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Modeling fluid flow in three-dimensional fracture networks is required in a wide variety of applications related to fractured rocks.
Numerical approaches developed for this purpose rely on either simplified representations of the physics of the considered problem
using mesh-free methods at the fracture scale or complex meshing of the studied systems resulting in considerable computational
costs. Here, we derive an alternative approach that does not rely on a full meshing of the fracture network yet maintains an accurate
representation of the modeled physical processes. This is done by considering simplified fracture networks in which the fractures
are represented as rectangles that are divided into rectangular subfractures such that the fracture intersections are defined on the
borders of these subfractures. Two-dimensional analytical solutions for the Darcy-scale flow problem are utilized at the
subfracture scale and coupled at the fracture-network scale through discretization nodes located on the subfracture borders. We
investigate the impact of parameters related to the location and number of the discretization nodes on the results obtained, and
we compare our results with those calculated using reference solutions, which are an analytical solution for simple
configurations and a standard finite-element modeling approach for complex configurations. This work represents a first step
towards the development of 3D hybrid analytical and numerical approaches where the impact of the surrounding matrix will be
eventually considered.

1. Introduction

Modeling fluid flow in the subsurface is required for numer-
ous research fields and applications (e.g., [1–5]). This critical
task is especially challenging in fractured rocks, as a large
amount of work has shown that standard continuum repre-
sentations cannot be used for most of the fractured porous
domains encountered in the natural environment (e.g., [6],
and references therein). This has led to the development of
alternative subsurface representations where the intercon-
nected fractures are represented individually as one- or
two-dimensional discrete elements in two- and three-
dimensional domains (e.g., [7–9]). These representations
are well suited to capturing the impact of fracture-network
properties on large-scale observations (e.g., [10–13]) and

can be conditioned to data that are difficult to incorporate
into continuum models (e.g., [14, 15]).

Numerical modeling in fractured media using fracture-
network representations is widespread and includes applica-
tions to multiphase reservoir flow (e.g., [16, 17]), coupled
fluid flow, and solute transport for hydrogeological problems
(e.g., [10, 13]), as well as electric current propagation in order
to investigate fracture-network characteristics using geoelec-
trical methods (e.g., [18–20]). In this regard, when it is neces-
sary to take into account fracture-matrix exchanges, such as
when modeling electric current propagation or solute trans-
port subject to matrix diffusion, several methods enable us
to couple an explicit representation of the fractures with the
surrounding matrix (e.g., [21–23]). In numerous hydrogeolo-
gical studies, however, fluid flow is assumed to only occur in
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the interconnected fracture network, with the underlying
assumption being that the surrounding matrix is impervious
(e.g., [24–27]).

Independent of whether fracture-matrix exchanges are
ignored or considered, several strategies exist for simulating
fluid flow in 3D fracture networks, which rely on different
assumptions about the modeled processes at the fracture
scale and the geometrical complexity of the fractures and
fracture networks. The most cost-effective numerical
approaches consider 1D fluid flow at the fracture scale, where
the fractures are represented as pipes or rectangles, and the
fracture-network discretization only requires nodes at the
fracture extremities and intersections when fracture-matrix
exchanges are not considered (e.g., [8, 28]). Considering
rectangular fractures, the latter approach has been extended
to 2D fluid flow at the fracture scale by discretizing each
fracture with structured quadrilateral meshes and focusing
on simple fracture-network configurations and intersections
(e.g., [17, 29]). Finally, numerical methods have been
developed for complex fracture networks relying upon more
advanced representations of (i) the fracture shape, com-
monly using ellipses or circles, and (ii) the fracture-network
geometry, by having no restriction concerning the corre-
sponding fracture intersections (e.g., [24, 30]). These
improvements were made at the expense of the computa-
tional cost of the corresponding simulations, which require
the use of unstructured meshes associated with sophisticated
meshing algorithms (e.g., [31]).

In this paper, we investigate how analytical solutions at
the fracture scale can be used to simulate Darcy-scale fluid
flow processes in 3D fracture networks. To this end, each
fracture is represented as a rectangle and divided into sub-
fractures that are defined by the fracture intersections at
the fracture-network scale. 2D analytical solutions are used
in the subfractures and coupled through discretization
nodes located on the subfracture borders, by enforcing
continuity and mass conservation laws for the hydraulic
head and fluid flow, respectively. The surface area of the
considered 2D rectangular elements is not meshed, while
keeping a 2D representation of the fluid flow in each
element.

After presenting this new modeling approach with two
different means of defining the subfractures, we explain some
restrictions related to the geometrical complexity of the con-
sidered fracture networks, and we provide the hydraulic head
distribution at the fracture scale and the flow rate exiting the
domain at the fracture-network scale for simple and complex
fracture networks, respectively. In the latter case, the impact
of the model parameters on the results is analyzed and these
results are compared to those obtained using a standard
finite-element approach.

2. Methodology

2.1. Governing Equations.Modeling fluid flow in 3D fracture
networks is generally done by representing the fractures as
2D elements in which the flow rate is averaged over the frac-
ture aperture b. When considering a Newtonian fluid at low
Reynolds number, the flow within the fracture is governed

by the Stokes equations and the corresponding average flow
rate is expressed with the Darcy equation. In the context of
an incompressible fluid under steady-state conditions, this
results in the following expressions for mass conservation
and the average flow rate per unit length J for each fracture
(e.g., [32, 33]):

∇·J = 0, J = −T∇h: ð1Þ

In equations (1), the hydraulic fracture transmissivity is
given by T = ρgb3/ð12μÞ when assuming local Poiseuille
law, with ρ and μ the fluid density and dynamic viscosity,
respectively, g the acceleration of gravity, and h the hydraulic
head.

2.2. Modeling Strategy. Equations (1) must be verified for
each fracture of the considered fracture network. When con-
sidering a 2D representation of the fluid flow in the fractures,
this is usually done by expressing these equations in the local
coordinates of the fracture and solving them numerically by
discretizing the fracture (see Introduction for references).
In this work, we would like to avoid such a discretization
by using analytical solutions of the mass conservation equa-
tion (1). To do so, we represent the fractures as 2D rectangles
that are divided into rectangular subfractures such that the
intersection lines between fractures are defined on the bor-
ders of these subfractures. This enables us to avoid the pres-
ence of intersections inside the 2D rectangular elements for
which the analytical solutions are defined. For a simple
example of two intersecting fractures, Figure 1 illustrates
the corresponding subfractures that are determined with
two different definitions. In the first case, the subfractures
are defined such that the intersection line between the two
main initial fractures corresponds exactly with the border
of at least one subfracture. In the second case, the subfrac-
tures are defined such that the intersection line between the
two main initial fractures is on the border of at least one
subfracture but does not need to be fully defined on this
border. We name these two definitions Inter1 and Inter2,
respectively, where the latter allows us to reduce the number
of subfractures compared with the former. Note that both
definitions require, as mentioned previously, that (i) each
fracture be represented by a 2D rectangle and (ii) the inter-
section lines between fractures have the same orientation as
the fracture borders.

2.3. Analytical Solution for the Subfractures. In each subfrac-
ture, the analytical solution of the mass conservation equa-
tion (1) is determined by considering a rectangle having
length L, width H, and constant transmissivity T . In the
domain Ω = fðxf , yf Þ: 0 ≤ xf ≤ L, 0 ≤ yf ≤Hg where xf and
yf are the local Cartesian coordinates defined along the sub-
fracture borders, the corresponding boundary-value problem
(BVP) is expressed as

∂2xf h xf , yf
� �

+ ∂2yf h xf , yf
� �

= 0, ð2aÞ
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h xf , yf
� �

= gi xf , yf
� �

,  xf , yf
� �

∈ Γi, ð2bÞ

where Γiði = 1, 2, 3, 4Þ are the borders of the considered sub-
fracture as shown in Figure 2.

As described in Appendix A, the solution hðx, yÞ of BVP
(2) is expressed as

h xf , yf
� �

= 〠
4

i=1

2
li
〠
∞

k=1
sin kπχi

li

� � ð li
0
sin kπzi

li

� �
gi zið Þdzi

� �(

� sinh kπ~χi/lið Þ
sinh k~liπ/li

� �
)
,

ð3aÞ

with

li =
H, i = 1, 2,
L, i = 3, 4,

(

~li =
L, i = 1, 2,
H, i = 3, 4,

(

χi =
yf , i = 1, 2,
xf , i = 3, 4,

(

~χi =

L − xf , i = 1,
xf , i = 2,
H − yf , i = 3,
yf , i = 4,

8>>>>><
>>>>>:

zi =
yf , i = 1, 2,
xf , i = 3, 4:

(

ð3bÞ

In expression (3), the functions gi describe the
unknown hydraulic head h along the borders Γi, which
are discretized as shown in Figure 2. Discretizing each
border Γi into Ni nodes results in discretizing the corre-
sponding unknown function gi into Ni discretized values

denoted gp
i ðp = 1,⋯,NiÞ. These values are used to

enforce the flow conditions described next in Section
2.4, and they are the unknowns of the linear system
defined in Section 2.5.

2.4. Flow Conditions for the Fracture Network. Solving equa-
tion (1) in 3D fracture networks is accomplished by enfor-
cing the following flow conditions: (1) flow continuity at
the interfaces between subfractures; (2) no-flow conditions
on the fracture borders, as we consider here a surrounding
matrix impervious to fluid flow; and (3) flow conservation
at the fracture intersections. These three conditions are
applied along the subfracture borders that are discretized as
shown in Figure 2, implying that they can be mathematically
expressed at each node m as follows:

〠
k∈Im

F

Jk xmkð ÞΔm = 0: ð4Þ

In expression (4), Im
F represents the set of subfractures

that share node m; Jkðxmk Þ is the average flow rate per unit
length leaving fracture k at position xmk = ðxmk , ymk Þ, i.e., the
position of node m in fracture k; and Δm is the length associ-
ated with the discretized nodem. This parameter is defined as
Δm = lmf /Nm

i with lmf the length of the fracture on which node
m is located and Nm

i the number of discretized nodes on this
fracture, which is determined from the following expression:
Nm

i =min ð1, int ðlmf /ΔdiscÞÞ. In this expression, the function
min ðx, yÞ returns the minimum value between x and y and
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Figure 1: Example of (a) two intersecting fractures that have been divided into (b) 8 subfractures with the method Inter1 and (c) 4
subfractures with the method Inter2. The intersection line between the two main initial fractures is shown in red.
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Figure 2: Illustration of a subfracture having length L, widthH, local
coordinates xf and yf , and discretized bordersΓiði = 1, 2, 3, 4Þwhere
the discretization nodes are represented with crosses.
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the function int ðxÞ rounds x down to the integer below x.
From this definition, there is at least one discretized node
on each fracture segment and the minimum length associ-
ated with each discretization node is the length Δdisc.

2.5. Final Linear System. Expressions for the average flow
rates required in (4) are given in Appendix B for each border
of a given subfracture. These expressions depend linearly on
the unknown discretized values of hydraulic head gp

i along
each subfracture border. Writing the flow condition (4) for
each discretization node leads to a linear system Ax = b
where x is the vector of unknown values gpi . After solving this
linear system by considering Dirichlet or Neumann bound-
ary conditions on the domain borders, the distributions of
hydraulic head and average flow rate in the fracture network
are defined using expression (3) and the Darcy equation (1),
respectively, for each subfracture.

3. Method Analysis and Applications

The modeling approach described in Section 2 is tested for
simple (Section 3.1) and complex (Section 3.2) fracture con-
figurations. In Section 3.1, the study of the hydraulic head
distribution in a single fracture for various values of the dis-
cretization parameters leads to define a newmodel parameter
denoted ε, for which various definitions are tested on a two-
intersecting fracture configuration. In Section 3.2, the impact
of the discretization parameters is analyzed for complex
fracture-network configurations, and the results obtained
with the two subfracture definitions are compared with those
coming from a reference solution.

3.1. Method Analysis with Simple Configurations. We
consider the simple fracture configurations presented in
Figure 3 that correspond to a single fracture (Config_1a)
and two intersecting fractures (Config_1b) in 10 × 10 ×
10m3 domains. The fracture aperture is set to 10−3m
and we assume Dirichlet hydraulic head boundary condi-
tions equal to 1m and 0m on the left and right sides of
the domain, respectively, and Dirichlet boundary condi-
tions varying linearly between these two values along

the top, bottom, back, and front sides. The hydraulic
head distribution in the single fracture can be described
with the analytical expression hðx, yÞ = 1 − x/L that we use
with L = 10m as the reference solution for Config_1a,
whereas we use a standard finite-element approach as the
reference solution for Config_1b and the configurations
considered next in Section 3.2.

Using the reference solutions described above, we
define the relative error in the hydraulic head Eh1ðx,
yÞ = ∣hðx, yÞ − href ðx, yÞ∣/href ðx, yÞ × 100 with hðx, yÞ and
href ðx, yÞ as the hydraulic heads at position ðx, yÞ com-
puted with our hybrid approach and the reference
solution, respectively. We also define Eh2ðxÞ as the
average error at each position x of the relative errors Eh1
computed along position y. Figure 4 shows these errors along
the relative distance xL = x/L for Config_1a with various
values of the hybrid model parameter Δdisc going from 5 to
0.1m. As explained in Section 2.4, this parameter defines
the length Δm associated with each node m that is used in
equation (4). Figure 4 shows that decreasing the discretiza-
tion parameter Δdisc leads to decrease both errors Eh1 and
Eh2 with values below 2% and 1% when Δdisc ≤ 1m and
0.5m, respectively, except for some instabilities of Eh1 that
are observed when xL is located at the fracture extremities
(i.e., xL close to 0 and 1 in Figure 4(a)). Conversely, when
Δdisc = 5m, large values of Eh1 and Eh2 are observed because
only two discretization nodes are used to describe the
hydraulic head distribution along the fracture borders.

The presence of instabilities of the hydraulic head shown
at the fracture extremities in Figure 4(a) leads to define the
parameter ε, which corresponds to a small distance around
the fracture extremities at which the averaged fluid flow rates
are computed (Appendix B) and the fluid flow conservation
is enforced (equation (4)). In order to evaluate the most
appropriate definition of ε, we evaluate the relative error in
the fluid flow rate that exits the right side of the domain for
the configurations presented in Figure 3. This error is
denoted Ex and is computed by considering as the reference
solution for Config_1a the analytical expression of the flow
rate Q = −TH∇h with T and H as the fracture transmissivity
and width, respectively, and ∇h as the hydraulic head
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Figure 3: Simple fracture configurations considered.
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gradient between the left and right sides of the domain. As
mentioned before, the reference solution for Config_1b is
computed with a standard finite-element approach.
Figure 4(a) shows that the location and amplitude of the
instabilities of the hydraulic head depend on the fracture dis-
cretization such that the amplitude increases and the location
is closer to the fracture extremities when the discretization
parameter Δdisc decreases. In order to take into account this
observation, we consider that the definition of ε should be
expressed as a function of Δdisc and we choose the linear rela-
tionship ε = αΔdisc with α being an adjusting coefficient. This
definition is tested by evaluating the impact of various
values of α on the error in flow rate Ex for the configuration
Config_1a. The results displayed in Figure 5(a) show that Ex
quickly decreases to values smaller than 1% when increasing
the characteristic discretization length l = L/Δdisc with α set
to 0.5, 1, and 1.5. That being said, using α = 1 results in a
quicker and monotonic decrease in Ex, implying that we will
use this value for the rest of this work.

In the previous configuration, the size of the single frac-
ture and the values of the discretization parameter Δdisc are
such that Δm = Δdisc because each border of the considered
fracture could be exactly divided into segments of length
Δdisc. However, for more complex configurations, the fracture
borders might be divided into segments of slightly larger
length than Δdisc. In this case, the parameter Δm that is used
in equation (4) and the discretization parameter Δdisc that is
used to define Δm might be different. In addition, Δm might
not be constant at the fracture scale because the value of Δm

could be different from a fracture border to the other. In
order to evaluate the best definition of ε in this case, we
compute the relative error Ex for the configuration
Config_1b (Figure 3(b)) considering the following defini-
tions of ε: (i) ε = Δdisc, (ii) ε = Δm

av f ract , and (iii) ε =

Δm
av border , where Δm

av f ract and Δm
av border correspond to the

value of Δm averaged at the fracture and border scale,
respectively. Figures 5(b) and 5(c) show the results that
are obtained using the methods Inter1 and Inter2 to define
the subfractures of the system. These results show that
averaging Δm at the border scale leads to a more accurate
description of the exiting flow rate with errors smaller
than 2 and 1% using the methods Inter1 and Inter2,
respectively. Consequently, the definition of ε = Δm

av border
will be used in the next section of our study.

3.2. Application to Fracture Networks.We wish now to apply
the modeling approach presented in Section 2 and the
parameter definitions provided in Section 3.1 to various
fracture networks. These networks must respect the geom-
etry restrictions explained in Section 2 implying that the
intersection lines between fractures and subfractures must
be parallel to the fracture borders. This condition is ful-
filled by the deterministic and random fracture networks
that are described below. Our hybrid analytical and
numerical method is tested on these networks for various
hydraulic conditions and fluid flow directions, and the
corresponding results are shown below and discussed in
Section 4.

In the line of the deterministic layered fracture models
presented in Doolin and Mauldon [34], we consider two
sets of joint networks denoted Config_2 and Config_3 that
are shown in Figure 6. These networks, consisting of
strata-bound, bed-normal joint sets separated by bedding
planes, are representative configurations of joint systems
in layered carbonate rocks [35]. The size of the models
is 2 × 2 × 0:1m3. In Config_2, three configurations of a
double-layered joint network with different spacing contrast
between the two layers are examined (Figures 6(a)–6(c)).
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Figure 4: Errors in hydraulic head along the relative fracture length xL = x/L for the fracture configuration Config_1a (Figure 3(a)) with the
discretization length Δdisc set to 5, 1, 0.5, and 0.1m. The symbols represent (a) the relative error Eh1 at each position ðx, yÞ and (b) the relative
error Eh2 averaged over position y. The dashed and dotted horizontal black lines represent errors of 1 and 2%, respectively.
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The joint spacing is 0.3m in the top and bottom layers of
Config_2a. In Config_2b and Config_2c, the joint spacing is
0.3m for the top layer joint set, while equal to 0.6m for the
bottom layer joint set. The difference between the twomodels
is the joint locations in the bottom layer. In Config_3, we test
three double-layered joint models with different overlap pat-
terns between joint sets in the top and bottom layers
(Figures 6(d)–6(f)). The overlap between joint sets in the
top and bottom layers is 0.6m for Config_3a, 0.3m for
Config_3b, and 0m for Config_3c. To calculate flow through
the joint networks, the fracture aperture is set to 10−3m and
the hydraulic heads are set to 1m and 0m on the top and bot-
tom sides of the domain, respectively, with no-flow condi-
tions enforced along the other borders.

In relation with previous studies describing fractured
aquifers and reservoirs, we also consider the sets of random
fracture networks Config_4 and Config_5 shown in Figure 7

with the percolation parameter p =∑N f

i ð0:5liÞ3/L3, with Nf

being the number of fractures, li the length of fracture i,
and L the domain size [24, 30, 36, 37]. In these 10 × 10 ×
10m3 domains, the center of each fracture is determined
by drawing the corresponding coordinates x, y, and z from
a uniform distribution ranging from 0 to the domain size
L = 10m. The fracture aperture is set to 10−3m, and the
hydraulic heads are set to 1m and 0m on the left and right
sides of the domain, respectively, and vary linearly between
these two values along the other borders. The fracture
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Figure 5: Error in the exiting flow rate Ex (%) along the characteristic discretization length l = L/Δdisc. (a) The relationship ε = αΔdisc is tested
for various values of the coefficient α with the fracture configuration Config_1a (Figure 3(a)). (b, c) Various definitions of ε are tested for the
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networks Config_4 (Figures 7(a)–7(c)) correspond to
orthogonal square fractures of size 5m with parameter p
set to 0.2 (Config_4a), 0.25 (Config_4b), and 0.3 (Config_4c).
For the fracture networks Config_5 (Figures 7(d) and 7(e)),
we consider the following characteristics: (i) the fracture
length is uniformly distributed from 0 to L, (ii) the fracture
length is oriented along the x- or y-axis with equal prob-
ability, (iii) the ratio between the fracture length and
width is set to 2, (iv) the angle between the fracture
and the x-y plane is uniformly distributed between 0
and π, and (v) parameter p is set to 0.5 (Config_5a) and
0.55 (Config_5b). For both sets of networks Config_4 and
Config_5, we only consider the fractures that are connected
to the right side of the domain and we compute the flow rate
exiting this side.

Our modeling approach is tested with these fracture
networks by defining the relative errors Ez and Ex in the
flow rate exiting the bottom and right side of the domain,
respectively. As before, we use a standard finite-element
method as the reference solution. Figure 8 shows Ez for
the sets of fracture networks Config_2 and Config_3 and
Ex for Config_4 and Config_5 along the characteristic
discretization length l = L/Δdisc with L = 2 and 10m for
Config_2-Config_3 and Config_4-Config_5, respectively.
These results are analyzed and discussed in the following
section.

4. Results and Discussion

Figure 8 shows the errors in the main exiting flow rate
obtained with the hybrid analytical and numerical approach

described in Section 2 for the fracture networks presented
in Figures 6 and 7. The results presented in Figures 8(a)
and 8(b) are used to evaluate the applicability of our
method for modeling vertical fluid flow in deterministic
joint models and the results presented in Figures 8(c)–8(f)
for horizontal fluid flow in random fracture networks. For
all these cases, the two definitions of the subfractures
previously denoted Inter1 and Inter2 are tested, except in
Figure 8(a) for which the tested fracture networks result
in identical networks of subfractures when applying either
method Inter1 or Inter2.

In the latter case, Figure 8(a) shows that the error in flow
rate Ez quickly decreases for the configurations Config_2
when increasing the characteristic discretization length l
and reaches values below 2% when l ≥ l1 and around 1%
when l > l1 with l1 = 40. This critical value, which is repre-
sented as a dashed vertical black line in Figure 8(a), is
obtained when Δdisc is set to 0.05m, which corresponds to
the width of the top and bottom layers of Config_2. This
value also corresponds to the length of the smallest subfrac-
ture borders of the considered systems with an example of
these borders shown in red in Figure 6(a). Consequently,
when Δdisc ≥ 0:05m (i.e., l ≤ l1), only one node is used on
these smallest borders, and when Δdisc < 0:05m (i.e., l > l1),
more than one node is used on these borders. Thus, the
results in Figure 8(a) show that the exiting flow rate in
Config_2 is well described when using one node (or more)
to discretize the smallest subfracture borders.

In order to evaluate the impact of reducing the fracture
length and modifying the overlap between the fractures
located on the top and bottom layers, we consider the joint
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Figure 6: Deterministic fracture networks representing strata-bound, bed-normal joint sets in layered carbonate rocks. Joint networks
considering (a–c) spacing contrast in adjacent beds and (d–f) overlapping pattern of joint sets in adjacent beds.
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models Config_3 presented in Figures 6(d)–6(f). These
models are studied with the definitions of the subfractures
Inter1 and Inter2 for which the error in flow rate Ez is repre-
sented in Figure 8(b) with full and dashed lines, respectively.
Although the smallest subfracture length is equal to 0.05m as
before, the results in Figure 8(b) show that more than one
node is required to discretize these smallest subfracture bor-
ders since Ez is larger than 2% when l = l1. Consequently, in
comparison with Config_2, the decrease in the length of the
fractures in Config_3 results in increasing the complexity of

the fluid flow such that more discretization nodes are
required for representing this flow. Figure 8(b) also shows
that the number of nodes must be increased from Config_3a
to Config_3c since Ez is smaller than 2% with Inter1 when
l ≥ 100, 400, and 800 for Config_3a, Config_3b, and Config_3c,
respectively. From Config_3a to Config_3c, reducing the over-
lap between the fractures located on the top layer and those
located on the bottom layer impacts the behavior of the fluid
circulating from the top to the bottom fractures through the
bedding plane and results in increasing the complexity of this
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Figure 7: Random fracture networks considering (a–c) orthogonal families of fractures and (d, e) random orientations for various values of
the percolation parameter p.
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Figure 8: Error in the exiting flow rates (a, b) Ez (%) and (c–f) Ex (%) along the characteristic length l = L/Δdisc with (a, b) L = 2m and (c–f)
L = 10m for the fracture networks (a) Config_2 (Figures 6(a)–6(c)), (b) Config_3 (Figures 6(d)–6(f)), (c, d) Config_4 (Figures 7(a)–7(c)), and
(e, f) Config_5 (Figures 7(d) and 7(e)). The method Inter1 is used in (b, full lines), (c), and (e) to define the subfractures of the systems and the
method Inter2 in (b, dotted lines), (d), and (f). The dashed, dashdot, and dotted black lines with no symbol represent errors of 1, 2, and 10%,
respectively.
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flow. When the fractures fully overlap (Config_3a), the flow in
the bedding plane tends to be piece-wise one-dimensional,
whereas the configuration with no overlap (Config_3c)
results in more complex two-dimensional fluid flow in the
bedding plane. This need for increasing the number of nodes
when decreasing the overlap between fractures is observed
for both methods Inter1 and Inter2.

Concerning the random fracture networks presented
in Figures 7 and 8(c)–8(f) show that both methods Inter1
and Inter2 can handle sparse configurations since the
error in exiting flow rate Ex is smaller than 2% when
(i) l is larger than or equal to 100 for both methods
Inter1 and Inter2 when studying Config_4a (black lines
with circles in Figures 8(c) and 8(d)) and (ii) l ≥ 200
and l ≥ 500 for method Inter1 and Inter2, respectively,
when studying Config_5a (black lines with circles in
Figures 8(e) and 8(f), respectively). However, increasing the
percolation parameter p from 0.2 (Config_4a) to 0.25
(Config_4b) and 0.3 (Config_4c) for the sets of orthogonal
fractures (Config_4) and from 0.5 (Config_5a) to 0.55
(Config_5b) for the sets of fractures with random orientations
(Config_5) results in increasing the error Ex when using
method Inter1 with Ex ≈ 10% in Figure 8(c) (blue line with
crosses and green line with stars) and 100% in Figure 8(e)
(blue line with crosses). As illustrated in Figure 9, these
large values of Ex are related to instabilities of the hydrau-
lic head that are observed in the presence of small subfrac-
tures. In these cases, it is required to define the
subfractures of the systems with the method Inter2 in
order to provide a good representation of the fluid flow.
Figures 8(d) and 8(f) show that using our modeling
approach with the method Inter2 leads to values of Ex that
are below or around 2% for all the random fracture net-
works presented in Figure 7.

5. Conclusions

In this work, we present the first attempt to develop three-
dimensional hybrid analytical and numerical approaches
for modeling fluid flow in fractured rocks. Although the
results obtained in this study are satisfactory when defin-
ing the subfractures of the systems as pieces of the fracture
borders (i.e., intersection method Inter2), additional devel-
opments and mathematical analysis are required for
improving the stability of the developed solution. To this
end, the next step of this work will focus on considering
regularization methods that have been developed for dif-
ferent research fields using Fourier series as well [38, 39],
which could help to stabilize the analytical solutions that
are used at the subfracture scale in our models. This step
is required before pushing further our efforts in terms of
development of the method and comparison with existing
modeling approaches.

Future extensions will also be considered in order to
increase the complexity of the fracture networks that can
be handled with the method. Relying on the use of analyt-
ical solutions at the fracture scale with no source term
(f = 0 in Appendix A), the method is restricted to simpli-
fied fracture networks for which (i) the fractures are repre-
sented as rectangles and (ii) the intersection lines between
the fractures are parallel to the fracture borders. The latter
limitation comes from the technique that is used to couple
the fractures, which relies on discretization nodes that
must be located on the fracture borders. By using analyti-
cal solutions with f ≠ 0 where this source term represents
the flow entering or leaving the fracture through the inter-
section with another fracture, the restriction on the frac-
ture intersection lines could be removed. Evaluating the
feasibility of such an extension requires to (i) formulate

1.4

6 5.9 5.8 5.7 5.6 5.5

0

0

10
5

0

1

2

2

3

4

4 6 8 10

5

6

6.6
6.7

6.8
6.9

7
7.1

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.45

1.5

1.55

1.6

1.65

z
 (m

)

z
 (m

)

y (m)

x (m)

x (m)

y (m)
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Inter1

z
 (m

)

0 2 4 6 8 10

x (m)

10
5

0y (m)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

1

2
3

4

5
6

7

8

9

10

(b) Inter2
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the mathematical problem at the fracture scale with
unknown discretized values of the hydraulic head gp

i
located on both the fracture borders and fracture intersec-
tion lines, (ii) derive the corresponding outward fluid flow
rates in order to define the new linear system Ax = b at
the fracture-network scale, and (iii) implement these
changes, including the definition of new discretization
nodes, in the numerical method.

Yet, we believe that the results presented in this work
show the potential of three-dimensional hybrid analytical
and numerical approaches, which are promising methods
for providing efficient strategies to model flow processes
in 3D fractured rocks. The strength of these methods relies
on the discretization of the subfracture borders while no
meshing is required in the fractures. This is a key advan-
tage for future extensions to fluid and electric current flow
applications that require taking into account the perme-
able surrounding rock matrix. Although these methods
rely on simplified representations of the fractures and frac-
ture networks, the need for efficient modeling approaches
for data inversion and stochastic analyses forces us to
explore various modeling options at the expense of the
model complexity.

Appendix

A. Analytical Expression for the Hydraulic Head

The solution hðxf , yf Þ for the boundary-value problem
(BVP)

− ∂2xf h xf , yf
� �

+ ∂2yh xf , yf
� �h i

= f xf , yf
� �

,

h 0, yf
� �

= g1 yf
� �

,

h L, yf
� �

= g2 yf
� �

,

h xf , 0
� 	

= g3 xf
� 	

,

h xf ,H
� 	

= g4 xf
� 	

,

ðA:1aÞ

with 0 ≤ xf ≤ L and 0 ≤ yf ≤H, can be expressed as [40, 41]

h xf , yf
� �

=
ðL
0

ðH
0
G xf , yf , ξ, η
� �

w ξ, ηð Þdηdξ, ðA:1bÞ

with

Considering f ðxf , yf Þ = 0, and using the properties of the
Dirac delta function δ provided in Butkovskiy [40] and of
trigonometric and hyperbolic functions provided in Gradsh-
tein and Zwillinger [42], hðx, yÞ is expressed as

h xf , yf
� �

= 〠
4

i=1

2
li
〠
∞

k=1
sin kπχi

li

� � ð li
0
sin kπzi

li

� �
gi zið Þdzi

� �(

� sinh kπ~χi/lið Þ
sinh kπ~li/li

� �
)
,

ðA:2aÞ

with

li =
H, i = 1, 2,
L, i = 3, 4,

(

~li =
L, i = 1, 2,
H, i = 3, 4,

(

χi =
yf , i = 1, 2,
xf , i = 3, 4,

(

~χi =

L − xf , i = 1,
xf , i = 2,
H − yf , i = 3,
yf , i = 4,

8>>>>><
>>>>>:

zi =
yf , i = 1, 2,
xf , i = 3, 4:

(
ðA:2bÞ

B. Analytical Expressions for the Outward Fluid
Flow Rates

Consider a subfracture of length L, width H, and constant
transmissivity T , the outward averaged flow rates per unit
length Ji on subfracture border Γiði = 1, 2, 3, 4Þ are defined as

J1 yf
� �

= T × ∂xf h xf , yf
� �

xf =εð Þ,





J2 yf
� �

= −T × ∂xf h xf , yf
� �




xf =L−εð Þ,

J3 xf
� 	

= T × ∂yf h xf , yf
� �

yf =εð Þ,





J4 xf
� 	

= −T × ∂yf h xf , yf
� �




yf =H−εð Þ,

ðB:1Þ

G xf , yf , ξ, η
� �

= 4
π2LH

〠
∞

m=1
〠
∞

n=1

sin mπxf /L
� 	

sin nπyf /H
� �

sin mπξ/Lð Þ sin nπη/Hð Þ
m/Lð Þ2 + n/Hð Þ2 ,

w ξ, ηð Þ = f ξ, ηð Þ − δ′ ξð Þg1 ηð Þ − δ′ L − ξð Þg2 ηð Þ − δ′ ηð Þg3 ξð Þ − δ′ H − ηð Þg4 ξð Þ:
ðA:1cÞ
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where, as described in Section 3, ε is the distance parameter
that is used to reduce the instabilities observed at the extrem-
ities of the Fourier series.

Using expression (3) and discretizing the integrals related
to functions giði = 1, 2, 3, 4Þ withNx andNy nodes in xf - and
yf -directions, respectively, the derivatives of hydraulic head
required in (B.1) are expressed as

with giðηpÞ = gpi ði = 1,⋯, 4Þ, Δη =H/Ny, and Δξ = L/Nx.

∂xf h xf , yf
� �




xf =εð Þ = −
2π
H2 〠

∞

k=1
k sin

kπyf
H

� �
〠
Ny

p=1
sin

kπηp
H

� �
gp1Δη

2
4

3
5 cosh kπ L − εð Þ/H½ �

sinh kLπ/Hð Þ

+ 2π
H2 〠

∞

k=1
k sin

kπyf
H

� �
〠
Ny

p=1
sin

kπηp
H

� �
gp2Δη

2
4

3
5 cosh kπε/Hð Þ
sinh kLπ/Hð Þ

+ 2π
L2

〠
∞

k=1
k cos kπε

L

� �
〠
Nx

p=1
sin

kπξp
L

� �
gp3Δξ

" # sinh kπ H − yf
� �

/L
h i
sinh kHπ/Lð Þ

+ 2π
L2

〠
∞

k=1
k cos kπε

L

� �
〠
Nx

p=1
sin

kπξp
L

� �
gp4Δξ

" # sinh kπyf /L
� �

sinh kHπ/Lð Þ ,

ðB:2aÞ
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k sin
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3
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