truite d'Algérie (Salar macrostigma, A. Dum.). C R Acad Sci
- 488 *Paris* 47: 160–162

489	Estoup A, Largiader CR, Perrot E, Chourrout D. 1996. Rapid one-tube DNA extraction for
490	reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol
491	Biotechnol 5:295-298.
492	Ferguson A, Mason FM. 1981. Allozyme evidence for reproductively isolated sympatric
493	populations of brown trout Salmo trutta L. in Lough Melvin, Ireland. J Fish Biol 18:
494	629-642.
495	Froese R, Pauly D. 2019. FishBase, The Global Database of Fishes. http://www.fishbase.org.
496	García-Marín J-L, Utter FM, Pla C. 1999. Postglacial colonization of brown trout in Europe
497	based on distribution of allozyme variants. Heredity 82: 46-56.
498	Gauthier A, Berrebi P. 2007. La colonisation de l'île par différentes souches de truite. Guide
499	de gestion de la truite macrostigma. 4-10. https://data.oreme.org/trout/home.
500	Giuffra E, Bernatchez L, Guyomard R. 1994. Mitochondrial control region and protein coding
501	genes sequence variation among phenotypic forms of brown trout Salmo trutta from
502	northern Italy. Mol Ecol 3: 161-171.
503	Gratton P, Allegrucci G, Gandolfi A, Sbordoni V. 2013. Genetic differentiation and
504	hybridization in two naturally occurring sympatric trout Salmo spp. forms from a
505	small karstic lake. <i>J Fish Biol</i> 82: 637-657.
506	Guyomard R. 1989. Diversité génétique de la truite commune. Bull Fr Pêche Piscic 314: 118-
507	135.
508	Guyomard R, Krieg F. 1986. Mise en évidence d'un flux génique entre populations naturelles
509	de truite fario et souche de repeuplement dans deux rivières de Corse. Bull Fr Pêche
510	Piscic 303: 134-140.
511	Karakousis Y, Triantaphyllidis C. 1990. Genetic structure and differentiation among Greek
512	brown trout (Salmo trutta L.) populations. Heredity 64: 297-304.

513	Kottelat M, Freyhof J. 2007. Handbook of European freshwater fishes. Publications Kottelat,
514	Cornol, Switzerland.
515	Lascaux JM, Lagarrigue T, Mennessier JM, Muracciole S. 2010. Analyse de la variabilité de
516	la ponctuation et des caractères ornementaux des truites des cours d'eau corses: Etude
517	réalisée par ECOGEA dans le cadre du programme de gestion de la truite corse. 31p.
518	Leigh, JW, Bryant D. 2015. PopART: Full-feature software for haplotype network
519	construction. Meth Ecol Evol 6:1110–1116.
520	Lerceteau-Köhler E, Schliewen U, Kopun T, Weiss S. 2013. Genetic variation in brown trout
521	Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the
522	phylogeographic paradigm? BMC Evol Biol 13: 176.
523	Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
524	polymorphism data. Bioinformatics 25: 1451–1452.
525	Martinez P, Castro J, Pardo BG, Bouza C, Hermida M, Vilas R. 2009. High Ag-NOR-site
526	variation associated to a secondary contact in brown trout from the Iberian Peninsula.
527	Genetica 136: 419-427.
528	Meraner A, Baric S, Pelster B, Dalla Via J. 2007. Trout (Salmo trutta) mitochondrial DNA
529	polymorphism in the centre of the marble trout distribution area. Hydrobiologia 579:
530	337-349.
531	Norden CR. 1961. Comparative osteology of representative salmonid fishes with particular
532	reference to the grayling (Thymallus arcticus) and its phylogeny. J Fisheries Res
533	Board Can 18:679-971.
534	Olivari G, Brun G. 1988. Le nombre de caeca pyloriques dans les populations naturelles de
535	truites communes Salmo trutta, Linné en Corse. Bull Ecol 19: 2-3.
536	Pankhurst, NW Montgomery, JC. 1994. Uncoupling of visual and somatic growth on the
537	rainbow trout Oncorhynchus mykiss. Brain Behav Evol 44: 149-155.

- Pomini, FP. 1941. Ricerche sul Salmo macrostigma. Boll Pesca Idrobiol Pescicolt 16: 3–36.
- Pustovrh G, Sušnik Bajec S, Snoj A. 2011. Evolutionary relationship between marble trout of
- the northern and the southern Adriatic basin. *Mol Phylogenet Evol* 59: 761-766.
- Roule L. 1933. Le peuplement des cours d'eau de la Corse en poissons. Bull Fr Pêche Piscic
- 542 63: 61-62.
- Sabatini A, Cannas R, Follesa M C, Palmas F, Manunza A, Matta G, A. Pendugiu A, Serra P,
- Cau A. 2011. Genetic characterization and artificial reproduction attempt of endemic
- Sardinian trout Salmo trutta L., 1758 (Osteichthyes, Salmonidae): Experiences in
- 546 captivity. *Ital J Zool* 78: 20–26.
- Sabatini A, Podda C, Frau G, Cani M V, Musu A, Serra M, Palmas F. 2018. Restoration of
- native Mediterranean trout Salmo cettii Rafinesque, 1810 (Actinopterygii,
- Salmonidae) populations using an electric barrier as mitigation tool. Europ Zool J
- 550 85(1): 137-149
- Sanz N. 2018. Phylogeographic history of brown trout: a review. In: Lobón-Cerviá J and Sanz
- N, eds. Brown trout: biology, ecology and management: John Wiley & Sons Ltd. 17-
- 553 63.
- Snoj A, Glamuzina B, Razpet A, Zablocki J, Bogut I, Lerceteau-Köhler E, Pojskic N, Sušnik
- 555 S. 2010. Resolving taxonomic uncertainties using molecular systematics: Salmo
- *dentex* and the Balkan trout community. *Hydrobiologia* 651: 199-212.
- 557 Snoj A, Maric S, Sušnik Bajec S, Berrebi P, Janjani S, Schöffmann J. 2011. Phylogeographic
- structure and demographic patterns of brown trout in North-West Africa. Mol
- *Phylogenet Evol* 61: 203-211.
- 560 Snoj A, Maric S, Berrebi P, Crivelli AJ, Shumka S, Sušnik S. 2009. Genetic architecture of
- trout from Albania as revealed by mtDNA control region variation. *Genet Sel Evol* 41:
- 562 22.

- 563 Snoj A, Melkic E, Sušnik S, Muhamedagic S, Dovc P. 2002. DNA phylogeny supports
- revised classification of *Salmothymus obtusirostris*. *Biol J Linn Soc* 77: 399–411.
- 565 Splendiani A., Palmas F., Sabatini A., Caputo Barucchi V. 2019. The name of the trout:
- considerations on the taxonomic status of the Salmo trutta L., 1758 complex
- (Osteichthyes: Salmonidae) in Italy. *Europ Zool J* 86(1): 432-442.
- Stearley RF, Smith GR. 1993. Phylogeny of the pacific trouts and salmons, *Oncorhynchus*,
- and genera of the family Salmonidae. *Trans Am Fisher Soc* 122:1-33.
- 570 Suarez J, Bautista JM, Almodovár A, Machordom A. 2001. Evolution of the mitochondrial
- 571 control region in Palaearctic brown trout (Salmo trutta) populations: the
- biogeographical role of the Iberian Peninsula. *Heredity* 87: 198-206.
- 573 Sušnik S, Knizhin I, Snoj A, Weiss S. 2006. Genetic and morphological characterization of a
- Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to
- sympatric *Salmo trutta*. *J Fish Biol* 68: 2-23.
- 576 Sušnik S, Schöffmann J, Snoj A. 2004. Phylogenetic position of Salmo (Platysalmo)
- 577 platycephalus Behnke 1968 from south-central Turkey, evidenced by genetic data. J
- 578 Fish Biol 64: 947-960.
- 579 Sušnik S, Weiss S, Tomljanovic T, Delling B, Treer T, Snoj A. 2007. Reticulate evolution:
- ancient introgression of the Adriatic brown trout mtDNA in softmouth trout Salmo
- *obtusirostris* (Teleostei: Salmonidae). *Biol J Linn Soc* 90: 139-152.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: Molecular
- evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
- maximum parsimony methods. *Mol Biol Evol* 28: 2731–2739.
- Tougard C, Justy F, Guinand B, Douzery EJP, Berrebi P. 2018. Salmo macrostigma
- (Teleostei, Salmonidae): nothing more than a brown trout (S. trutta) lineage? J Fish
- 587 *Biol* 93: 302-310.

588	Turan, D, Dogan E, Kaya C, Kanyilmaz M. 2014a. Salmo kottelati, a new species of trout
589	from Alakır Stream, draining to the Mediterranean in southern Anatolia, Turkey
590	(Teleostei, Salmonidae). ZooKeys 462: 135–151.
591	Turan D, Kalaycı G, Bektaş Y, Kaya C, Bayçelebi E. 2020. A new species of trout from the
592	northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). J. Fish
593	Biol. online (https://doi.org/10.1111/jfb.14321).
594	Turan D, Kottelat M, Bektas Y. 2011. Salmo tigridis, a new species of trout from the Tigris
595	River, Turkey (Teleostei: Salmonidae). Zootaxa 2993: 23-33.
596	Turan D, Kottelat M, Engin S. 2009. Two new species of trouts, resident and migratory,
597	sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyol
598	Explor Freshw 20: 333-364.
599	Turan D, Kottelat M, Engin S. 2012. The trouts of the Mediterranean drainages of southern
600	Anatolia, Turkey, with description of three new species (Teleostei: Salmonidae).
601	Ichthyol Explor Freshw 23: 219-236.
602	Turan D, Kottelat M Engin S. 2014b. Two new species of trouts from the Euphrates drainage,
603	Turkey (Teleostei: Salmonidae). Ichthyol Explor Freshw 24: 275–287.
604	Turan D, Kottelat M, Kaya C. 2017. Salmo munzuricus, a new species of trout from the
605	Euphrates River drainage, Turkey (Teleostei: Salmonidae). Ichthyol Explor Freshw
606	28: 55-63.
607	Zaccara S, Trasforini S, Antognazza C M, Puzzi C, Robert Britton J, Crosa G. 2015.
608	Morphological and genetic characterization of Sardinian trout Salmo cettii Rafinesque,
609	1810 and their conservation implications. <i>Hydrobiologia</i> 760: 205–223.
610	

8. Figures captions

Fig. 1. Geographic position of the new sampled populations in Corsica and Sardinia.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

612

613

Fig. 2. Measurements taken on Salmo specimens; 1, upper jaw depth, as largest depth of the maxilla and supramaxilla; 2, snout length, from symphysis of premaxilla to osseous orbit margin; 3, orbital horizontal diameter, between osseous orbital margin; 4, head depth, just posterior to orbit; 5, orbital vertical diameter, between osseous orbital margin; 6, length of maxilla, from premaxilla end to posterior end of maxilla; 7, upper jaw length, from symphysis of premaxilla to posterior end of maxilla; 8, lower jaw length, from symphysis of dentary to retroarticular; 9, pectoral fin length, from base of first ray to tip of longest ray; 10, body depth, at level of origin of dorsal fin; 11, dorsal fin length, from base to tip of longest ray; 12, pelvic fin length, from base of first ray to tip of longest ray; 13, body depth, at level of origin of anal fin; 14, adipose fin length, from origin to tip; 15, anal fin length, from base of first ray to tip of longest ray; 16, caudal peduncle length, from end of anal fin to middle base of caudal fin; 17, least depth of caudal peduncle; 18, length of upper caudal fin lobe, from base to tip of longest ray; 19, length of middle caudal fin ray, from base to tip of shortest ray; 20, length of lower caudal fin lobe, from base to tip of longest ray; 21 standard length (SL), from upper jaw symphysis to middle base of caudal fin; 22, predorsal length from upper jaw symphysis to origin of dorsal fin; 23, head length, from upper jaw symphysis to posterior tip of operculum; 24, premaxilla to preoperculum length, from premaxilla end of maxilla to posterior margin of preoperculum (HLpp); 25, prepelvic length, from upper jaw symphysis to origin of pelvic fin; 26, preanal length, from upper jaw symphysis to origin of anal fin; 27, interorbital width, transverse at narrowest part of skull; 28, body width, transverse at widest part of body at level of dorsal fin origin, above abdominal cavity.

636

Fig. 3. Radiograph of Salmo sp. POZ, NRM62572, 197.3 mm SL; Pozzi di Marmanu Corsica 637 (same specimen as in Fig. 8E). Upper left; a thin membranous bone indicated with dashed 638 white line. Upper right; the uncommon condition with three (i-iii) epurals in the caudal 639 640 skeleton. 641 Fig. 4. Median-joining network of control region haplotypes of some trout samples (new 642 Tyrrhenian haplotypes and AT, AD, DA, MA, ME and NA haplotypes from GenBank). 643 Haplotypes are indicated by numbers as given in Table 2. Black circles are for nodes, and 644 hatch marks are for mutation steps. 645 646 Fig. 5. Morphometric PC II plotted against meristic PC I for Salmo from Sardinia, Corsica 647 and Spain in comparison to Atlantic basin S. trutta. 648 649 Fig. 6. Premaxilla to preoperculum length plotted against caudal peduncle length for Salmo 650 651 from Sardinia, Corsica and Spain in comparison to S. macrostigma. Linear regression lines 652 with 95% confidence bands are shown for each group separately. 653 Fig. 7. Box plot of premaxilla to preoperculum length as % of SL, totally 518 specimens 116-654 655 208 mm SL. Number of specimens is given for each sample separately. Samples in bold are detailed in Table 1. Additional samples given in capital letters (Delling, unpublished) refer to 656 657 rivers or streams in the given regions (Table S1). Ezenam is a lake in Daghestan and *labrax* represents trout from Black Sea basin with an anadromous silvery and slender appearance. 658 Turkey and Mediterranean are samples scattered in the regions. Boxes represent median value 659

+/- 25% of the observations, and whiskers the inner fences. Asterisks are outside or far

660

661

outside values.

663	Fig. 8. External aspect of seven of the trouts, Salmo sp. analyzed in the present study. Picture
664	A-F taken after fixation in formalin prior to transfer to ethanol. A. CAM, NRM 61782, 183.7
665	mm SL; Camboni Sardinia. B. CAR, NRM 62571, 167.6 mm SL; Carnevale Corsica. C. CHJ
666	NRM62573, 136.6 mm SL; Chjuvone Corsica. D. ESE, NRM 61813, 152.0 mm SL; Val
667	d'Ese Corsica. E. POZ, NRM62572, 197.3 mm SL; Pozzi di Marmanu Corsica. F. SPE,
668	NRM61812, 148.1 mm SL Speloncellu Corsica. G. NIN, Lake Ninu Corsica © S. Muracciole

RESEARCH PAPER

1

2

3

4

16

17

18

Morphologic and genetic characterisation of Corsican and

Sardinian trout with comments on Salmo taxonomy

5 Bo Delling ¹, Andrea Sabatini ², Stephane Muracciole ³, 6 Christelle Tougard ⁴ and Patrick Berrebi ^{4,5,*} 7 8 ¹ Department of Zoology, Swedish Museum of Natural History, 10405 Stockholm, Sweden. 9 ² Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via Fiorelli 1, 10 11 Cagliari, Italy. ³ Office National des Forêts, Pont de l'Orta, 20250 Corte, France. 12 ⁴ ISEM, Université de Montpellier, CNRS, IRD, EPHE, 34095 Montpellier cedex, France. 13 ⁵ Present address: Genome-R&D, 697 avenue de Lunel, 34400 Saint-Just, France. 14 * Corresponding author: Patrick.berrebi@laposte.net 15

Short title: Morphology and genetics of Tyrrhenian trout

Abstract - Both morphological and molecular data are presented and discussed for 19 20 indigenous Salmo sp. from Corsica and Sardinia, here called Tyrrhenian trout. For comparison, morphological data obtained from museum specimens, including the Algerian S. 21 22 macrostigma, are discussed in the light of recent and new molecular findings. In total, 29 measurements and 20 meristic characters were taken from each specimen. Out of the meristic 23 characters, 12 were obtained by means of X-ray. One important morphometric character in the 24 25 present study is the size of the head measured from premaxilla to posterior margin of preoperculum. This character was particularly stable in all Tyrrhenian trout, showing 26 relatively large head compared to Atlantic trout and to S. macrostigma. On the contrary, other 27 28 characters like body punctuations, black and white edges of fins, body depth or number of epurals in the caudal skeleton are quite polymorphic. In certain meristic characters, range of 29 30 variation of Tyrrhenian trout even exceeds that of the extensive comparative material. Each 31 trout has been genetically characterized. New haplotypes from Tyrrhenian trout were discovered, belonging to three mitochondrial lineages viz. Adriatic, marble and 32 Mediterranean, however, Adriatic haplotypes are dominant. Mixing morphological and 33 genetic data, observed morphology lacks any obvious correlation to mitochondrial lineages 34 and it is concluded that Tyrrhenian trout show no particular affinity to S. macrostigma from 35 36 Algeria.

37

Keywords: brown trout / Tyrrhenian Sea / morphology / meristics / mtDNA

39

40

- Caractérisation morphologique et génétique de la truite corse et sarde avec
- 41 commentaires sur la taxonomie du genre Salmo.
- 42 Bo Delling, Andrea Sabatini, Stéphane Muracciole, Christelle Tougard, Patrick Berrebi.

Résumé - La présente étude détaille et discute les données morphologiques et moléculaires des truites indigènes, Salmo sp. de Corse et de Sardaigne, ici appelée truites tyrrhéniennes. À titre de comparaison, les données morphologiques obtenues à partir de spécimens de musée, y compris S. macrostigma d'Algérie, sont discutées à la lumière des découvertes moléculaires récentes et nouvelles. Au total, 29 mesures et 20 caractères méristiques ont été considérés pour chaque spécimen. Parmi ces caractères méristiques, 12 ont été obtenus au moyen de rayons X. Un caractère morphométrique important dans la présente étude est la taille de la tête mesurée du prémaxillaire à la marge postérieure du préopercule. Ce caractère est particulièrement stable chez toutes les truites tyrrhéniennes, qui ont montré une tête relativement grande par rapport celle de la truite de l'Atlantique et de S. macrostigma. Au contraire, d'autres caractères comme les ponctuations du corps, les franges noires et blanches des nageoires, la profondeur du corps ou le nombre d'hypuraux dans le squelette caudal sont assez polymorphes. Pour certains caractères méristiques, la gamme de variation de la truite tyrrhénienne dépasse celle de tous les taxons comparés. Chaque truite a été génétiquement caractérisée et de nouveaux haplotypes de truite tyrrhénienne ont été découverts, appartenant à trois lignées mitochondriales à savoir les lignées adriatique, marbrée et méditerranéenne, les haplotypes adriatiques étant dominants. En combinant les données morphologiques et génétiques, il est montré que la morphologie n'a aucune corrélation évidente avec les lignées mitochondriales. D'autre part, la truite tyrrhénienne n'a aucune affinité particulière avec S. macrostigma d'Algérie.

63

64

65

62

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Mots-clés: truite commune / mer Tyrrhénienne / morphologie / caractères méristique /

ADNmt

1 Introduction

The taxonomic status of Eurasian trouts, i.e., all Salmo spp. except Atlantic salmon, Salmo
salar, is revised continuously. Among molecular oriented ichthyologists, this part of Salmo
diversity is most often referred to as brown trout Salmo trutta or "brown trout complex",
whereas taxonomic oriented scientists, mainly focusing on morphology, continue to describe
new species and recognizes at least 50 distinct taxa (Delling and Doadrio, 2005; Sušnik et al.
2006, 2007; Kottelat and Freyhof, 2007; Delling, 2010; Turan et al., 2009, 2011, 2012, 2014a
2014b, 2017, 2020; Doadrio et al., 2015; Froese and Pauly, 2019).
The extensive molecular studies of the genus started mainly with allozymes (Ferguson
and Mason, 1981; Karakousis and Triantaphyllidis, 1990; García-Marín et al., 1999; Berrebi
et al., 2000a; Berrebi, 2015), later on shifting focus towards DNA sequencing mainly of
mitochondrial origin (Giuffra et al., 1994; Apostolidis et al., 1997; Aurelle and Berrebi, 2001
Snoj et al., 2011). These studies led to numerous publications describing genetic variation in
the genus. One of the most important findings within the taxonomic context is probably the
proposed five main mitochondrial DNA (mtDNA) lineages within the brown trout complex,
Atlantic (AT), Mediterranean (ME), Adriatic (AD), marble (MA) and Danubian (DA)
(Bernatchez et al., 1992; Bernatchez, 2001). These lineages are augmented by geographically
more limited lineages such as the Duero (DU) lineage (Suarez et al., 2001) and the Dades
trout (Snoj et al., 2011), both close to AT, and the Tigris (TI) lineage (Bardakçi et al., 2006)
close to DA. A recent analysis of a larger portion of the mtDNA allowed for a division of the
AT lineage into two sister clades: a North African lineage (NA, in Morocco, Algeria and
Sicily) and a well-known European AT lineage (Tougard et al., 2018).
In several cases, morphological and molecular data are correlated, strengthening
hypotheses on taxa delimitation. In several cases, morphological and molecular data are
correlated, strengthening hypotheses on taxa delimitation (Sanz, 2018). However, they

sometimes disagree: for example, *Salmo marmoratus*, considered as very distinct in morphology (Delling, 2002), is also characterized by the MA mtDNA and the LDH-C1*(120) allozyme allele. However, MA haplotypes are also found in low frequencies outside the taxon (Bernatchez *et al.*, 1992; Snoj *et al.*, 2009; Pustovrh *et al.*, 2011; Tougard *et al.*, 2018) and the 120-allele is rare in Trebuscica River (Slovenia) otherwise pure and isolated *S. marmoratus* population (Berrebi *et al.*, 2000b). Another example of marker disagreement is illustrated by *S. obtusirostris*. This species, while fixed for a unique and specific mtDNA haplotype in the Neretva River (Snoj *et al.*, 2002), is fixed for the AD mtDNA lineage in Jadro River population. Other frequent kinds of contradictions have been observed, especially in the Balkans with numerous taxa sharing similar AD haplotypes (Sušnik *et al.*, 2004, 2006; Snoj *et al.*, 2010). These kinds of discrepancies may be explained by ancient introgression (Sušnik *et al.*, 2007). Another explanation is the Dobzhansky–Muller model which accounts for cytonuclear incompatibilities (Burton and Barreto, 2012).

Despite the high number of more or less distinguishable taxa within the genus *Salmo*, large portions of its populations are not easily referred with accuracy to any existing taxon (Splendiani *et al.*, 2019). This is partly due to lack of morphological data, lack of studies including both kinds of data and the fact that several tentatively valid taxa are poorly described lacking clear diagnoses (Kottelat and Freyhof, 2007). Within the native distribution of *Salmo*, a large part of its diversity is found in basins of the Tyrrhenian islands, Corsica, Sardinia and Sicily (Berrebi *et al.*, 2019), and especially in Corsica where numerous differentiated indigenous populations still survive. Trout from Corsica and Sardinia, together with several other Mediterranean trouts, are often referred to as *Salmo macrostigma* (Duméril 1858) – a species originally described from Algeria. The name *macrostigma* refers to the parr marks retained in adults (Duméril, 1858). This is a common feature in many *Salmo* spp. and may explain the broadened usage of this name, as applied to Corsican trout by Roule (1933)

and to Sardinian trout at first by Boulenger (1901) also confirmed by Pomini (1941). Since that, Corsican trout have been characterized both for allozymes (Guyomard and Krieg, 1986; Berrebi, 1995), mtDNA (Bernatchez *et al.*, 1992; Berrebi *et al.*, 2019) and microsatellites (Berrebi *et al.*, 2007, 2019), showing that they mainly belong to the AD lineage and possess the highly diagnostic allozyme allele LDH-4*(040). Morphological data on Corsican trout is so far restricted to pyloric caeca counts (Olivari and Brun, 1988; Guyomard, 1989) and the description of variation in color pattern among populations (Lascaux *et al.*, 2010). In the same way, the **non-**introgressed Sardinian populations were characterized by only the AD lineage and allele LDH-C1 100/100 (Sabatini *et al.* 2018). Some authors describe, for the Sardinian populations, different haplotypes (Ad1, Ad2, Tyrrh1) with highly polymorphic characteristics accompanied by different phenotypes (Sabatini *et al.*, 2011; Zaccara *et al.*, 2015)

Regarding distinctiveness of *S. macrostigma sensu stricto*, Tougard *et al.* (2018) analyzed complete mtDNA sequences from one syntype and one topotypic specimen and concluded they belonged to the NA lineage. In the same study, samples from Corsica and Sardinia were associated to AD, ME, MA or AT lineages.

The present study is deliberately "cross-disciplinary", the main focus being to describe and discuss the *Salmo* diversity irrespective of different views on classification and taxonomy. Consequently, the use of different names, e.g. *S. marmoratus* or *S. lourosensis* only serve the purpose of pointing out a certain subset of trouts. Both molecular and morphological data are presented and discussed for indigenous *Salmo* sp. from Corsica and Sardinia, here called Tyrrhenian trout. Regarding comparison to Algerian *S. macrostigma*, morphological data obtained from museum specimens are also included and discussed in the light of recent molecular findings (Tougard *et al.*, 2018).

2 Material and methods

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

143

2.1. Sampling

Contemporary specimens (N=38) from one Sardinian and six Corsican localities were captured in the wild by electrofishing, anesthetized with clove essence to death, sampled for tissue (fin clip in 95% ethanol), fixed in formalin 5%, and later transferred to ethanol prior to morphological analyses. The geographic positions of sampling stations are given in Fig. 1. Tyrrhenian Salmo is referred to with an abbreviation of the stream, e.g. CAM for Camboni River in text, certain graphs and tables (Table 1). As detailed in Fig. 1, samples for genetic and morphological analyses are not exactly the same. Comparative material includes different sets of Salmo spp. depending on analyses and the question of interest: distinction towards i) Salmo macrostigma from Algeria, ii) Atlantic basin Salmo trutta, iii) Salmo sp. from Spain. Comparative material for morphometry is restricted to specimens within standard length (SL) - range (116-208 mm), i.e., within the SL-range of Tyrrhenian trout samples. A description of contemporary and comparative material is given in Table 1, obtained from several museum collections: CMK, Collection of Maurice Kottelat, Cornol, Switzerland; BMNH, British Museum of Natural History, London, UK; MHNG, Museum d'Histoire Naturelle, Geneva, Switzerland; MNCN, Museo Nacional de Ciencias Naturales, Madrid, Spain; MNHN, Museum National d'Histoire Naturelle, Paris, France; NMW, Naturhistorisches Museum, Wien, Austria; NRM, Swedish Museum of Natural History, Stockholm, Sweden; ZISP, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia; ZMH, Zoologisches Museum für Hamburg, Germany. The sample from Spain, MNHN 1920 228-229, consists of two specimens only but is included in the study because their morphology resembles Tyrrhenian trout (see below).

Comparative material in addition to that in Table 1 (Delling, unpublished) is included for a broader comparison of head length within *Salmo*. A complete list of studied material is provided as supplementary information (Table S1).

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

167

168

169

2.2. Molecular methods

DNA was extracted from fin clips using the Chelex/proteinase K protocol described by Estoup et al. (1996). Three to six individuals have been considered by locality in the Tyrrhenian region, being or not the exact individuals included in morphological analyses. Partial mtDNA control region (CR) was amplified by PCR using the PST and FST primers (Cortey and García-Marín, 2002). Each 50 µl reaction included 0.4 µM of each primer (Eurofins MWG Operon), 0.2 mM of dNTP (2 mM each), 2 mM of MgCl₂ (25 mM), 10 μl of 5x PCR buffer, 1 U of Tag polymerase (GoTag® Promega) and about 50 ng of genomic DNA. The conditions for PCR were an initial denaturation (95°C, 5 min) followed by 30 cycles of strand denaturation (94°C, 1 min), primer annealing (52°C, 1 min) and DNA extension (72°C, 1 min), then followed by a final extension (72°C, 5 min). All PCR amplifications were performed in Eppendorf Mastercycler thermocyclers. The amplified DNA fragments were run on a 0.8% agarose gel to verify the efficiency of amplification. The PCR products were purified and sequenced in both directions to confirm polymorphic sites by the Macrogen Company, Seoul, South Korea (https://dna.macrogen.com/) and the platform GenSeq of the Institut des Sciences de l'Evolution de Montpellier (Montpellier, France). The sequences of CR were aligned together with reference haplotypes retrieved from GenBank, using MEGA v5.05 (Tamura et al., 2011). Haplotypes for the new sequences were generated with DnaSP v5.10.1b (Librado and Rozas, 2009). Haplotype relationships and distribution among populations were evaluated with a median-joining network (Bandelt et al., 1999) constructed with PopART (Leigh and Bryant, 2015). In order to assign a phylogenetic

position to the seven contemporary samples (CAM, SPE, POZ, ESE, CAR, CHA and NIN), the network included published GenBank sequences of the lineages AT, ME, AD, MA, DA and NA, all belonging to the brown trout complex.

2.3. Morphology methods

Methodology follows Delling *et al.* (2000) and **Delling** (2002). The length of the uppermost gill raker on the lower limb of the first gill arch (right side) was measured *in situ* using a pair of dividers. All other measurements were taken on the left side of the specimen with a digital calliper and rounded to the nearest 0.1 mm (Fig. 2). One important morphometric character in the present study is head length (HL) measured from tip of the snout to posterior margin of the operculum. However, the measurement that quantifies the size of the head more accurately is the distance from the premaxilla to the posterior margin of the preoperculum (No. 24 in Fig. 2). Below, the abbreviation HLpp is applied for that measurement.

The number of i) pored scales along the lateral line to the end of the caudal peduncle (left side), ii) scales in an oblique row from the base of the adipose fin backwards down to the lateral line including lateral line scales (left side), iii) gill rakers, including rudimentary elements, on lower and upper limbs of the first gill arch separately (right side), and iv) branchiostegal rays on both sides, were counted under a binocular dissection microscope.

The number of abdominal vertebrae, caudal vertebrae, pterygiophores supporting anal and dorsal fins, caudal fin upper and lower procurrent rays, and interneurals were taken from radiographs (**Fig. 3**). Rudimentary vertebrae in the caudal skeleton in addition to the three upturned vertebrae were not included in the counts. In cases of fused centra, the number of neural arches or spines was counted. The last abdominal vertebra is herein defined as the last one having ribs (sometimes rudimentary or missing) and/or having the haemal spine much shorter than in the consecutive first caudal vertebra. The positions of the dorsal and anal fins

were estimated in relation to the vertebral column. The most strongly developed anterior pterygiophore was used as a marker of dorsal and anal fin position, respectively. Dorsal and anal fin pterygiophores do not articulate with neural and haemal spines, respectively, and in uncertain cases the lower value was chosen. The dorsal and anal fin positions are treated as meristic characters in statistical analyses. A membranous triangular bone sometimes present, located above the neural spine of the first vertebrae (**Fig. 3**), was not included in interneural counts.

Principal component analyses (PCA) on log transformed measurements and square rooted counts were used as an ordination method (Bookstein *et al.*, 1985). Some informative meristic characters are summarised in frequency tables. The inclusion of 'soft' measurements, e.g. body width and body depth in analyses, depends on the state of preservation of specimens. PCAs were **performed** using SYSTAT 13. Colour pattern descriptions are most often restricted to contrasting markings: size, density and distribution of spots; presence of black and white leading edges of dorsal and anal fins; any other markings such as dark bars were also considered. In preserved material, light spots are interpreted as red spots based on personal observations: after transfer to ethanol, red spots disappear transformed into pale spots. Spots described as ocellated refer to spots enclosed by a light ring.

3 Results

3.1. Molecular results

Among the 38 contemporary specimens from Corsica and Sardinia, 34 CR sequences were obtained, corresponding to eight new haplotypes (Table 2). The alignment of CR sequences are 998 nucleotides long with 47 phylogenetically informative sites. These haplotypes are

genetically very close (distant from each other by up to two mutations, **Fig. 4**) to 37 published GenBank haplotype sequences used as reference and illustrating the diversity on all the range of the *S. trutta* complex. A comprehensive network of these new and published haplotypes is presented **Fig. 4**. The sequences of the contemporary analyzed populations were all clustered into ME, AD and MA lineages, according to the reference sequences. AT, DA and NA lineages were represented only by GenBank sequences.

New haplotypes from Tyrrhenian trout were called ADcr2 to 6, MAcr1 and 2, and MEcr1 (Table 2). Three populations are characterized by one private haplotype each: NIN, (Corsica) with MEcr1; CAM (Sardinia) with ADcr2 and POZ (Corsica) with ADcr4. CAR, (Corsica) is characterized by a majority of MA private haplotypes (MAcr1 and 2) and one AD haplotype (ADcr5), while CHA (Corsica) is characterized by two AD haplotypes (ADcr3 and ADcr6). SPE and ESE shared ADcr3 with CHA.

3.2. Morphology

Morphometric data are given in Table 3, and meristic data are summarized in Tables 4 to 6 including extensive comparative material (**Tables 1 and S1**). Selected results from ordination by means of PCA are given for analyses focusing on variation between Tyrrhenian trout as a whole towards Atlantic basin *S. trutta* (**Fig. 5**). Corresponding character loadings are given in Supplementary **Tables S2 and S3.** The distinction of Tyrrhenian trout towards *S. macrostigma* is illustrated with a biplot (**Fig. 6**) focusing on the major morphological trait of the Tyrrhenian trout, viz. the longer head (HLpp) and slightly shorter caudal peduncle. The two Spanish specimens are included in all analyses and graphs. For discussion related to the comparatively large head in Tyrrhenian trout, HLpp is also presented as box plots in comparison to an extended number of *Salmo* samples (**Fig. 7**).

Variation among Tyrrhenian trout samples

At first glance (**Figs. 8A to 8G**), the Tyrrhenian trout resembles Atlantic basin *S. trutta*, i.e. rather strong jaws, numerous red and black spots, black and white edges of fins, most prominent in CAM, CAR, CHJ and SPE. Black spots are sometimes irregularly distributed, more or less aggregated along the flanks of the body (SPE, NIN) in contrast to, e.g. CAM having its spots more evenly distributed (**Fig. 8A**). There are large variations in meristic characters between different populations and the range of variation sometimes exceeds that of the extensive comparative material (Tables 4 to 6). The NIN-sample and the two Spanish specimens were not markedly different in multivariate statistics in comparison to the six remaining samples.

Four specimens (1 POZ, 3 ESE) were different in the number of epurals in the caudal skeleton, having three instead of two. All *Salmo* except *S. salar* have two, sometimes fused (anomaly) to one. *Salmo salar* is polymorphic but two is more common (**see below**).

Distinction of Tyrrhenian trout samples towards North Atlantic basin S. trutta

The rather strong jaws and a colour pattern with prominent black and white leading edges on the fins are shared between several populations of Atlantic basin S. trutta and the Tyrrhenian trouts. Dark, more or less ocellated, spots on flanks of the body are also common in both.

However, some Tyrrhenian trout have their spots aggregated (Figs. 8F, 8G and p. 415 in Kottelat and Freyhof, 2007). The sample from Spain also possesses this uncommon pattern and was therefore especially highlighted in the comparative material. Sparsely or densely distributed, dark spots on caudal fin are also common in Tyrrhenian trout (Figs. 8B and 8G, CAM and SPE, respectively). Spots on caudal fins are rarely found in Atlantic basin S. trutta. Multivariate statistics (Fig. 5) indicate distinction but not complete separation of Tyrrhenian trout from Atlantic S. trutta due to differences in vertebral counts and head size.

Distinction of Tyrrhenian trout samples towards S. macrostigma

The extensive variation in meristic characters in Tyrrhenian trout as a whole (Tables 4 to 6) covers the range of variation in *S. macrostigma* and limits the analyses to morphometric data.

PCA (not shown) reveals that HLpp and caudal peduncle length are the two morphometric characters that distinguish them best (**Fig. 6**). The Tyrrhenian trout has longer head (HLpp)

and slightly shorter caudal peduncle compared to S. macrostigma (Table 3).

4 Discussion

4.1. Genetic diversity: a strong differentiation pattern

According to results from previous (Tougard *et al.*, 2018; Berrebi *et al.*, 2019) and present studies, the Tyrrhenian trout is mainly characterized by an island specific mtDNA-radiation within the AD lineage, as well as, to a lesser degree, by other lineages (AT, ME and MA). The recently described NA lineage is also naturally present in Sicily. Thus, within a rather limited and nowadays isolated region in the south center of *Salmo* distribution, a comparatively high number of mtDNA lineages (four of the five recognizable major lineages) occur naturally. It is also striking that a majority of the haplotypes recovered in the present study were new (Table 2) despite more than two decades of CR sequencing in *Salmo*. The presence of the ME lineage in the NIN sample, also observed in Corsica by Tougard *et al.* (2018) and in other Tyrrhenian samples not included in the morphological analyses, is explained by ancient introgressions evidenced elsewhere using nuclear markers (Berrebi *et al.*, 2007; Berrebi, 2015). It shows that possible secondary contacts must have occurred, according to the post-glacial invasion of Corsica hypothesis (Gauthier and Berrebi, 2007).

Moreover, the presence of MA lineage in some isolated Corsican rivers including CAR and

the range of distribution of the NA lineage (Morocco, Algeria, Sicily: Tougard *et al.*, 2018; Berrebi *et al.*, 2019) demonstrates the multiple unknown events of migrations, invasions and hybridizations which complicate the trout genetic pattern in the Tyrrhenian region. Finally, the presence of several northern AT haplotypes recorded in the Tyrrhenian trout (Tougard *et al.*, 2018; Berrebi *et al.*, 2019) is due to stocking with commercial AT **hatchery** strains.

Nuclear markers (microsatellites) have also shown that the Tyrrhenian trouts exhibit exceptionally differentiated genotypes, at a continental-like level, within the two small sampled islands, but especially in Corsica where numerous autochthonous isolated small populations still survive (Berrebi *et al.*, 2019). This strong differentiation among neighboring rivers is typical of dry Mediterranean mountainous regions, **never frozen by glaciation and providing way for migration** (Apostolidis *et al.*, 2008; Berrebi *et al.*, 2019).

4.2. Morphological diversity in light of genetic diversity

Regarding the strong morphological diversification between studied populations of Tyrrhenian trout, one explanation may involve random effects. Berrebi *et al.* (2019) **showed** very low levels of genetic variation within populations in Corsican streams based on microsatellites, suggesting small population sizes and repeated bottleneck events.

Hypothetically, the frequent (c. 10 %), occurrence of three epurals in Tyrrhenian trout compared to c. 0.1 % in comparative material might be a result of genetic drift accelerated by bottlenecks. Three epurals in the caudal skeleton are typical for, e.g. most Pacific trouts and salmons (*Oncorhynchus*), graylings (*Thymallus*) and whitefishes (*Coregonus*) (Norden, 1961; Stearley and Smith, 1993) and appear to be the ancestral state also retained as a polymorphism in *S. salar* with 12 out of 40 studied specimens having three.

Delling and Doadrio (2005) also described a situation with a seemingly plesiomorphic condition in rostrodermethmodid bone in the lake endemic *S. pallaryi* from Lake Sidi Ali, Morocco, not recorded elsewhere in *Salmo*. The genetic characteristics of this extinct trout is unknown but it is likely that these kinds of reversals approaching morphological anomalies may occur under certain conditions involving random processes in temporarily small populations.

Comparing Tyrrhenian samples to other *Salmo* spp., it is tempting to search for a pattern connecting certain characters to certain mtDNA lineages. However, ancient introgression in certain populations without strong impacts on morphology seems rather to be the "rule" in many salmonids and other taxa (Martinez *et al.*, 2009; Gratton *et al.*, 2013; Lerceteau-Köhler *et al.*, 2013; Berrebi *et al.*, 2017). The CAR sample also possessing the MA mtDNA lineage shows no typical *S. marmoratus* characters, e.g. marbled color pattern, high vertebral counts or a hypethmoid bone embedded in the rostral cartilage. In contrast, more recent hybrids involving *S. marmoratus* show a variable but, overall, intermediate phenotype (Delling, *et al.*, 2000). Prominent black and white leading edges on fins in several Tyrrhenian populations are similar to Atlantic basin *S. trutta* and could tentatively be regarded as ancient traces of the AT lineage. This pattern is also present in some North African trout, e.g. *S. akairos* and *S. macrostigma* belonging to the NA lineage, close to the AT one (Tougard *et al.*, 2018). However, neither NA nor AT lineages have so far been reported from Corsica and Sardinia, except AT lineages of hatchery origin.

Despite the complex pattern of migrations, hybridizations and genetic radiation in the Tyrrhenian trout history, also giving rise to rather morphologically distinct populations in Corsica and Sardinia (**Figs. 8A to 8G**), they all share a comparatively large head (**Fig. 6 and 7**). This contradictory pattern of morphological homogeneity for certain characters opposed to strong differentiation in others take probably account of the genetic data in the search for

possible explanations. Turning focus to the overall large head in Tyrrhenian trout, it is noticeable that this character varies extensively within and between different kinds of trouts (Fig. 7). It should be noted that sample sizes vary considerably (Fig. 7) but several of them can be characterized as typically small-headed, e.g. S. salar, S. obtusirostris and S. lourosensis. Next after the Tyrrhenian trouts, the two North African lake trouts endemic from Morocco, S. akairos and S. pallaryi, together with S. marmoratus and S. dentex inhabiting Adriatic basin drainages, possess comparatively large heads. Thus, there is no obvious correlation between size of head and habitat and/or lifestyle, e.g. rapid streams vs. lakes, and it is fully possible that the large head is a result of a founder effect during ancient establishment on the islands. However, body proportions can be affected by, e.g. growth rate. Barlow (1961) refers to studies where it was shown that head length was smaller in faster growing rainbow trout, *Oncorhynchus mykiss*. Thus, the comparatively large head in Tyrrhenian trout can be a consequence of slow growth under harsh condition, or a consequence of earlier sexual maturity. However, Pankhurst and Montgomery (1994) showed, also for O. mykiss that retarded growth results in larger eyes. The Tyrrhenian trout possesses on the average slightly smaller eyes compared to Atlantic S. trutta (Table 3) and consequently retarded growth seems not to be a likely explanation for the large head. The two Spanish specimens, referred to as Salmo sp. MNHN 1920 228-229, possess

The two Spanish specimens, referred to as *Salmo* sp. MNHN 1920 228-229, possess a color pattern with irregularly distributed spots, also found in some Tyrrhenian trouts, and are comparatively large headed (**Fig. 6**). They provide an example of what a hypothetical ancestor could have looked like and, if the interpretation of locality information (Ebro basin) is correct, it makes sense as the basin is dominated by AD haplotypes (Cortey *et al.*, 2004). Also, the haplotype ADcs13 found in Ebro is very close to the Tyrrhenian AD haplotypes (**Fig. 4**).

390

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

า	\sim	
	ч	

5 Conclusions

Data presented herein suggest that within the rather unresolved *Salmo* complex in the Mediterranean region, we may start to perceive a kind of large headed trout. However, more populations from the islands and surrounding mainland (France, Spain, and Italy) need to be studied to survey the distribution of this morphology. It would be a large step forward if this kind of trout could get an identity, i.e. a scientific name to balance a perhaps too broad or erroneous usage of names such as *S. trutta* and *S. macrostigma* in the Mediterranean region. This long-term work already began with several recent molecular papers (Sanz, 2018; Tougard *et al.*, 2018; Berrebi *et al.*, 2019) and the present study. The Tyrrhenian trout studied here are left without a taxonomic identity but it is clearly demonstrated, in line with molecular data (Tougard *et al.*, 2018), that they show no particular affinity to *S. macrostigma* once described from Algeria.

Acknowledgements

We thank Douglas Jones at the Institute of Freshwater Research, Drottningholm, for improving the English. This work was realized with the support of LabEx CeMEB, an ANR "Investissements d'avenir" program (ANR-10-LABX-04-01).

7 References

413	Apostolidis AP, Madeira M-J, Hansen MM, Machordom A. 2008. Genetic structure and
414	demographic history of brown trout (Salmo trutta) populations from the southern
415	Balkans. Freshw Biol 53: 1555-1566.
416	Apostolidis AP, Triantaphyllidis C, Kouvatsi A, Economidis PS. 1997. Mitochondrial DNA
417	sequence variation and phylogeography among Salmo trutta L. (Greek brown trout)
418	populations. Mol Ecol 6: 531-542.
419	Aurelle D, Berrebi P. 2001. Genetic structure of brown trout (Salmo trutta, L.) populations
420	from south-western France: data from mitochondrial control region variability. Mol
421	Ecol 10: 1551-1561.
422	Bandelt HJ, Forster P, Röhl A. 1999. Median-joining network for inferring intraspecific
423	phylogenies. Mol Biol Evol 16:37-48
424	Barlow, GW. 1961. Causes and significance of morphological variation in fishes. Syst Zool 10
425	(3): 105-117.
426	Bardakçi F, Degerli N, Ozdemir O, Basibuyuk HH. 2006. Phylogeography of the Turkish
427	brown trout Salmo trutta L.: mitochondrial DNA PCR-RFLP variation. J Fish Biol 68:
428	36-55.
429	Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from
430	phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA
431	variation. Evolution 55: 351-379.
432	Bernatchez L, Guyomard R, Bonhomme F. 1992. DNA sequence variation of the
433	mitochondrial control region among geographically and morphologically remote
434	European brown trout Salmo trutta populations. Mol Ecol 1: 161-173.
435	Berrebi P. 1995. Etude génétique des truites de Corse. Rapport final 1995: Université
436	Montpellier II. 36p. https://data.oreme.org/trout/home.

- 437 Berrebi P. 2015. Three brown trout *Salmo trutta* lineages in Corsica described through
- allozyme variation. *J Fish Biol* 86: 60-73.
- Berrebi P, Caputo Barrucchi V, Splendiani A, Muracciole S, Sabatini A, Palmas F, Tougard
- C, Arculeo M, Marić S. 2019. Brown trout (Salmo trutta L.) high genetic diversity
- around Tyrrhenian Sea as revealed by nuclear and mitochondrial markers.
- 442 *Hydrobiologia* 826: 209-231.
- Berrebi P, Dubois S, Recorbet B, Muracciole S, Mattei J. 2007. Les progrès en génétique
- obtenus lors du LIFE. Guide de gestion de la truite macrostigma. 52-60.
- https://data.oreme.org/trout/home.
- Berrebi P, Jesenšek D, Crivelli AJ. 2017. Natural and domestic introgressions in the marble
- trout population of Soca River (Slovenia). *Hydrobiologia* 785: 277-291.
- Berrebi P, Poteaux C, Fissier M, Cattaneo-Berrebi G. 2000a. Stocking impact and allozymic
- diversity in brown trout from Mediterranean southern France. J Fish Biol 56(4): 949-
- 450 960.
- Berrebi P, Povz M, Jesenšek D, Crivelli AJ. 2000b. The genetic diversity of native, stocked
- and hybrid populations of marble trout in the Socă river, Slovenia. *Heredity* 85: 277–
- 453 287.
- Boulenger G A. 1901. On the occurrence of Salmo macrostigma in Sardinia. Annals and
- 455 *Magazine of Natural History* (Ser. 7) 8: 14.
- 456 Bookstein FL, Chernoff B, Elder RL, Humphries JM, Smith GR, Strauss RE 1985.
- 457 Morphometrics in evolutionary biology. *Academy of Natural Sciences of Philadelphia*,
- 458 *Special Publication*, 15. 277pp.
- Burton RS, Barreto FS. 2012. A disproportionate role for mtDNA in Dobzhansky-Muller
- 460 incompatibilities? *Mol Ecol* 21: 4942-4957.

461	Cortey M, García-Marín J-L. 2002. Evidence for phylogeographically informative sequence
462	variation in the mitochondrial control region of Atlantic brown trout. J Fish Biol
463	60:1058-1063
464	Cortey M, Pla C, García-Marín JL. 2004. Historical biogeography of Mediterannean Trout.
465	The role of allopatry and dispersal events. Mol Phylogenet Evol 33: 831-844.
466	Cortey M, Vera M, Pla C, García-Marín J-L. 2009. Northern and Southern expansions of
467	Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol J Linn Soc
468	97: 904-917.
469	Delling B. 2002. Morphological distinction of marble trout, Salmo marmoratus, in
470	comparison to marbled Salmo trutta from River Otra, Norway. Cybium 26: 283-300.
471	Delling B. 2003. Species diversity and phylogeny of Salmo with emphasis on Southern trouts
472	(Teleostei, Salmonidae): Doctoral Dissertation, Swedish Museum of Natural History.
473	Delling B. 2010. Diversity of western and southern Balkan trouts, with the description of a
474	new species from the Louros River, Greece (Teleostei: Salmonidae). Ichthyol Explor
475	Freshw 21: 331-344.
476	Delling B, Crivelli AJ, Rubin J-F, Berrebi P 2000. Morphological variation in hybrids
477	between Salmo marmoratus and alien Salmo species in the Volarja stream, Soca River
478	basin, Slovenia. <i>J Fish Biol</i> 57: 1199-1212.
479	Delling B, Doadrio I. 2005. Systematics of the trouts endemic to Moroccan lakes, with
480	description of a new species (Teleostei: Salmonidae). Ichthyol Explor Freshw 16: 49-
481	64.
482	Doadrio I, Perea S, Yahyaoui A. 2015. Two new species of Atlantic trout (Actinopterygii,
483	Salmonidae) from Morocco. Graellsia 71: e031.

484	Duftner N, Weiss S, Medgyesy N, Sturmbauer C. 2003. Enhanced phylogeographic
485	information about Austrian brown trout populations derived from complete
486	mitochondrial control region sequences. J Fish Biol 62: 427-435.
487	Duméril A. 1858. Note sur une truite d'Algérie (Salar macrostigma, A. Dum.). C R Acad Sci
488	Paris 47: 160–162
489	Estoup A, Largiader CR, Perrot E, Chourrout D. 1996. Rapid one-tube DNA extraction for
490	reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol
491	Biotechnol 5:295-298.
492	Ferguson A, Mason FM. 1981. Allozyme evidence for reproductively isolated sympatric
493	populations of brown trout Salmo trutta L. in Lough Melvin, Ireland. J Fish Biol 18:
494	629-642.
495	Froese R, Pauly D. 2019. FishBase, The Global Database of Fishes. http://www.fishbase.org.
496	García-Marín J-L, Utter FM, Pla C. 1999. Postglacial colonization of brown trout in Europe
497	based on distribution of allozyme variants. Heredity 82: 46-56.
498	Gauthier A, Berrebi P. 2007. La colonisation de l'île par différentes souches de truite. Guide
499	de gestion de la truite macrostigma. 4-10. https://data.oreme.org/trout/home.
500	Giuffra E, Bernatchez L, Guyomard R. 1994. Mitochondrial control region and protein coding
501	genes sequence variation among phenotypic forms of brown trout Salmo trutta from
502	northern Italy. Mol Ecol 3: 161-171.
503	Gratton P, Allegrucci G, Gandolfi A, Sbordoni V. 2013. Genetic differentiation and
504	hybridization in two naturally occurring sympatric trout Salmo spp. forms from a
505	small karstic lake. <i>J Fish Biol</i> 82: 637-657.
506	Guyomard R. 1989. Diversité génétique de la truite commune. Bull Fr Pêche Piscic 314: 118-
507	135.

508	Guyomard R, Krieg F. 1986. Mise en evidence d'un flux genique entre populations naturelles
509	de truite fario et souche de repeuplement dans deux rivières de Corse. Bull Fr Pêche
510	Piscic 303: 134-140.
511	Karakousis Y, Triantaphyllidis C. 1990. Genetic structure and differentiation among Greek
512	brown trout (Salmo trutta L.) populations. Heredity 64: 297-304.
513	Kottelat M, Freyhof J. 2007. Handbook of European freshwater fishes. Publications Kottelat,
514	Cornol, Switzerland.
515	Lascaux JM, Lagarrigue T, Mennessier JM, Muracciole S. 2010. Analyse de la variabilité de
516	la ponctuation et des caractères ornementaux des truites des cours d'eau corses: Etude
517	réalisée par ECOGEA dans le cadre du programme de gestion de la truite corse. 31p.
518	Leigh, JW, Bryant D. 2015. PopART: Full-feature software for haplotype network
519	construction. Meth Ecol Evol 6:1110–1116.
520	Lerceteau-Köhler E, Schliewen U, Kopun T, Weiss S. 2013. Genetic variation in brown trout
521	Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the
522	phylogeographic paradigm? BMC Evol Biol 13: 176.
523	Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
524	polymorphism data. Bioinformatics 25: 1451–1452.
525	Martinez P, Castro J, Pardo BG, Bouza C, Hermida M, Vilas R. 2009. High Ag-NOR-site
526	variation associated to a secondary contact in brown trout from the Iberian Peninsula.
527	Genetica 136: 419-427.
528	Meraner A, Baric S, Pelster B, Dalla Via J. 2007. Trout (Salmo trutta) mitochondrial DNA
529	polymorphism in the centre of the marble trout distribution area. Hydrobiologia 579:
530	337-349.

531	Norden CR. 1961. Comparative osteology of representative salmonid fishes with particular
532	reference to the grayling (Thymallus arcticus) and its phylogeny. J Fisheries Res
533	Board Can 18:679-971.
534	Olivari G, Brun G. 1988. Le nombre de caeca pyloriques dans les populations naturelles de
535	truites communes Salmo trutta, Linné en Corse. Bull Ecol 19: 2-3.
536	Pankhurst, NW Montgomery, JC. 1994. Uncoupling of visual and somatic growth on the
537	rainbow trout <i>Oncorhynchus mykiss</i> . Brain Behav Evol 44: 149-155.
538	Pomini, FP . 1941. Ricerche sul Salmo macrostigma. Boll Pesca Idrobiol Pescicolt 16: 3–36.
539	Pustovrh G, Sušnik Bajec S, Snoj A. 2011. Evolutionary relationship between marble trout of
540	the northern and the southern Adriatic basin. Mol Phylogenet Evol 59: 761-766.
541	Roule L. 1933. Le peuplement des cours d'eau de la Corse en poissons. Bull Fr Pêche Piscic
542	63: 61-62.
543	Sabatini A, Cannas R, Follesa M C, Palmas F, Manunza A, Matta G, A. Pendugiu A, Serra P,
544	Cau A. 2011. Genetic characterization and artificial reproduction attempt of endemic
545	Sardinian trout Salmo trutta L., 1758 (Osteichthyes, Salmonidae): Experiences in
546	captivity. Ital J Zool 78: 20–26.
547	Sabatini A, Podda C, Frau G, Cani M V, Musu A, Serra M, Palmas F. 2018. Restoration of
548	native Mediterranean trout Salmo cettii Rafinesque, 1810 (Actinopterygii,
549	Salmonidae) populations using an electric barrier as mitigation tool. Europ Zool J
550	85(1): 137-149
551	Sanz N. 2018. Phylogeographic history of brown trout: a review. In: Lobón-Cerviá J and
552	Sanz N, eds. Brown trout: biology, ecology and management: John Wiley & Sons Ltd.
553	17-63.

- 554 Snoj A, Glamuzina B, Razpet A, Zablocki J, Bogut I, Lerceteau-Köhler E, Pojskic N, Sušnik
- S. 2010. Resolving taxonomic uncertainties using molecular systematics: Salmo
- *dentex* and the Balkan trout community. *Hydrobiologia* 651: 199-212.
- 557 Snoj A, Maric S, Sušnik Bajec S, Berrebi P, Janjani S, Schöffmann J. 2011. Phylogeographic
- structure and demographic patterns of brown trout in North-West Africa. *Mol*
- *Phylogenet Evol* 61: 203-211.
- 560 Snoj A, Maric S, Berrebi P, Crivelli AJ, Shumka S, Sušnik S. 2009. Genetic architecture of
- trout from Albania as revealed by mtDNA control region variation. *Genet Sel Evol* 41:
- 562 22.
- 563 Snoj A, Melkic E, Sušnik S, Muhamedagic S, Dovc P. 2002. DNA phylogeny supports
- revised classification of *Salmothymus obtusirostris*. *Biol J Linn Soc* 77: 399–411.
- 565 Splendiani A., Palmas F., Sabatini A., Caputo Barucchi V. 2019. The name of the trout:
- considerations on the taxonomic status of the Salmo trutta L., 1758 complex
- (Osteichthyes: Salmonidae) in Italy. Europ Zool J 86(1): 432-442.
- 568 Stearley RF, Smith GR. 1993. Phylogeny of the pacific trouts and salmons, *Oncorhynchus*,
- and genera of the family Salmonidae. *Trans Am Fisher Soc* 122:1-33.
- 570 Suarez J, Bautista JM, Almodovár A, Machordom A. 2001. Evolution of the mitochondrial
- 571 control region in Palaearctic brown trout (Salmo trutta) populations: the
- biogeographical role of the Iberian Peninsula. *Heredity* 87: 198-206.
- 573 Sušnik S, Knizhin I, Snoj A, Weiss S. 2006. Genetic and morphological characterization of a
- Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to
- 575 sympatric *Salmo trutta*. *J Fish Biol* 68: 2-23.
- 576 Sušnik S, Schöffmann J, Snoj A. 2004. Phylogenetic position of Salmo (Platysalmo)
- 577 platycephalus Behnke 1968 from south-central Turkey, evidenced by genetic data. J
- 578 Fish Biol 64: 947-960.

- 579 Sušnik S, Weiss S, Tomljanovic T, Delling B, Treer T, Snoj A. 2007. Reticulate evolution:
- ancient introgression of the Adriatic brown trout mtDNA in softmouth trout Salmo
- *obtusirostris* (Teleostei: Salmonidae). *Biol J Linn Soc* 90: 139-152.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: Molecular
- evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
- maximum parsimony methods. *Mol Biol Evol* 28: 2731–2739.
- Tougard C, Justy F, Guinand B, Douzery EJP, Berrebi P. 2018. Salmo macrostigma
- (Teleostei, Salmonidae): nothing more than a brown trout (S. trutta) lineage? J Fish
- 587 *Biol* 93: 302-310.
- Turan, D, Dogan E, Kaya C, Kanyılmaz M. 2014a. Salmo kottelati, a new species of trout
- from Alakır Stream, draining to the Mediterranean in southern Anatolia, Turkey
- 590 (Teleostei, Salmonidae). ZooKeys 462: 135–151.
- Turan D, Kalaycı G, Bektaş Y, Kaya C, Bayçelebi E. 2020. A new species of trout from
- the northern drainages of Euphrates River, Turkey (Salmoniformes:
- 593 Salmonidae). J. Fish Biol. online (https://doi.org/10.1111/jfb.14321).
- Turan D, Kottelat M, Bektas Y. 2011. Salmo tigridis, a new species of trout from the Tigris
- River, Turkey (Teleostei: Salmonidae). *Zootaxa* 2993: 23-33.
- 596 Turan D, Kottelat M, Engin S. 2009. Two new species of trouts, resident and migratory,
- 597 sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). *Ichthyol*
- 598 *Explor Freshw* 20: 333-364.
- Turan D, Kottelat M, Engin S. 2012. The trouts of the Mediterranean drainages of southern
- Anatolia, Turkey, with description of three new species (Teleostei: Salmonidae).
- 601 *Ichthyol Explor Freshw* 23: 219-236.
- Turan D, Kottelat M Engin S. 2014b. Two new species of trouts from the Euphrates drainage,
- Turkey (Teleostei: Salmonidae). *Ichthyol Explor Freshw* 24: 275–287.

604	Turan D, Kottelat M, Kaya C. 2017. Salmo munzuricus, a new species of trout from the
605	Euphrates River drainage, Turkey (Teleostei: Salmonidae). Ichthyol Explor Freshw
606	28: 55-63.
607	Zaccara S, Trasforini S, Antognazza C M, Puzzi C, Robert Britton J, Crosa G. 2015.
608	Morphological and genetic characterization of Sardinian trout Salmo cettii Rafinesque,
609	1810 and their conservation implications. <i>Hydrobiologia</i> 760: 205–223.
610	
611	

8. Figures captions

Fig. 1. Geographic position of the new sampled populations in Corsica and Sardinia.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

612

613

Fig. 2. Measurements taken on Salmo specimens; 1, upper jaw depth, as largest depth of the maxilla and supramaxilla; 2, snout length, from symphysis of premaxilla to osseous orbit margin; 3, orbital horizontal diameter, between osseous orbital margin; 4, head depth, just posterior to orbit; 5, orbital vertical diameter, between osseous orbital margin; 6, length of maxilla, from **premaxilla** end to posterior end of maxilla; 7, upper jaw length, from symphysis of premaxilla to posterior end of maxilla; 8, lower jaw length, from symphysis of dentary to retroarticular; 9, pectoral fin length, from base of first ray to tip of longest ray; 10, body depth, at level of origin of dorsal fin; 11, dorsal fin length, from base to tip of longest ray; 12, pelvic fin length, from base of first ray to tip of longest ray; 13, body depth, at level of origin of anal fin; 14, adipose fin length, from origin to tip; 15, anal fin length, from base of first ray to tip of longest ray; 16, caudal peduncle length, from end of anal fin to middle base of caudal fin; 17, least depth of caudal peduncle; 18, length of upper caudal fin lobe, from base to tip of longest ray; 19, length of middle caudal fin ray, from base to tip of shortest ray; 20, length of lower caudal fin lobe, from base to tip of longest ray; 21 standard length (SL), from upper jaw symphysis to middle base of caudal fin; 22, predorsal length from upper jaw symphysis to origin of dorsal fin; 23, head length, from upper jaw symphysis to posterior tip of operculum; 24, premaxilla to preoperculum length, from **premaxilla** end of maxilla to posterior margin of preoperculum (HLpp); 25, prepelvic length, from upper jaw symphysis to origin of pelvic fin; 26, preanal length, from upper jaw symphysis to origin of anal fin; 27, interorbital width, transverse at narrowest part of skull; 28, body width, transverse at widest part of body at level of dorsal fin origin, above abdominal cavity.

Fig. 3. Radiograph of Salmo sp. POZ, NRM62572, 197.3 mm SL; Pozzi di Marmanu Corsica (same specimen as in Fig. 8E). Upper left; a thin membranous bone indicated with dashed white line. Upper right; the uncommon condition with three (i-iii) epurals in the caudal skeleton. Fig. 4. Median-joining network of control region haplotypes of some trout samples (new Tyrrhenian haplotypes and AT, AD, DA, MA, ME and NA haplotypes from GenBank). Haplotypes are indicated by numbers as given in Table 2. Black circles are for nodes, and hatch marks are for mutation steps. Fig. 5. Morphometric PC II plotted against meristic PC I for Salmo from Sardinia, Corsica and Spain in comparison to Atlantic basin S. trutta. Fig. 6. Premaxilla to preoperculum length plotted against caudal peduncle length for Salmo from Sardinia, Corsica and Spain in comparison to S. macrostigma. Linear regression lines with 95% confidence bands are shown for each group separately. Fig. 7. Box plot of premaxilla to preoperculum length as % of SL, totally 518 specimens 116-208 mm SL. Number of specimens is given for each sample separately. Samples in bold are detailed in Table 1. Additional samples given in capital letters (Delling, unpublished) refer to rivers or streams in the given regions (**Table S1**). Ezenam is a lake in Daghestan and *labrax* represents trout from Black Sea basin with an anadromous silvery and slender appearance. Turkey and Mediterranean are samples scattered in the regions. Boxes represent median value +/- 25% of the observations, and whiskers the inner fences. Asterisks are outside or far

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

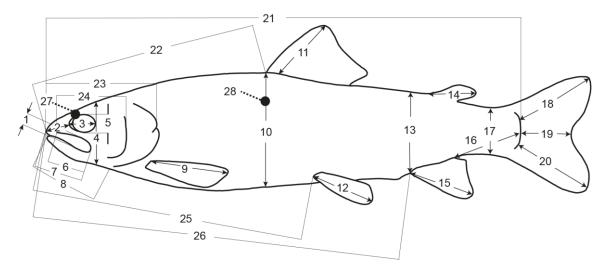
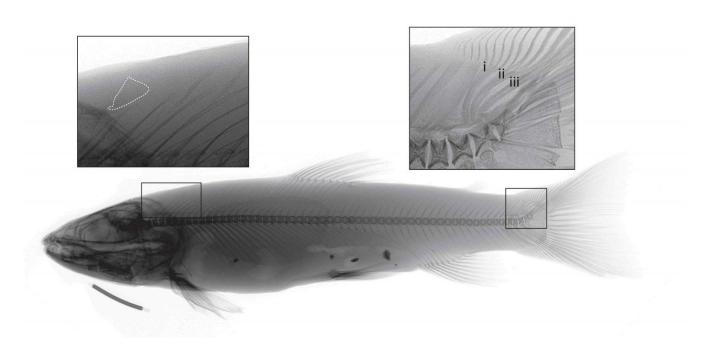
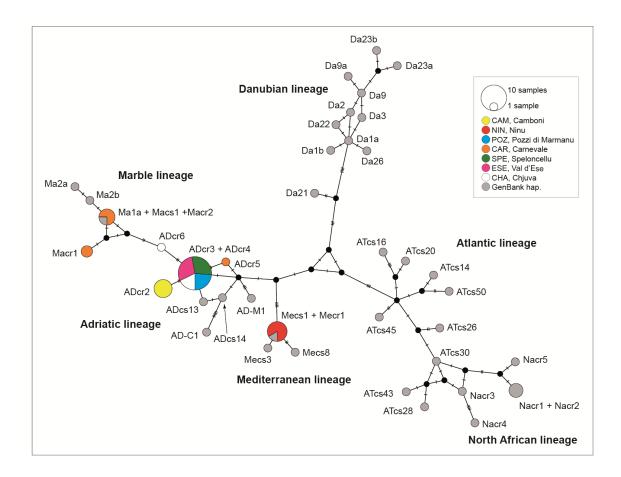
660

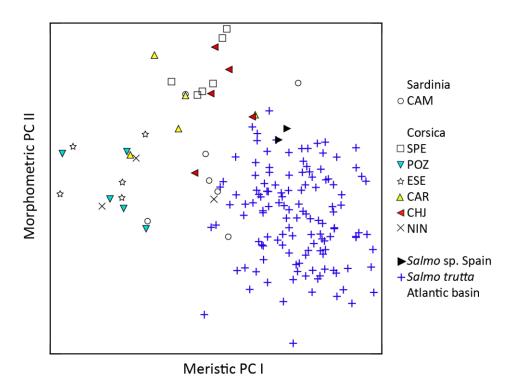
661

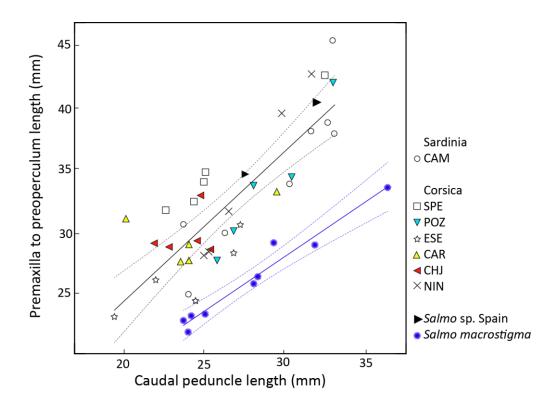
outside values.

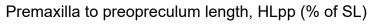
662	
663	Fig. 8. External aspect of seven of the trouts, Salmo sp. analyzed in the present study.
664	Picture A-F taken after fixation in formalin prior to transfer to ethanol. A. CAM, NRM
665	61782, 183.7 mm SL; Camboni Sardinia. B. CAR, NRM 62571, 167.6 mm SL; Carnevale
666	Corsica. C. CHJ, NRM62573, 136.6 mm SL; Chjuvone Corsica. D. ESE, NRM 61813,
667	152.0 mm SL; Val d'Ese Corsica. E. POZ, NRM62572, 197.3 mm SL; Pozzi di Marmanu
668	Corsica. F. SPE, NRM61812, 148.1 mm SL Speloncellu Corsica. G. NIN, Lake Ninu
669	Corsica © S. Muracciole

Fig. 1. Geographic position of the new sampled populations in Corsica and Sardinia.


Fig. 2. Measurements taken on Salmo specimens; 1, upper jaw depth, as largest depth of the maxilla and supramaxilla; 2, snout length, from symphysis of premaxilla to osseous orbit margin; 3, orbital horizontal diameter, between osseous orbital margin; 4, head depth, just posterior to orbit; 5, orbital vertical diameter, between osseous orbital margin; 6, length of maxilla, from premaxilla end to posterior end of maxilla; 7, upper jaw length, from symphysis of premaxilla to posterior end of maxilla; 8, lower jaw length, from symphysis of dentary to retroarticular; 9, pectoral fin length, from base of first ray to tip of longest ray; 10, body depth, at level of origin of dorsal fin; 11, dorsal fin length, from base to tip of longest ray; 12, pelvic fin length, from base of first ray to tip of longest ray; 13, body depth, at level of origin of anal fin; 14, adipose fin length, from origin to tip; 15, anal fin length, from base of first ray to tip of longest ray; 16, caudal peduncle length, from end of anal fin to middle base of caudal fin; 17, least depth of caudal peduncle; 18, length of upper caudal fin lobe, from base to tip of longest ray; 19, length of middle caudal fin ray, from base to tip of shortest ray; 20, length of lower caudal fin lobe, from base to tip of longest ray; 21 standard length (SL), from upper jaw symphysis to middle base of caudal fin; 22, predorsal length from upper jaw symphysis to origin of dorsal fin; 23, head length, from upper jaw symphysis to posterior tip of operculum; 24, premaxilla to preoperculum length, from premaxilla end of maxilla to posterior margin of preoperculum (HLpp); 25, prepelvic length, from upper jaw symphysis to origin of pelvic fin; 26, preanal length, from upper jaw symphysis to origin of anal fin; 27, interorbital width, transverse at narrowest part of skull; 28, body width, transverse at widest part of body at level of dorsal fin origin, above abdominal cavity.


Fig. 3. Radiograph of *Salmo* sp. POZ, NRM62572, 197.3 mm SL; Pozzi di Marmanu Corsica (same specimen as in Fig. 8E). Upper left; a thin membranous bone indicated with dashed white line. Upper right; the uncommon condition with three (i-iii) epurals in the caudal skeleton.


Fig. 4. Median-joining network of control region haplotypes of some trout samples (new Tyrrhenian haplotypes and AT, AD, DA, MA, ME and NA haplotypes from GenBank). Haplotypes are indicated by numbers as given in Table 2. Black circles are for nodes, and hatch marks are for mutation steps.

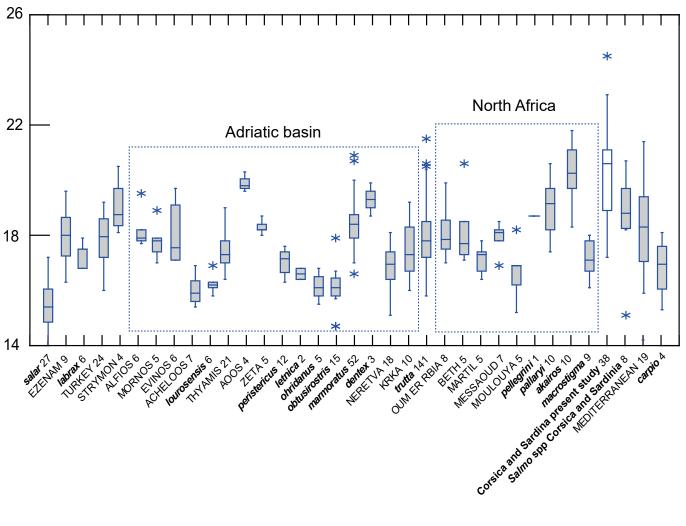


Fig. 5. Morphometric PC II plotted against meristic PC I for *Salmo* from Sardinia, Corsica and Spain in comparison to Atlantic basin *S. trutta*.

Fig. 6. Premaxilla to preoperculum length plotted against caudal peduncle length for *Salmo* from Sardinia, Corsica and Spain in comparison to *S. macrostigma*. Linear regression lines with 95% confidence bands are shown for each group separately.

Fig. 8. External aspect of seven of the trouts analyzed in the present study. For A to F, the pictures were taken after fixation in formalin prior to transfer to ethanol.

A. *Salmo* sp. CAM, NRM 61782, 183.7 mm SL; Camboni Sardinia.

B. *Salmo* sp. CAR, NRM 62571, 167.6 mm SL; Carnevale Corsica.

C. Salmo sp. CHJ, NRM62573, 136.6 mm SL; Chjuvone Corsica.

D. *Salmo* sp. ESE, NRM 61813, 152.0 mm SL; Val d'Ese Corsica.

E. *Salmo* sp. POZ, NRM62572, 197.3 mm SL; Pozzi di Marmanu Corsica.

F. *Salmo* sp. SPE, NRM61812, 148.1 mm SL Speloncellu Corsica.

G. *Salmo* sp. NIN, Lake Ninu Corsica. © S. Muracciole

Table 1. Studied material of *Salmo* from Sardinia and Corsica and selected comparative material (Tables 3-6). Catalog numbers are given for the Tyrrhenian samples only.

Taxon	River/Lake	Region	Date of capture	N	Museum Collection	Reference	Remarks
Salmo spp. Sardinia		Sardinia	1909-1960	9	ZMH, MHNG	Delling and Doadrio (2005)	Incomplete locality data
CAM	Camboni	Sardinia	2010-2012	8	NRM 61782, 61783 65092	this study	
Salmo spp. Corsica		Corsica	1895-1909	10	MNHN, NMW, BMNH	Delling and Doadrio (2005)	Incomplete locality data
SPE	Speloncellu	Corsica	2011	5	NRM 61812	this study	
POZ	Pozzi di Marmanu	Corsica	2012	5	NRM 62572	this study	
ESE	Val d'Ese	Corsica	2011	5	NRM 61813	this study	
CAR	Carnevale	Corsica	2012	5	NRM 62571	this study	
СНЈ	Chjuvone	Corsica	2012	5	NRM 62573	this study	Morphology only
CHA	Chjuva	Corsica	2004	5		this study	Genetics only
NIN	Lake Ninu	Corsica	2013	5	NRM 65092	this study	
Salmo sp. Spain **		Spain	1920	2	MNHN	this study	
Salmo macrostigma *	El Abaich River	Algeria	1866-1907	9	MNHN, BMNH, NMW	Delling and Doadrio (2005)	Syntype included
Salmo pallaryi *	Lake Sidi Ali	Morocco	1927-1936	17	MNHN, BMNH, NRM	Delling and Doadrio (2005)	Syntypes included
Salmo pellegrini *	Tensift River	Morocco	1931	1	NMW	Delling and Doadrio (2005)	Syntype
Salmo akairos*	Lake Ifni	Morocco	1995	10	NRM, MNCN	Delling and Doadrio (2005)	Holotype and paratypes
Salmo trutta	Details in reference	European Atlantic basin	1827-1999	243		Delling (2002)	Numerous samples from several countries and collections
Salmo salar	Details in reference	European Atlantic basin	1882-1998	40		Delling (2002)	Numerous samples from several countries and collections
Salmo marmoratus	Po, Adige, Soca and Neretva Rivers	Italy, Slovenia and Bosnia and Herzegovina	1823-1998	77	NRM, ZISP, MNHN, BMNH,	Delling (2002)	

					NMW		
Salmo carpio*	Lake Garda	Italy	1971-1998	13	NRM, ZISP, BMNH	Delling (2002)	Neotype included
Salmo ischchan*	Lake Sevan	Armenia		24	NRM, ZISP		
Salmo letnica*	Lakes Ohrid and Prespa	Albania, Macedonia and Greece	1890-1995	11	NRM, ZISP, MHCH, ZMH	Delling (2003)	Endemic to Ohrid but stocked into Prespa lakes
Salmo platycephalus*	Seyhan	Turkey	1966-2003	3	NRM, ZMH	Turan et al.(2012)	Holotype included
Salmo obtusirostris	Jadro and Neretva Rivers	Croatia, Bosnia and Herzegovina	1883-2000	19	NRM, ZMH, ZISP, MNHN, MHCH	Delling (2003)	
Salmo ohridanus*	Lakes Ohrid and Prespa	Albania, Macedonia and Greece	1924-2002	13	ZMH, MNHN	Delling & Doadrio (2005)	Endemic to Ohrid but stocked into Prespa lakes
Salmo lourosensis*	Louros Stream	Greece	1977	7	NRM	Delling (2010)	
Salmo peristericus*	Agios Germanos Stream	Greece	1977, 1998	9	NRM	Delling (2010)	
Salmo dentex	Neretva and Cetina Rivers	Bosnia and Herzegovina	1843-	5	NMW, NRM	Delling (2010)	Lectotype included

^{*)} Endemic taxa and/or samples restricted to type locality

^{**)} Locality data for MNHN 1920 0228-0229: Spain, Lerida, Sarrade, 2052 m.a.s.l. is interpreted as close to the mountain Pic de la Pala Alta de Sarradé (2893 m, 42° 34′ 27.1″ N, 0° 53′ 16.82″ E) in the Lerida/Lleida region in Catalonia, Spain, most probably part of Ebro basin.

Table 2. Distribution of the haplotypes involved in this study

Haplotypes	Accession Number	References / Samples	Locality of first observation
ATcs14	EF530476	Cortey et al. (2009)	Iceland (Skorradalsvatn R.)
ATcs16	EF530478	Cortey et al. (2009)	Spain (Several Cantabric rivers)
ATcs20	EF530482	Cortey et al. (2009)	Russia (Vorobiex R.)
ATcs26	EF530488	Cortey et al. (2009)	Spain (Duero R.)
ATcs28	EF530490	Cortey et al. (2009)	Spain (Tajo R.)
ATcs30	EF530492	Cortey et al. (2009)	Spain (Tajo R.)
ATcs43	EF530504	Cortey et al. (2009)	Spain (Duero R.)
ATcs45	EF530505	Cortey et al. (2009)	Iceland (Skorradalsvatn R.)
ATcs50	EF530510	Cortey et al. (2009)	UK (Stour R.)
ADC1	DQ381567	Sušnik <i>et al.</i> (2007)	Montenegro + Serbia + Albania (3 rivers)
ADM1	DQ381566	Sušnik <i>et al.</i> (2007)	Montenegro + Serbia + Albania (3 rivers)
ADcs14	AY836343	Cortey <i>et al.</i> (2004)	France (Corsica)
ADcs15	AY836344	Cortey <i>et al.</i> (2004)	France (Corsica)
Mala	DQ841191	Meraner et al. (2007)	Italy (Po R.)
Ma2a	DQ841189	Meraner et al. (2007)	Italy (Po R.)
Ma2b	DQ841190	Meraner et al. (2007)	Italy (Po R.)
MAcs1	AY836365	Cortey <i>et al.</i> (2004)	Slovenia (2 Adriatic rivers)
MEcs1	AY836350	Cortey <i>et al.</i> (2004)	Spain (8 watersheds)
MEcs3	AY836352	Cortey <i>et al.</i> (2004)	Spain (8 watersheds)
MEcs8	AY836357	Cortey <i>et al.</i> (2004)	Spain (8 watersheds)
Da1a	AY185568	Duftner <i>et al.</i> (2003)	Austria (5 Danubian rivers)
Da1b	AY185569	Duftner <i>et al.</i> (2003)	Austria (Lake Gossenköllesee)
Da2	AY185570	Duftner <i>et al.</i> (2003)	Austria (Fressnitzbach R.)
Da3	AY185571	Duftner et al. (2003)	Austria (Kleiner Kamp R.)
Da9	AY185572	Duftner et al. (2003)	Austria (Kleiner Kamp R.)
Da9a	GQ222380	Jadan et al., unpubl.	Croatia (Plitvica R.)
Da22	AY185573	Duftner et al. (2003)	Austria (2 Danubian rivers)
Da23a	AY185574	Duftner et al. (2003)	Austria (Kleiner Kamp R.)
Da23b	AY185575	Duftner et al. (2003)	Austria (Lohnbach R.)
Da24	AY185576	Duftner et al. (2003)	Austria (Waldaist R.)
Da26	DQ841194	Meraner et al. (2007)	Italy (Po R.)
NAcr1	LT617612	Tougard et al. (2018)	Italy (Anapo R., Sicily)
NAcr2	LT617613, LT617614	Tougard et al. (2018)	Italy (Anapo R., Sicily)
NAcr3	LT617630	Tougard et al. (2018)	Algeria (El-Abaïch oued)
NAcr4	LT617631	Tougard et al. (2018)	Algeria (El-Abaïch oued)
NAcr5	LT617632	Tougard et al. (2018)	Morocco
ADcr2	MK184916-20	CAM (this survey)	Italy (Sardinia)
ADcr3	MK184921-25, 30-34, 41-42, 44	SPE, ESE, CHA (this survey)	France (Corsica)
ADcr4	MK184926-29	POZ (this survey)	France (Corsica)

ADcr5	MK184935	CAR (this survey)	France (Corsica)	
ADcr6	MK184943	CHA (this survey)	France (Corsica)	
MAcr1	MK184938-40	CAR (this survey)	France (Corsica)	
MAcr2	MK184936-37	CAR (this survey)	France (Corsica)	
MEcr1	MK184945-49	NIN (this survey)	France (Corsica)	

Table 3. Morphometry of *Salmo* spp. Number of studied specimens (N) for certain measurements varies due to condition of preserved specimens.

	Tyrrhenian Salmo					Salmo macrostigma					Salmo trutta				
	N	min	max	mean	SD	N	min	max	mean	SD	N	min	max	mean	SD
Standard length (mm)	38	116.3	208.5	158.6	23.5	9	129.9	208.0	151.5	25.92	138	118.5	207.3	160.6	26.6
In percent of standard length															
Preanal length	38	74.2	80.2	76.7	1.29	9	73.4	78.1	75.9	1.45	138	72.8	81.9	76.4	1.56
Prepelvic length	38	54.6	63.0	56.8	1.49	9	51.6	56.3	53.6	1.83	138	50.4	60.8	55.2	1.79
Predorsal length	38	46.2	51.6	48.8	1.38	9	44.8	49.5	47.1	1.58	138	44.0	50.9	47.6	1.42
Head length	38	25.3	32.7	28.1	1.80	9	23.3	26.2	24.9	0.89	138	22.6	29.5	25.5	1.27
Premaxilla to preoperculum length	38	17.2	24.5	20.3	1.64	9	16.1	18.0	17.2	0.65	138	15.8	21.5	17.9	1.02
Caudal peduncle length	38	15.0	18.3	16.6	0.74	9	17.3	19.5	18.3	0.77	138	14.6	19.8	17.3	0.97
Caudal peduncle depth	38	9.7	12.4	11.2	0.51	9	9.9	12.0	11.1	0.69	138	8.7	11.8	10.1	0.68
Length of upper caudal fin lobe	32	17.5	22.5	19.9	1.02	9	18.4	22.9	20.7	1.71	134	16.8	23.4	20.4	1.28
Length of lower caudal fin lobe	33	17.6	21.5	19.9	0.96	9	19.3	22.3	20.9	1.22	134	15.1	23.3	20.4	1.39
Length of middle caudal fin ray	38	11.0	16.9	14.4	1.10	9	11.9	14.4	13.0	0.81	137	10.9	15.5	13.4	0.90
Dorsal fin height	38	15.0	19.9	17.1	1.31	9	15.0	19.5	17.3	1.33	138	12.1	19.1	16.1	1.22
Pectoral fin length	38	16.3	23.5	19.3	1.74	9	16.6	20.6	18.7	1.27	138	15.0	21.6	18.4	1.22
Pelvic fin length	38	12.7	18.6	15.4	1.29	9	13.0	16.7	14.9	1.03	137	11.8	17.2	14.3	0.94
Adipose fin length	38	5.7	11.4	8.6	1.57	9	5.5	8.3	7.2	0.91	138	4.3	10.5	8.4	1.12
Anal fin length	37	12.8	23.1	17.4	2.20	9	17.0	19.8	18.3	0.79	138	13.5	18.8	16.1	1.16
Body width	38	12.4	17.3	14.7	1.18	9	10.3	12.1	11.4	0.64	138	7.6	16.0	12.3	1.60
Body depth at origin of dorsal fin	38	19.7	27.3	23.5	1.65	9	24.7	28.2	26.6	1.02	138	19.7	28.2	23.9	1.55
Body depth at origin of anal fin	38	16.2	20.5	18.2	0.91	9	19.2	21.9	20.1	0.90	138	13.1	24.7	17.8	1.26
Head depth	36	13.2	19.6	15.9	1.59	9	13.1	16.1	14.3	0.90	138	12.0	17.3	13.8	0.82
In percent of head length															
Horizontal orbit diameter	38	22.1	30.6	26.6	1.99	9	26.5	34.1	30.0	2.33	138	22.8	33.4	28.4	2.16
Vertical orbit diameter	38	18.9	27.0	23.4	2.00	9	20.8	27.7	24.6	2.31	138	18.9	28.2	23.7	1.97
Interorbital width	38	23.2	29.8	26.3	1.79	9	26.4	28.6	27.8	0.77	138	24.2	33.5	28.5	1.83
Snout length	38	23.4	31.1	27.0	1.66	9	21.8	28.8	25.6	2.22	138	21.0	29.0	25.2	1.49
Upper jaw length	38	50.2	65.9	57.2	3.57	9	49.3	56.0	52.5	1.91	138	43.4	61.8	52.1	2.51
Length of maxilla	38	40.8	54.5	46.0	2.89	9	38.3	45.3	42.4	2.04	138	34.3	50.1	41.6	2.15
Height of maxilla	38	9.3	15.2	11.6	1.29	9	9.4	11.9	10.7	0.77	138	9.0	13.1	11.0	0.83
Lower jaw length	38	59.3	71.9	64.6	3.33	9	58.8	66.9	61.1	2.44	138	53.4	69.0	61.5	2.66
Gill raker length	38	6.0	11.0	7.6	1.09	9	7.4	10.8	8.8	1.08	135	5.0	10.2	7.6	0.89

Table 4. Frequency distribution of scale counts from base of adipose fin to lateral line and left side branchiostegal counts in *Salmo* spp.

side ordinostegar coo	scales from base of adipose									left side									
		fin to lateral line								branchiostegals									
	11	12	13	14	15	16	17	18	19	20	21	22	23	8	9	10	11	12	13
Salmo spp. Sardinia						3	2	4								5	3	2	
CAM					2	1	3		2							4	4		
Salmo spp. Corsica					1	2	1	1	4							2	8		
SPE					1	1	3									2	3		
POZ								4		1					2	3			
ESE						1	2	1	1					1	2	2			
CAR										3		1	1				3	2	
CHJ							1	1	3							1	4		
NIN						3	1	1							2	3			
Salmo sp. Spain						1	1										2		
Salmo macrostigma						5	3									2	6	1	
Salmo pallaryi							1	4	4	5	3						3	3	11
Salmo pellegrini					1												1		
Salmo akairos		1	2	5	2												1	4	5
Salmo trutta				8	55	90	61	23	4	1					4	40	111	80	8
Salmo salar	2	5	8	15	9		1									9	16	15	
Salmo marmoratus			4	8	33	24	6	2							1	7	29	35	5
Salmo carpio			1	2	5	4	1								2	5	2	4	1
Salmo ischchan					1	6	5	4	4	4					1	8	12	3	
Salmo letnica				2	5	4											7	3	1
Salmo platycephalus						1											1		
Salmo obtusirostris		3	9	7												3	8	8	
Salmo ohridanus	6	6	1												4	9			
Salmo lourosensis						3	4									5	2		
Salmo peristericus					4	6	2								2	9	1		
Salmo dentex					2	2	1										1	2	2

 Table 5. Frequency distribution of vertebral counts and caudal fin upper procurrent rays in
 Salmo spp.

	vertebrae							caudal fin upper procurrent												
																	ıys			
	52	53	54	55	56	57	58	59	60	61	62	63	10	11	12		14	15	16	17
Salmo spp. Sardinia			1			2	1	1							1	3	1	1		
CAM						1	6		1							4	4			
Salmo spp. Corsica					1	3	5									3	2	2	2	
SPE					1		2	2											1	4
POZ				2	3												5			
ESE				1	4											3	1	1		
CAR					1	3		1								1	1			3
СНЈ						1	3	1								1	1	3		
NIN				1	2	2										4		1		
Salmo sp. Spain							1	1									1		1	
Salmo macrostigma						4	3									5	2			
Salmo pallaryi					3	13	2	1									4	11	4	
Salmo pellegrini			1													1				
Salmo akairos					6	3	1								1	3	5	1		
Salmo platycephalus								3								1	2			
Salmo obtusirostris					1	4	9							1	8	5				
Salmo ohridanus		1	3	3	1								1	7						
Salmo trutta					1	15	48	69	38	15	1				4	31	60	72	28	
Salmo salar							1	16	15	7		1	1	8	31					
Salmo marmoratus								5	14	42	15	1		1	30	32	10	5		
Salmo carpio								5	7	2						2	7	5		
Salmo ischchan			2	6	12	2								2	7	9	3	1		
Salmo letnica					1	3	1	3							1	6	1			
Salmo lourosensis						2	4	1							5	2				
Salmo peristericus							3	9							4	6	1	1		
Salmo dentex								2	3							2	2	1		

Table 6. Frequency distribution of gill raker counts in *Salmo* spp.

Tuble of Frequency and		total number of gill rakers on first arch											
	13	14	15	16	17	18			21		23		≥25
Salmo spp. Sardinia			2	1	1	4			1				
CAM					3	5							
Salmo spp. Corsica		1	2	1	3	2	1						
SPE					2	3							
POZ						3	1	1					
ESE					3	1	1						
CAR						2	3						
СНЈ					1	1	3						
NIN				2	2	1							
Salmo sp. Spain					1	1							
Salmo macrostigma				1	2	3	2	1					
Salmo pallaryi							2	6	6	1	2		
Salmo pellegrini									1				
Salmo akairos								4	3	1	2		
Salmo platycephalus									1	1			1
Salmo obtusirostris												2	17
Salmo ohridanus					2	4	5	2					
Salmo trutta		1	14	46	99	54	25	4					
Salmo salar						4	12	18	5	1			
Salmo marmoratus	1	4	12	18	28	14							
Salmo carpio				2	6	5							
Salmo ischchan						6	8	7	3				
Salmo letnica							2	6	1	1			1
Salmo lourosensis						2	2	2	1				
Salmo peristericus				3	5	3		1					
Salmo dentex							3	1	1				

SUPPLEMENTARY INFORMATION: Studied material of Salmo spp.

Primary material of Tyrrhenian trout Salmo sp. from Corsica and Sardinia

NRM 61783, 61950, 61812, 61813, 62571, 62572, 62573, 65092

Comparative material (Figures 5-6, Tables 3, S2 and S3)

Primary and comparative material is also included in Fig. 7 and Tables 4-6 together with additional comparative material listed below.

Salmo macrostigma from Algeria

BMNH 1866.1.18:1-3

MNHN A7585 (SYNTYPE), 0000-1909, 1899-0242

NMW 67970

Salmo sp. Spain

MNHN 1920 0228-0229

Salmo trutta, Atlantic basin

BMNH 1865.7.10:2-12, 1866.1.8:1-4, 1947.9.12:1-3, 1982.11.15:6-9, 1986.5.20:208-213,

1986.5.20:94-95, 1991.7.12:18-20

MHNG 816.8

MNHN 0000-3639, 0000-3640, 0000-3643, 1923-0216, 1939-0017, A5532, A5533, B0722

NMW66013

NRM 20125, 20126, 23404, 23406, 23661, 24343, 24344, 24345, 24357, 24361, 24841, 36995,

41373, 41781, 41785, 41785, 41790, 41791, 41793, 41794, 42540, 42541, 42542, 42548, 42549,

42551, 42558, 43978, 44037, 44475, 44780

ZMH 10712, 10733, 10734, 10738, 1206, 5672, 5735, 6346

Additional comparative material (Figure 7, Tables 4-6)

Sequence of listed taxon or geographic region follows Fig. 7 (left to right) and inclusion of a particular specimen in Fig. 7 and/or Tables 4-6 depends on SL, state of preservation and, availability of X-ray data for Table 5.

Salmo salar

MNHN 0000-1441, 1898-1143, 1894-0004, 1894-0005, 1939-0016

NRM 21142, 24914, 41372, 42545, 42546, 42547, 46136

ZMH 10727, 10714

EZENAM (Salmo ezenami)

ZISP 28356, 48317

Salmo cf. labrax

BMNH 1913.5.25:1-3, 1962.9.25:1, 1991.7.12:21-22

NMW 65628, two uncatalogued specimens

TURKEY

NMW 80837, 90952, 50581, 50582, 50583

ZMH 2450, 3578, 4222, 4223, 4224

STRYMON

NRM 60790, 60791

ALFIOS

NRM 46352, 60785

MORNOS

CMK 16980 NRM 60789

EVINOS

CMK 16975

NRM 46353, 60786

ACHELOOS

NRM 46357

Salmo lourosensis

NRM 60787 (HOLOTYPE), 60788

THYAMIS

NRM 46355, 46356

AOOS

NRM 46354

ZETA

NMW 22904, 22905, 22906, 22907, 22908

Salmo peristericus

NRM 42538, 60784

Salmo letnica

MHCH 2573.92 MNHN 1977-0262 NMW 65650 ZMH 791, 9182 ZISP39456

Salmo ohridanus

CMK17387 MNHN1924-0227, one uncatalogued specimen ZISP 39455 ZMH 790, 1461

Salmo obtusirostris

MHCH 608.66 MNHN A6037, A7589, 1904-0032 NRM46364 ZISP39451 ZMH10743

Salmo marmoratus

BMHN 1924.3.14:2-3, 1924.3.14:4-6, 1924.3.14:7-10, 1924.3.14:11-13 MNHN 0000-3635, 0000-3636, 0000-4920, B1139 NMW 65890, 65895 NRM 41516, 41519, 41522, 41523, 41528, 41529, 44701, 44702, 44703 ZISP 48210

Salmo dentex

NMW 65864, 65887, 65895 (LECTOTYPE), 95248 NRM 25000

NERETVA

NRM 46358, 46359, 46361, 46362, 46370

KRKA

NMW 65860, 65915, 65930

Salmo trutta (Atlantic basin, not listed above)

BMNH 1885.9.18:11-21, 1908.4.28:4, 1908.4.28:5, 1937.9.15:9-14, 1947.8.15:1-2, 1991.7.12:18-20 MHNG 642.70, 816.8

MNHN 0000-2898, 0000-2909, 0000-3634, 0000-3638, 0000-3639, 0000-3641, 0000-3642, 0000-3649, 0000-3650, 0000-3651, 0000-6321, 1923-0215, 1982-0480, A5532, A5533 NRM 24849, 24866, 24885, 24894, 24895, 24903, 45239, 42543, 42544, 42559 ZMH 1206, 6344, 10718, 10721, 10731, 10736

OUM ER RBIA

BMNH 1934.10.25:1-2 MNCN 208127-139 MNHN 1925-0350, 1925-0351, 1977-0282

BETH

MNHN 1920-0200, 1926-0013, 1977-0272, 1977-0285

MARTIL

BMNH 1887.12.23:4-10

MESSAOUD

MNHN 1926-0018, 1926 0019, 1926-0020, 1926-0021, 1926-0022, 1926-0023, 1926-0024, 1926-0025, 1926-0026, 1926-0027

MOULOYA

MNHN 1926-0014, 1926-0015, 1926-0016, 1926-0017, 1947-0018, 1977-0269

Salmo pellegrini

NMW 19546 (SYNTYPE)

Salmo pallaryi

BMHN 1926.5.5:1

BMHN 1926.6.24:1

BMHN 1934.10:3-5

MNHN 1923-0066 (HOLOTYPE), 1925-0341, 1925-0342, 1925-0343, 1925-0344, 1925-0346, 1925-0347, 1925-0348, 1925-0349, 1977-0261, 1977-0273, 1977-0280 NRM41452

Salmo akairos

MNCN 115018-029, 115022 (HOLOTYPE)

Salmo sp. (Corsica and Sardinia)

BMNH 1901.6.4:1-6, 1909.2.25:14

MHCH 730.22

MNHN 1896-0005, 1896-0006, 1896-0007, 1896-0008, 1896-0009, 1896-0010, 1896-0011

NMW66115

ZMH4302

MEDITERRANEAN

BMNH 1877.1.6:3-4, 1887.1.6:1-2, 1901.8.6:6-7, 1940.2.10:1-3 MHCH 52.82 MNHN 0000-0002, 0000-2575, 0000-3646, 0000-3652, 0000-3653, 000-3354, 1960-0347 nrm7190 ZMH4221

Salmo carpio NMW 59704, 65957 NRM 28000 (NEOTYPE), 41539 ZISP 40513, 40514, 48207

Table S2. Character loadings on principal component I-V for 24 measurements taken on *Salmo* from Corsica, Sardinia, Spain and Atlantic basin.

	PC I	PC II	PC III	PC IV	PC V
Standard length (mm)	0.165	-0.039	-0.003	0.013	0.011
Preanal length	0.170	-0.036	-0.002	0.014	0.014
Prepelvic length	0.178	-0.029	0.003	0.010	0.013
Predorsal length	0.169	-0.027	-0.001	0.006	0.013
Head length	0.175	0.016	0.005	0.002	0.008
Premaxilla to preoperculum length	0.188	0.028	0.006	0.003	0.007
Caudal peduncle length	0.144	-0.065	0.001	0.015	0.023
Caudal peduncle depth	0.153	-0.016	0.014	-0.026	-0.027
Length of middle caudal fin ray	0.167	0.005	-0.008	0.013	-0.016
Pectoral fin length	0.150	0.004	-0.010	0.018	-0.016
Pelvic fin length	0.165	0.004	-0.006	0.007	-0.015
Adipose fin length	0.157	-0.056	0.009	0.004	-0.020
Body depth at origin of dorsal fin	0.161	-0.048	0.011	-0.016	-0.030
Body depth at origin of anal fin	0.168	0.018	0.016	-0.002	0.003
Head depth	0.137	0.035	-0.010	0.051	-0.005
Horizontal orbit diameter	0.144	0.055	-0.012	0.040	-0.002
Vertical orbit diameter	0.180	-0.029	0.013	-0.006	0.000
Interorbital width	0.193	0.024	0.028	-0.038	0.027
Snout length	0.204	0.055	0.022	-0.018	0.019
Upper jaw length	0.163	0.040	0.000	-0.014	-0.047
Length of maxilla	0.199	0.035	0.019	-0.012	0.011
Height of maxilla	0.177	0.003	-0.106	-0.034	0.010
Lower jaw length	0.165	-0.039	-0.003	0.013	0.011
Gill raker length	0.170	-0.036	-0.002	0.014	0.014
Variance explained (%)	87.9	3.78	1.99	1.37	1.06

Table S3. Character loadings on principal component I-V for 16 meristic characters taken on *Salmo* from Corsica, Sardinia, Spain and Atlantic basin

	PC I	PC II	PC III	PC IV	PC V
Scales along lateral line					
Scales from base of adipose fin to lateral line	0.706	0.151	0.136	0.106	0.078
Left side branchiostegals	-0.369	0.486	0.022	-0.035	-0.184
Right side branchiostegals	0.578	0.324	-0.265	0.105	-0.454
Gill rakers on lower limb	0.552	0.307	-0.201	0.058	-0.579
Gill rakers on upper limb	0.019	0.751	0.368	-0.017	-0.069
Total number of gill rakers	-0.377	0.515	0.457	0.092	0.181
Vertebral counts	-0.218	0.804	0.518	0.044	0.066
Abdominal vertebrae	0.875	0.017	0.220	0.107	0.135
Caudal vertebrae	0.764	-0.111	0.347	-0.358	-0.019
Dorsal fin position	0.360	0.182	-0.124	0.704	0.220
Anal fin position	0.623	-0.291	0.338	0.075	0.199
Dorsal fin pterygiophores	0.794	-0.104	0.346	-0.292	0.039
Interneurales	0.448	0.229	-0.412	0.057	-0.208
Anal fin pterygiophores	0.608	0.092	-0.035	0.015	0.213
Caudal fin upper procurrent rays	0.160	0.136	-0.353	0.551	0.312
Caudal fin lower procurrent rays	0.158	0.371	-0.581	-0.412	0.409
Variance explained (%)	27.149	15.194	11.905	8.422	6.897